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Introduction

● RBNs originally models of genetic regulatory 
networks (Kauffman, 1969; Kauffman, 1993)

● Random connectivity and functionality
– Useful with very complex systems

● Possibility to understand holistically living 
processes (e.g. for disease treatment)

● Possibility to explore possibilities of living and 
computational systems.



Classical Model

● Generalization of boolean CA
● N boolean nodes, K 

connections per node
● Connectivity and logical 

functions generated randomly
● Synchronous updating



Example

● Finite states (2N) => attractors (dissipative system)
– Point and cycle attractors
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Computational “Difficulties”
● Practically infinite possible networks
– 2^2^K possible logic functions per node
– N!/(N −K)! possible ordered combinations per node

– though many equivalent (Harvey and Bossomaier, 1997)
● Can extract general properties with statistical 

samples
– All possible initial states but small networks OR
– Large networks but few initial states

possible nets= 22K

N !
N−K !


N



Order, Chaos, and the Edge (1)

● Neighbouring nodes in lattice
– If changing, green; if static, red
– Order: few green “islands”, surrounded by a red 

“frozen sea”
– Chaos: green sea of changes, typically with red stable 

islands
– Edge: green sea breaks into green islands, and the red 

islands join and percolate through the lattice 
(Kauffman, 2000, pp. 166-167)



Order, Chaos, and the Edge (2)

● Network stability
– “sensitivity to initial conditions”
– “damage spreading”
– “robustness to perturbations”

● Make a change in a state, connection, or rule, and 
see how changes affect the “normal” behaviour
– Order: “Perturbed” network goes to the same 

dynamical path as “normal” net. Changes stay in 
green islands, damage does not spread



Order, Chaos, and the Edge (2.5)

– Chaos: changes propagate, high sensitivity. Damage 
percolates through green sea

– Edge: changes can propagate, but not necessarily 
through all the network (Kauffman, 2000, pp. 168-
170)



Order, Chaos, and the Edge (3)

● Convergence vs. Divergence of Trajectories
– Order: Similar similar states tend to converge to the 

same state
– Chaos: similar states tend to diverge
– Edge: nearby states tend to lie on trajectories that 

neither converge nor diverge in state space 
(Kauffman, 2000, p. 171)

Life and Computation at the Edge of Chaos
(Langton, 1990; Kauffman, 1993; 2000)



Phase Transitions in RBNs

Ordered Edge Chaos



Derrida's Annealed Approximation (1)
● Phase transition when K=2 (Derrida and Pomeau, 1986)
● Also generalized for mean K and probability p
● Measure overlap of state at t with state at t+1 using 

normalized Hamming distance:

● Then choose new rules and connections
● One dimensional map
– At p=0.5, converges to 0 when K<2 (ordered)
– when K>2, divergence (chaos), critical phase K=2

H A , B=1
n∑i

n

∣ai−bi∣



Derrida's Annealed Approximation (2)

〈K 〉= 1
2 p 1− p

(Aldana, 2003)
© Elsevier

Critical K



A Simpler Analytical Determination (1)

● Damage spreading when single nodes are 
perturbed (Luque and Solé, 1997b)

● Consider trees of nodes that can affect the state of 
other nodes in time

● As a node has more connections, there will be an 
increase in the probability that a damage in a 
single node (0→1 or 1→0) will percolate through 
the network.



A Simpler Analytical Determination (2)
● Let us focus only in one node i at time t, and a node j of the 

several i can affect at time t +1. There is a probability p that j 
will be one, and a damage in i will modify j towards one with 
probability 1− p. The complementary case is the same. Now, for 
K nodes, we could expect that at least one change will occur if 
<K>2p(1− p) ≥ 1, which leads to Derrida's result

● This method can be also used for other types of networks



Lyapunov exponents in RBNs 

● Using the concept of boolean derivative (Luque 
and Solé, 2000)

● where λ < 0 represents the ordered phase, λ > 0 
the chaotic phase, and λ = 0 the critical phase.

● Beware: Very high standard deviations!
● Theory can differ from practice...

=log 2 p 1− pK 



Explorations of the Classical Model

● E.g. number and length of attractors, sizes and 
distributions of their basins, and their dependence 
on different parameters (N, K, p, or topology) 
(Wuensche, 1997; Aldana et al., 2003)

● Analytical or statistical?



