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PAPER

Scalable Object Discovery: A Hash-Based Approach to Clustering
Co-occurring Visual Words

Gibran FUENTES PINEDA†a), Hisashi KOGA†, Nonmembers, and Toshinori WATANABE†, Member

SUMMARY We present a scalable approach to automatically discover-
ing particular objects (as opposed to object categories) from a set of images.
The basic idea is to search for local image features that consistently appear
in the same images under the assumption that such co-occurring features
underlie the same object. We first represent each image in the set as a
set of visual words (vector quantized local image features) and construct
an inverted file to memorize the set of images in which each visual word
appears. Then, our object discovery method proceeds by searching the in-
verted file and extracting visual word sets whose elements tend to appear in
the same images; such visual word sets are called co-occurring word sets.
Because of unstable and polysemous visual words, a co-occurring word set
typically represents only a part of an object. We observe that co-occurring
word sets associated with the same object often share many visual words
with one another. Hence, to obtain the object models, we further clus-
ter highly overlapping co-occurring word sets in an agglomerative manner.
Remarkably, we accelerate both extraction and clustering of co-occurring
word sets by Min-Hashing. We show that the models generated by our
method can effectively discriminate particular objects. We demonstrate our
method on the Oxford buildings dataset. In a quantitative evaluation using
a set of ground truth landmarks, our method achieved higher scores than
the state-of-the-art methods.
key words: object discovery, large-scale image mining, bag-of-features,
Min-Hashing, agglomerative clustering

1. Introduction

In most object recognition methods, object models are ac-
quired by some human supervision, e.g. manual object seg-
mentation, image annotations or specifying the number of
object kinds. However, even a little human supervision may
become extremely expensive, when dealing with large im-
age sets. For this reason, many of the current object recogni-
tion methods just can handle small image sets and a limited
number of objects, because their performance deteriorates
as the number of images and the dimensionality of image
representation increases.

Modern feature detectors and descriptors have boosted
the development of efficient techniques to represent large
sets of images and videos. In particular, the bag-of-features
(BoF) approach [1], which represents an image as a set of
visual words (vector quantized local image descriptors), has
been widely adopted due to its simplicity, flexibility and ex-
cellent performance. Furthermore, the BoF representation is
robust to occlusion, clutter and changes in scale, illumina-
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tion and viewpoint. Thanks to these characteristics, several
state-of-the-art object/image retrieval and image clustering
systems are built upon the BoF approach. However, most of
these systems only compute global similarity between im-
ages by counting the number of shared visual words. There-
fore, their ability to recognize the same objects is limited,
especially when the objects do not cover the entire image in
a complete form.

The objective of this work is to discover particular ob-
jects (as opposed to object categories) from large unordered
image sets without supervision by mining visual words that
effectively discriminate a particular object. This is a chal-
lenging task because the image set consists of an over-
whelming number of images, the content is highly diverse
and the appearance of the objects varies greatly due to high
clutter, occlusion and extreme changes in scale, illumination
and viewpoint. Moreover, because of unstable visual words,
very similar instances of the same object can have only a
few common visual words [2]. The unsupervised discovery
of objects can be useful in many applications such as gener-
ating summaries from image sets, organizing images based
on the objects they contain and improving the efficiency of
object/image retrieval systems.

To discover objects, we pay attention to co-occurring
local image features. The rationale is that features that be-
long to the same object tend to appear together much more
often than those belonging to different objects. Hence, our
method yields object models by extracting visual words that
appear together in the same images. In particular, the dis-
covery process consists of two steps. In the first step, we
search for co-occurring visual words that consistently ap-
pear in the same images on the inverted file of the BoF
models; a set of such visual words is called a co-occurring
word set. Here, the inverted file of the BoF models is a data
structure which, for each visual word, stores a set of images
which contains it. Because of unstable visual words and pol-
ysemous visual words (visual words associated with multi-
ple objects), co-occurring word sets typically represent only
a part of an object. We further observe that co-occurring
word sets associated with the same object often share many
visual words with one another. Therefore, in the second
step, object models are formed by clustering co-occurring
word sets sharing many visual words in an agglomerative
manner. Remarkably, we accelerate both extraction and
clustering of co-occurring word sets by Min-Hashing.
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1.1 Related Works

