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e Phase transitions in RBNs




Topics (2)
* Different Updating Schemes

— Asynchronous RBNs
* Rhythmic ARBNs

— Deterministic Asynchronous RBNs
* Thomas' ARBNs




Introduction

* RBNs originally models of genetic regulatory
networks (Kauffman, 1969; Kauffman, 1993)

* Random connectivity and functionality

— Useful with very complex systems




Classical Model

 (Generalization of boolean CA

* N boolean nodes, K
connections per node ?

e Connectivity and logical
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Computational “Difficulties”

* Practically infinite possible networks

- 2727K possible logic functions per node

— N!/(N —K)! possible ordered combinations per node
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Order, Chaos, and the Edge (1)

* Neighbouring nodes 1n lattice

- If changing, green; if static, red

— Order: few green “islands”, surrounded by a red
“frozen sea”




Order, Chaos, and the Edge (2)

* Network stability

— “sensitivity to initial conditions”

- “damage spreading”

— “robustness to perturbations”




Order, Chaos, and the Edge (2.5)

— Chaos: changes propagate, high sensitivity. Damage
percolates through green sea

— Edge: changes can propagate, but not necessarily
through all the network (Kauffman, 2000, pp. 168-




Order, Chaos, and the Edge (3)

* Convergence vs. Divergence of Trajectories

— Order: Similar similar states tend to converge to the
same state

— Chaos: similar states tend to diverge

Life and Computation at the Edge of Chaos
(Langton, 1990; Kauffman, 1993; 2000)




Phase Transitions in RBNs




Derrida's Annealed Approximation (1)
* Phase transition when K=2 (Derrida and Pomeau, 1986)

* Also generalized for mean K and probability p

* Measure overlap of state at t with state at t+1 using
normalized Hamming distance:

H(A,B)le |ai_bi|
n-;




Chaotic Phase




A Simpler Analytical Determination (1)

* Damage spreading when

perturbed (Luque and Sol

e Consider trees of nodes f{]
other nodes 1n time

single nodes are
¢, 1997b)

hat can affect the state of

* As a node has more connections, there will be an




A Simpler Analytical Determination (2)

* Let us focus only in one node 7 at time ¢, and a node j of the
several i can affect at time ¢ +/. There 1s a probability p that j
will be one, and a damage in i will m0d1fy ] towards one with
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Lyapunov exponents in RBNs

* Using the concept of boolean derivative (Luque
and Sole, 2000)

A=log(2 p(1-p)K)




Explorations of the Classical Model

* E.g. number and length of attractors, sizes and
distributions of their basins, and their dependence
on different parameters (N, K, p, or topology)
(Wuensche, 1997; Aldana et al., 2003)




Node Structure

*Descendants ’

*Ancestors .

°[_inkage loops (3 %‘

Linkage trees \ .
| .




State Space Structure

* A predecessor of B

|
e C successor of B (Wuensche, 1998)




Attractor Lengths (1)

* Analytic solutions of RBNs for K = 1 (Flyvbjerg

and Kjaer, 1988), and for K = N (Derrida and
Flyvbjerg, 1987), but not for general case

e Statistical studies (p=0.5) (Kauffman, 1969; 1993;
Bastolla and Paris1, 1998; Aldana et al., 2003; ...)




Attractor Lengths (2)

- K> N, average length of attractors and the transient
times required to reach them grow exponentially
(numerical investigations only of small networks).
Typical cycle length grows proportional to 2V~

- K =2, (critical phase), both typical attractor lengths and
average number of attractors grow algebraically with N.




Convergence (1)

* Measured with G-density, in-degree frequency
distribution (histogram), etc. (Wuensche, 1998).

* ordered phase, very high G-density, high in-
degree frequency => high convergence, very
short transient times. The basins of attraction are




Convergence (2)

* chaotic phase, relatively lower G-density, and
high frequency of low in-degrees. Basins of
attraction are very elongated => very long
average transient times. Low convergence.

* Other measures of convergence:




Multi-Valued Networks

* More than 2 values per node (Sol¢ et al., 2000;
Luque and Ballesteros, 2004)

e results of Derrida are recovered for 2 values

* In nature, certain systems better described with
more than two states. Particular models should go




Topologies
* Topology can change drastically properties of
RBNs (Oosawa and Savageau, 2002):

* more uniform rank distributions exhibit more and
longer attractors and less entropy and mutual
information (less correlation 1n their expression
patterns)

* more skewed topologies exhibit less and shorter
ors and more entropy and mutual information




RBNs with scale-free topology (1)
e P(k) = [C(YK]!, y>1 (Aldana, 2003)
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Chaotic Phase




RBNs with scale-free topology (2)

* The network properties at each phase (e.g.
number and length of attractors, transient times)
are analogous to homogeneous RBNs.

* Evolvability has more space in scale-free
networks, since these can adapt even in the
ordered regime, where changes in well-connected




RBN Control (1)

* External inputs? (e.g. molecular clocks related to
sunlight)

* Methods of chaos control have been successfully
applied to chaotic RBNs (Luque and Sol¢, 1997a;
1998; Ballesteros and Luque, 2002)
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Fig. 6. EBN of size n=40 in ordered state (K =2, p=10.5) and period v =9 controlling the chactic RBN
described in Fig. 2. It can be seen how the first one induces an ordered behaviour of pertod 18 in the chaotic
RBHN.