Node Structure
●Descendants
●Ancestors
●Linkage loops
●Linkage trees

●More connections, 
more loops, less 
stability



State Space Structure

● A predecessor of B
● C successor of B
– Only one successor => CRBNs dissipative systems

● In-degree: number of predecessors
● Garden-of-Eden states: in-degree=0
● Transient: trajectory towards attractor

(Wuensche, 1998)



Attractor Lengths (1)

● Analytic solutions of RBNs for K = 1 (Flyvbjerg 
and Kjaer, 1988), and for K = N (Derrida and 
Flyvbjerg, 1987), but not for general case

● Statistical studies (p=0.5) (Kauffman, 1969; 1993; 
Bastolla and Parisi, 1998; Aldana et al., 2003; ...)
– K=1 probability of having long attractors decreases 

exponentially with N. Avg. number of cycles seems to be 
independent of N. The median lengths of state cycles are 
of order √(N/2).



Attractor Lengths (2)

– K ≥ N, average length of attractors and the transient 
times required to reach them grow exponentially 
(numerical investigations only of small networks). 
Typical cycle length grows proportional to 2N/2.

– K = 2, (critical phase), both typical attractor lengths and 
average number of attractors grow algebraically with N.

● √N ? - undersampling (Kauffman, 1969; Kauffman, 1993; 
Bastolla and Parisi, 1998)

● N ? - small networks (Bilke and Sjunnesson, 2002; 
Gershenson, 2002)

● Needs more research



Convergence (1)

● Measured with G-density, in-degree frequency 
distribution (histogram), etc. (Wuensche, 1998).

● ordered phase, very high G-density,  high in-
degree frequency => high convergence, very 
short transient times. The basins of attraction are 
very compact, with many states flowing into few 
states.

● critical phase, in-degree distribution 
approximates a power-law. There is medium 
convergence.



Convergence (2)

● chaotic phase, relatively lower G-density, and 
high frequency of low in-degrees. Basins of 
attraction are very elongated => very long 
average transient times. Low convergence.

● Other measures of convergence:
– Walker’s “internal homogeneity” (Walker and Ashby, 

1966)
– Langton’s λ parameter (Langton, 1990)
– Wuensche’s Z parameter (Wuensche, 1999).

● Automatic classification of rule-space



Multi-Valued Networks

● More than 2 values per node (Solé et al., 2000; 
Luque and Ballesteros, 2004)

● results of Derrida are recovered for 2 values
● In nature, certain systems better described with 

more than two states. Particular models should go 
beyond the boolean idealization.

● However, for theoretical purposes, we could 
combine several boolean nodes to act as a multi-
valued one 
– e.g. codifying in base two its state



Topologies
● Topology can change drastically properties of 

RBNs (Oosawa and Savageau, 2002):
● more uniform rank distributions exhibit more and 

longer attractors and less entropy and mutual 
information (less correlation in their expression 
patterns)

● more skewed topologies exhibit less and shorter 
attractors and more entropy and mutual information

● A topology based on E. coli (scale-free), balances 
the parameters to avoid the disadvantages of the 
extreme topologies

● Most RBN studies use uniform rank distributions



RBNs with scale-free topology (1)
● P(k) = [ζ(γ)kγ]−1, γ>1  (Aldana, 2003)

● Using Derrida's method:

(Aldana, 2003)
© Elsevier

(Aldana, 2003)
© Elsevier



RBNs with scale-free topology (2)

● The network properties at each phase (e.g. 
number and length of attractors, transient times) 
are analogous to homogeneous RBNs.

● Evolvability has more space in scale-free 
networks, since these can adapt even in the 
ordered regime, where changes in well-connected 
elements do propagate through the network.

● However, experimental evidence shows that most 
biological networks are scale free with exponent 
2 < g < 2.5, i.e. near edge of chaos



RBN Control (1)

● External inputs? (e.g. molecular clocks related to 
sunlight)

● Methods of chaos control have been successfully 
applied to chaotic RBNs (Luque and Solé, 1997a; 
1998; Ballesteros and Luque, 2002)

● Use a periodic function to drive a very chaotic 
network into a stable pattern. If a periodic 
function determines the states of some nodes at 
some time, these will have a regularity that can 
spread through the rest of the network, 
developing into a global periodic pattern



RBN Control (2)



RBN Control (3)

● A high percentage of nodes should be controlled 
to achieve periodic behaviour. However, once we 
control a small chaotic network, we can use this 
to control a larger chaotic network, and this one 
to control an even larger one, and so on

● This shows that it is possible to design chaotic 
networks controlled by few external signals to 
force them into regular behaviour

● And scale-free chaotic RBNs? Could control only 
high-ranking nodes?