Chum and Matas [3] proposed a fast algorithm for dis-
covering related images based on an extension of Min-
Hashing [4]. This algorithm hashes images to find similar
image pairs and then form clusters of spatially related im-
ages. It is easy to see that as the number of common vi-
sual words between two images decreases, they are unlikely
to be treated as similar. This is a disadvantage that limits
the ability to cluster images of the same object, especially
when the object occupies a small portion of an image. Our
method differs from [3] in that we apply Min-Hashing to the
inverted file to extract co-occurring visual words whereas [3]
applies it to the BoF models to find similar image pairs.
Note that our method utilizes Min-Hashing also to cluster-
ing co-occurring word sets.

Motivated by the success of topic discovery from docu-
ments, many researchers have relied on latent variable mod-
els such as PLSA [5] and LDA [6] to discover particular ob-
jects [7], [8] as well as object categories [9] from images.
Latent variable models represent each image as a mixture
of K topics where each topic corresponds to a single object
class. One important limitation of these methods is that the
number of topics K must be given a priori. Even slightly
different choices of K might lead to quite different results.
This limitation becomes worse when the image set is large
and diverse because the number of topics can be hard to in-
fer. Furthermore, as it is very time consuming to estimate
the model parameters, latent variable models are not easily
scalable to large databases.

Similar to our work, Philbin et al. [10], [11] mine ob-
jects from large image sets. They first use image retrieval
techniques to build a matching graph which divides the im-
age set into groups of spatially related images. Then, [10]
performs spectral clustering to partition the groups that con-
tain multiple disjoint objects, whereas [11] employs gLDA
(a variant of LDA that takes into account geometric informa-
tion) on each group to generate object models. An impor-
tant drawback of these methods is that the construction of
the matching graph is very expensive. In addition, applying
spectral clustering or gLDA to each group of the matching
graph is also very time consuming, especially when there
are large groups. In Sect. 4, we compare quantitatively our
method with those in [10], [11].

Bhatti and Hanbury [12] exploited the relative co-
occurrence of visual words for enhancing the discrimina-
tion power of the BoF models. In their work, a new visual
vocabulary is constructed by measuring the spatial relation
between all possible pairs of visual words. Then, the object
models are created in a supervised fashion by using Naive
Bayes and SVM. Unfortunately, constructing a new visual
vocabulary can be prohibitively expensive for large vocab-
ularies, because the spatial relation must be computed be-
tween all possible pairs of visual words. Thus, this method
is not suitable for handling large image sets. Our method
differs greatly from such method in that our method extracts

object models without supervision. In addition, so as to
shrink the execution time, our method does not consider the
spatial relation between visual words, but exploits the de-
pendency of occurrence of multiple visual words.

1.2 Outline of the Paper

This paper is an extension of our previous paper [13]. The
current version presents a more detailed description and
analysis of the object discovery method and provides a
more extensive experimental evaluation using a benchmark
dataset. It also incorporates a mechanism for pruning co-
occurring word sets. The content of the paper is organized
as follows. Section 2 gives an overview of Min-Hashing.
We introduce our object discovery method in Sect. 3. In
Sect. 4, we present experimental results on the Oxford build-
ings dataset. Finally, Sect. 5 gives the concluding remarks.

2. Min-Hashing

Min-Hashing [14] is a randomized algorithm for efficiently
computing the Jaccard similarity between sets. In this sec-
tion, we give a brief overview of Min-Hashing. For a more
detailed explanation, the reader is referred to the works of
Cohen et al. [14] and Broder [15].