RBN Control (3)

* A high percentage of nodes should be controlled
to achieve periodic behaviour. However, once we
control a small chaotic network, we can use this
to control a larger chaotic network, and this one
to control an even larger one, and so on




Intermission...

"“Jou WANT PRO0FE? ['LL AIVE. You PRoOF!"




RBN attractors as cell types,
lengths as replication time?

* “order for free” (Kauffman, 1969; Kauffman, 1993)
e Drawbacks:

— Precise number of genes, junk DNA, redundancy




Updating Schemes

* Change of updating scheme can change
drastically behaviour of a system




Asynchronous RBNs (1)

e ARBNS: Pick up a node randomly, update
network (Harvey and Bossomaier, 1997)

— Asynchronous AND non-deterministic

* No cycle attractors
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Rhythmic Asynchronous RBNs (1)

* [f cells asynchronous, how could they achieve rhythm?
* Evolve RBNs and see... (D1 Paolo, 2001)
e “Ring” topology (Rholfshagen and Di Paolo, 2004)

— Only one linkage loop 1n pruned net
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Deterministic Asynchronous RBNs

* Cells not synchronous, but not purely stochastic

« DARBNS: Introduce parameters P, and Q. per node
Pi’ QiEIN’ Pi>Qi’ PmaxZPi’ QmaxZQi

e Update a node when mod of time over P, == Q.

— P - period




Deterministic Generalized
Asynchronous RBNs

* DGARBNSs: Like DARBNS, but 1f more than one
node should be updated, do this synchronously

* Semi-synchronous, deterministic (Gershenson, 2002)

Generalized Asynchronous RBNs
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RBNs and Updating Schemes

* Many properties change drastica

ly (Gershenson, 2002)

* All RBNs share point attractors, |

but basins can change

* More difference 1n attractor length due to determinism

than synchronicity

* All have similar “edge of chaos™

All pertorm complexityv redi, N7] orshenson )4 1

(Gershenson, 2004a,b)




Thomas' ARBNSs

* ARBNs using delays (deterministic or stochastic)
(Thomas, 1973; Thomas, 1978; Thomas, 1991)

e Used for analysis of precise networks, their
circuits, and feedback loops. For ensembles???

* A positive feedback loop (direct or indirect




Mixed-context RBNs (1)

* Sets P and Q (Pi’s and Qi’s) as context of a network
(Gershenson, Broekaert, and Aerts, 2003)

— External factors can change precise updating periods

e Same DGARBN can have different behaviours with
different contexts
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How much non-determinism?

* GARBNSs: N “coin flips” per time step
* ARBNSs: one coin flip per time
* MxRBNs: one coin flip per R time steps

— The higher the value of R and the lower number of M
contexts, the less stochasticity there will be




Classification of RBNs




Dynamics Example




Applications

* (Genetic regulatory networks

* Evolution and computation

* Neural networks (Huepe and Aldana, 2002)
* Social modelling (Shelling, 1971)

* Robotics (Quick et al., 2003)




Genetic Regulatory Networks (1)

* Nodes as genes: “on-off” (activation), interaction
via proteins (Kauffman, 1969)

* (Generic properties in ensemble studies
(Kauffman, 2004)

* Analysis and prediction of genomic interaction,




Genetic Regulatory Networks (2)

* Experimental evidence of cell types as attractors of
RBNs (Huang and Ingber, 2000)

— Very strong correlation for some genes as a cell type 1s
mechanically forced

— Not all genes determine cell type (but e.g. metabolism)

e Continuos states GRN models (Glass and




Evolution and Computation (1)

* Evolvability i1s expected at the edge of chaos

* Network evolvability properties:

— robustness, redundancy, degeneracy, modularity
(Fernandez and Sol¢, 2004)

e Life performs computations (Hopfield, 1994




Evolution and Computation (2)

* Evolution of RBNs using genetic algorithms
(Stern, 1999; Lemke et al., 2001)

* Evolvable hardware (Thompson, 1998)

— Evolution of logical circuits in reconfigurable




Tools (1)
* DDLab (Andy Wuensche)

— synchronous RBNs and CA, multi-valued networks
— Dynamics and basins of attraction visualization

— It includes a wide variety of measures, data, analysis
and statistics

— Very well documented, runs on most platforms.

— http://www.ddlab.com




Tools (2)
e RBNLab (Carlos Gershenson)

— Simulation and visualization of RBNs with different
updating schemes

— Point, cycle, and loose attractors, other statistics...

— Java, code and program at http://rbn.sourceforge.net

* BN/PBN Toolbox for Matlab (Harr1 Lahdesmaki
and Ilya Shmulevich)




Future Lines of Research

* Ensemble approach (Kauffman, 2004)
* RBNs for data mining and GRN analysis

* Evolvability and adaptability at an abstract level

* (Generalizations, combinations, and refinements




Conclusions

* Tutorial only overview, but main topics covered

* RBNs interesting due to generality

— Many conclusions with few assumptions

— Illustrate order-complexity-chaos for non-physicists