Intermission...



RBN attractors as cell types,
lengths as replication time?

● “order for free” (Kauffman, 1969; Kauffman, 1993)
● Drawbacks:
– Precise number of genes, junk DNA, redundancy
– Attractor number linear or sqrt dependence?
– Scale-free topology
– Biased functions
– Genes do not march in step!



Updating Schemes

● Change of updating scheme can change 
drastically behaviour of a system
– prisoner’s dilemma (Huberman and Glance, 1993) 
– Conway’s game of life (Bersini and Detours, 1994)



Asynchronous RBNs (1)

● ARBNs: Pick up a node randomly, update 
network (Harvey and Bossomaier, 1997)
– Asynchronous AND non-deterministic

● No cycle attractors
– Point attractors (the same than CRBNs)

● In theory, on average 1 per net. In practice, less.
– “loose” attractors (K>1)

● Different from CRBN behaviour
– RBN useful genetic model???



Example
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Rhythmic Asynchronous RBNs (1)

● If cells asynchronous, how could they achieve rhythm?
● Evolve RBNs and see... (Di Paolo, 2001)
● “Ring” topology (Rholfshagen and Di Paolo, 2004)
– Only one linkage loop in pruned net
– “Medusa” topologies found in yeast (Lee et al., 2002)

● What about more than one rhythmic attractor?



Rhythmic Asynchronous RBNs (2)



Deterministic Asynchronous RBNs
● Cells not synchronous, but not purely stochastic
● DARBNs: Introduce parameters Pi and Qi per node

● Update a node when mod of time over Pi == Qi

– Pi - period

– Qi – translation

● If more than one node should be updated at a time 
step, do this in a sequential order

● Asynchronous, deterministic (Gershenson, 2002)

P i ,Qi∈ℕ , P iQi , Pmax≥P i ,Qmax≥Qi



Deterministic Generalized 
Asynchronous RBNs

● DGARBNs: Like DARBNs, but if more than one 
node should be updated, do this synchronously

● Semi-synchronous, deterministic (Gershenson, 2002)

Generalized Asynchronous RBNs
● GARBNs: Like ARBNs, but select randomly nodes to 

update synchronously
● Semi-synchronous, non-deterministic (Gershenson, 

2002)
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RBNs and Updating Schemes
● Many properties change drastically (Gershenson, 2002)
● All RBNs share point attractors, but basins can change
● More difference in attractor length due to determinism 

than synchronicity
● All have similar “edge of chaos” (Gershenson, 2004a,b)
● All perform complexity reduction (Gershenson, 2004b)
– Including loose attractors

● Can map any deterministic RBN into a CRBN 
(Gershenson, 2002)
– Encode in base two the periods, add new nodes



Thomas' ARBNs

● ARBNs using delays (deterministic or stochastic) 
(Thomas, 1973; Thomas, 1978; Thomas, 1991)

● Used for analysis of precise networks, their 
circuits, and feedback loops. For ensembles???

● A positive feedback loop (direct or indirect 
autocatalysis) implies two point attractors
– Multistationarity

● A negative feedback loop implies periodic 
behaviour, i.e. point or cycle attractors
– Homeostasis



Mixed-context RBNs (1)

● Sets P and Q (Pi’s and Qi’s) as context of a network 
(Gershenson, Broekaert, and Aerts, 2003)
– External factors can change precise updating periods

● Same DGARBN can have different behaviours with 
different contexts

● MxRBNs: M “pure” contexts, one chosen randomly at 
each R time steps

● Semi-synchronous, “quantum-like”
– Non-determinism introduced in a very particular and 

controlled fashion



Example
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How much non-determinism?