Let Xi and Xj be a pair of sets whose elements are cho-
sen from M different items x1, x2, . . . , xM . The Jaccard sim-
ilarity between Xi and Xj is defined as

sim(Xi, Xj) =
| Xi ∩ Xj |
| Xi ∪ Xj | ∈ [0, 1]. (1)

In Min-Hashing, we first select a permutation π of the
ordered items x1, x2, . . . , xM randomly. From the viewpoint
of combinatorics, since the number of different items is M,
M! permutations of the items are possible. Here, the permu-
tation π is selected randomly from these M! different per-
mutations. After π is determined, the min-hash value for Xi

becomes its first element after Xi is permuted according to
π. That is,

h(Xi) = min(π(Xi)), (2)

where π(Xi) denotes the permutation of Xi under π. For ex-
ample, suppose that π = {x2, x3, x1} is a random permuta-
tion of the ordered items x1, x2, x3. Now consider two sets
Xi = {x1, x2, x3} and Xj = {x1, x3}. The first element of Xi

permuted according to π is x2 whereas the first element of
Xj permuted according to π is x3. Therefore, h(Xi) = x2 and
h(Xj) = x3. In practice, the random permutation of the items
is implemented by assigning a random number to each item.
Then, the min-hash value of a set is obtained by finding the
minimum of the numbers assigned to its elements.

In Min-Hashing, the probability that Xi and Xj take the
same min-hash value is known to be equal to their Jaccard
similarity [14]. Namely

P[h(Xi) = h(Xj)] = sim(Xi, Xj). (3)
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Fig. 1 Construction of hash tables in Min-Hashing.

In the above example, the probability that Xi and Xj take the
same min-hash value is 2/3.

Hence, similar sets will have the same min-hash value
with high probability. However, because Min-hashing is a
probabilistic method, false negatives (similar sets with dif-
ferent min-hash values) and false positives (dissimilar sets
with the same min-hash value) are likely to happen. To over-
come this problem, multiple min-hash values are computed
to judge whether two sets are similar or not, where each min-
hash value is obtained under a different permutation selected
independently at random from the M! permutations.

In particular, Min-Hashing builds a hash function g
which returns the concatenation of r min-hash values as its
hash value. Then, l instances g1, g2, · · · , gl of such g are
prepared. The hash values of Xi for the l hash functions
g1, g2, · · · , gl are defined as follows.

g1(Xi) = (h1(Xi), h2(Xi), . . . , hr(Xi))
g2(Xi) = (hr+1(Xi), hr+2(Xi), . . . , h2r(Xi))
· · ·
gl(Xi) = (h(l−1)∗r+1(Xi), h(l−1)∗r+2(Xi), . . . , hl∗r(Xi))

. (4)

Here h j(Xi) denotes the j-th min-hash values. Note that r · l
min-hash values are used in total, as r min-hash values are
necessary to compute each gi (1 ≤ i ≤ l). Because one hash
table is created for each gi, l hash tables are constructed in
total as shown in Fig. 1. A pair of sets Xi and Xj are stored
in the same hash bucket on the k-th hash table, if gk(Xi) =
gk(Xj).

In the Min-Hashing scheme, highly similar sets are ex-
pected to enter the same hash bucket at least on one hash
table. The probability that two sets Xi, Xj have the same
hash value for gk is expressed as

P[gk(Xi) = gk(Xj)] = sim(Xi, Xj)
r, (5)

because all of the r min-hash values consisting gk have to be
the same. Because (1−sim(Xi, Xj)r)l presents the probability
that Xi and Xj take different hash values for all the l hash
functions, the probability that Xi and Xj are stored in the
same hash bucket at least on one hash table is expressed as

Eq. (6).

Pcollision[Xi, Xj] = 1 − (1 − sim(Xi, Xj)
r)l. (6)

By choosing r and l properly, this probability approxi-
mates a unit step function such that

Pcollision[Xi, Xj] ≈
⎧
⎪⎪⎨
⎪⎪⎩

1, if sim(Xi, Xj) ≥ s∗
0, if sim(Xi, Xj) < s∗ . (7)

Here s∗ is a threshold parameter. That is, the probability of
collision is close to 1 if sim(Xi, Xj) ≥ s∗ and close to 0 if
sim(Xi, Xj) < s∗. In this way, we can use Min-Hashing to
retrieve only a pair of sets whose similarity is greater than
s∗.

3. Object Discovery

This section introduces our method for discovering objects
from a given set of images Σ = {I1, I2, . . . , IN}. The object
discovery is realized by executing the next three tasks:

1. We represent each image in Σ with a BoF model and
indexing Σ with an inverted file

2. Co-occurring word sets are mined from the inverted
file.

3. Object models are derived by clustering co-occurring
word sets agglomeratively based on the number of
common visual words between co-occurring word sets.

The object discovery process is overviewed in Fig. 2. Re-
markably, our method exploits co-occurrence of visual
words to generate object models automatically without su-
pervision. In addition, by clustering similar co-occurring
word sets agglomeratively in the final task, our method does
not demand the number of clusters (kinds of objects) to be
specified. In the following, we discuss in detail each of the
tasks in our method.

3.1 Bag-of-Features and Inverted File

We follow the BoF approach to represent each image in Σ.
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Fig. 2 Overview of the object discovery process.

We further index the set of images with an inverted file.
Next, we review the steps to obtain such a representation.

1. Local image features are extracted for each image
in Σ by detecting affine covariant regions such as
MSER [16] and Hessian Affine [17].

2. Each local image feature is described with a SIFT de-
scriptor [18] and represented as a 128-dimensional vec-
tor.

3. A vocabulary of visual words V = {v1, . . . , vM} is con-
structed by clustering all the local image features in Σ.
Here, each visual word is also represented by a 128-
dimensional vector.

4. Each local image feature is assigned the ID of the near-
est visual word. In the standard BoF, each image is
described as a frequency vector of visual words. How-
ever, as our method only analyzes the occurrence pat-
tern of the visual words, we only record their presence
or absence. Thus, in our method, each image is de-
scribed as a binary vector, not as a frequency vector.
This results in a more compact representation with a
good discrimination power for large vocabularies. In
fact, it has been shown [19] that for vocabularies larger
than 10000 visual words, the binary BoF slightly out-
performs the standard BoF in search quality.

5. We discard very rare and very common visual words
by using a stop list.

6. Images are further indexed with an inverted file struc-
ture. For each visual word vi, the inverted file stores
the set of the images in which vi appears. We denote
the set of images containing vi by v̂i and refer to it as
the occurrence set of vi. v̂i becomes a subset of the set
of N images {I1, I2, . . . , IN}.

3.2 Co-occurring Word Set Mining

Now that each visual word vi is associated with the occur-
rence set v̂i, we can compute the similarity between vi and
v j by applying Min-Hashing to v̂i and v̂ j. Since v̂i presents
the set of images in which vi occurs, the Jaccard similar-
ity sim(v̂i, v̂ j) measures how often vi and v j co-occur in the
identical images. So, for a given visual word vi, we can ex-
ploit Min-Hashing to search other visual words which tend
to co-occur together with vi in the identical images.

The min-hash value of a visual word vi is defined as

h(vi) = min(π(v̂i)). (8)

As mentioned in Sect. 2, we rely on multiple min-hash func-
tions chosen independently at random. That is, we construct

l hash functions gi (1 ≤ i ≤ l) each of which computes its
hash value by concatenating r min-hash values. A set of
visual words which enter the same hash bucket on one of
the hash tables are called a co-occurring word set and de-
noted by φ in this paper. Here, one co-occurring word set
φ is derived from one hash bucket storing multiple visual
words. We expect that discriminative visual words that be-
long to the same object enter the same hash bucket and form
a co-occurring word set φ, as they should appear in the same
images containing the object. By contrast, unrelated visual
words from different objects will not be stored in the same
hash buckets.

Given a set of d visuals words {v1, v2, . . . vd}, the prob-
ability that all the d visual words take the same min-hash
value for a single min-hash function h, i.e, P[h(v1) = h(v2) =
· · · = h(vd)] is calculated as described in Eq. (9).

P[h(v1) = h(v2) = · · · = h(vd)] =
|v̂1 ∩ v̂2 ∩ · · · ∩ v̂d |
|v̂1 ∪ v̂2 ∪ · · · ∪ v̂d |

.