● GARBNs: N “coin flips” per time step 
● ARBNs: one coin flip per time
● MxRBNs: one coin flip per R time steps 
– The higher the value of R and the lower number of M 

contexts, the less stochasticity there will be
● MxRBNs similar number of attractors than ARBNs 

and GARBNs, but much more complexity reduction 
(even more than CRBNs)
– Information can be “thrown” into the context



Classification of RBNs

CA

CRBN

Random Maps
DGARBN

DARBN

ARBN Rhythmic
ARBN

Non-rhythmic
ARBN

MxRBN GARBN

DDN



Dynamics Example

GARBN DARBN DGARBN MxRBNCRBN ARBN

Same net & initial state. N = 32, K = 2, p = 0.5, Pmax = 5, Qmax = 4, M = 2, R = 10. 



Applications
● Genetic regulatory networks
● Evolution and computation
● Neural networks (Huepe and Aldana, 2002)
● Social modelling (Shelling, 1971)
● Robotics (Quick et al., 2003)
● Music generation (Dorin, 2000).
● Mathematics
– Cellular automata (von Neumann, 1966; Wolfram, 

1986; Wuensche and Lesser, 1992)
– Percolation theory (Stauffer, 1985)

● ...



Genetic Regulatory Networks (1)

● Nodes as genes: “on-off” (activation), interaction 
via proteins (Kauffman, 1969)

● Generic properties in ensemble studies 
(Kauffman, 2004)

● Analysis and prediction of genomic interaction, 
data mining (Somogyi and Sniegoski, 1996; 
Somogyi et al., 1997; D’haeseleer et al.,1998)

● probabilistic boolean networks (PBNs): infer 
possible gene functionality from incomplete data 
(Shmulevich et al., 2002)



Genetic Regulatory Networks (2)
● Experimental evidence of cell types as attractors of 

RBNs (Huang and Ingber, 2000)
– Very strong correlation for some genes as a cell type is 

mechanically forced
– Not all genes determine cell type (but e.g. metabolism)

● Continuos states GRN models (Glass and 
Kauffman, 1973; Kappler et al., 2002). 
– Use of differential equations in which gene interactions 

are incorporated as logical functions
– no need for a clock to calculate the dynamics
– Ensemble studies???



Evolution and Computation (1)

● Evolvability is expected at the edge of chaos
● Network evolvability properties:
–  robustness, redundancy, degeneracy, modularity 

(Fernández and Solé, 2004)
● Life performs computations (Hopfield, 1994)
– Understanding computation networks helps us to 

understand life and its possibilities
– “How can computational networks be evolved?” close 

to “How could life evolve?”



Evolution and Computation (2)

● Evolution of RBNs using genetic algorithms 
(Stern, 1999; Lemke et al., 2001)

● Evolvable hardware (Thompson, 1998)
– Evolution of logical circuits in reconfigurable 

hardware
● Issues of evolvability also interesting for genetic 

algorithms, genetic programming, etc.
● ...



Tools (1)
● DDLab (Andy Wuensche)
– synchronous RBNs and CA, multi-valued networks
– Dynamics and basins of attraction visualization
– It includes a wide variety of measures, data, analysis 

and statistics
– Very well documented, runs on most platforms.
– http://www.ddlab.com

● RBN Toolbox for Matlab (Christian Schwarzer 
and Christof Teuscher)
– Simulation and visualization of RBNs.
– Different updating schemes, statistical functions, etc.
– http://www.teuscher.ch/rbntoolbox



Tools (2)
● RBNLab (Carlos Gershenson)
– Simulation and visualization of RBNs with different 

updating schemes
– Point, cycle, and loose attractors, other statistics...
– Java, code and program at http://rbn.sourceforge.net

● BN/PBN Toolbox for Matlab (Harri Lähdesmäki 
and Ilya Shmulevich)
– CRBNs and PBNs.
– functions for simulating network dynamics, 

computing statistics (a lot), inferring networks from 
data, visualization and printing, intervention, 
membership testing of Boolean functions, etc.

– http://www2.mdanderson.org/app/ilya/PBN/PBN.htm



Future Lines of Research

● Ensemble approach (Kauffman, 2004)
● RBNs for data mining and GRN analysis 
● Evolvability and adaptability at an abstract level
● Generalizations, combinations, and refinements 

of the different types of RBNs
– e.g. scale-free multi-valued DGARBNs, etc

● General analytical solution for CRBNs 
● ...



Conclusions

● Tutorial only overview, but main topics covered
● RBNs interesting due to generality
– Many conclusions with few assumptions
– Illustrate order-complexity-chaos for non-physicists

● Which model is best? It depends...
● Theory vs. practice? Balance!
● An inviting research topic