(9)

In Eq. (9), the numerator becomes the number of the
images which contain all the d visual words, whereas the de-
nominator corresponds to the number of the images which
include at least one of the d visual words. As the visual
words appear in the same images more frequently, the value
of Eq. (9) increases, since its numerator becomes larger.
This implies that the d visual words are more likely to be-
come a co-occurrence word set, as their appearance patterns
in the image set Σ grows more positively correlated.

3.2.1 Pruning

Due to the random nature of Min-Hashing, some co-
occurring word sets can contain noisy (unrelated) visual
words. To get rid of such visual words, we perform the fol-
lowing pruning step. Given a co-occurring word set denoted
by φ, we first scan the inverted file to obtain a list of images
Q(φ) that contains at least α|φ| visual words in φ (0 < α ≤ 1).
Then, the visual words that occur in less than β|Q(φ)| images
of Q(φ) (0 < β ≤ 1) are discarded from φ. Finally, we re-
move φ completely if it contains very few visual words after
discarding visual words. We also remove φ if |Q(φ)| is small
as it may contain visual words that originate from different
objects and that appear together incidentally.

3.3 Agglomerative Clustering

Because of unstable and polysemous visual words, a co-
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Fig. 3 Toy-example of our object discovery method.

occurring word set will correspond to only a part of the en-
tire object model. By contrast, if a set of visual words con-
tained in the same object are highly stable, they will appear
in multiple co-occurring word sets.

Let us illustrate this phenomenon with the toy-example
in Fig. 3. This example consists of 4 images and a visual
vocabulary of 11 visual words. Each visual word vi is regis-
tered to the 3 hash tables corresponding to the hash functions
g1, g2 and g3 by computing the hash value of the occurrence
set v̂i. Then, 16 co-occurring word sets from φ1 to φ16 are
extracted from the hash tables. As we can observe, stable
visual words in the same object are mapped to the same co-
occurring word set often. For example, consider the object
“house” composed of the visual words v3, v4, v5, v6 and v7.
As v4, v5 and v6 always appear together, they are included
in the same co-occurring word set three times (φ5, φ7 and
φ15). On the other hand, unstable visual words are mapped
to different co-occurring word sets, even if they belong to
the same object. In Fig. 3, v3 and v7 are never contained
in the same co-occurring word set because they appear to-
gether only once in I4. We can also observe that φ5, φ7 and
φ15 share the stable visual words v4, v5 and v6 and also con-
tain other informative visual words (v3 and v7).

Motivated by the above observation, so as to obtain
more representative object models, we merge co-occurring
word sets that share many common visual words in an ag-
glomerative manner. Because of agglomerative clustering,
the number of object kinds need not be specified in our
method. Let φi and φ j be two co-occurring word sets. Note
that the elements of the two sets are visual words. We mea-
sure the degree of how many visual words are shared be-

tween φi and φ j by their overlap coefficient in Eq. (10).

ovr(φi, φ j) =
| φi ∩ φ j |

min(| φi |, | φ j |) ∈ [0, 1]. (10)

Then, if ovr(φi, φ j) > ε, we unify φi and φ j to the same
cluster, where ε is a parameter of the algorithm.

We can rely on Min-Hashing to find the co-occurring
word sets to be merged promptly. Since

ovr(φi, φ j) =
| φi ∩ φ j |

min(| φi |, | φ j |) ≥
| φi ∩ φ j |
| φi ∪ φ j |

= sim(φi, φ j),

a pair of co-occurring word sets whose Jaccard similarity is
high will also have a large overlap coefficient. Hence, we
may judge whether a pair of co-occurring word sets poten-
tially take a high overlap coefficient from the fact that they
enter the same hash bucket in Min-Hashing. This strategy
avoids the overhead to compute the overlap coefficient be-
tween all the pairs of co-occurring word sets. We remark
here that Min-Hashing is applied to the set of visual words
in this step, whereas it is applied to the set of images in the
co-occurring word set mining in Sect. 3.2. The min-hash
value for φi becomes its first visual word after the order of
all the visual words is permuted by the permutation rule π
randomly chosen. That is,

h(φi) = min(π(φi)). (11)

Again, we use multiple min-hash values to construct l hash
tables. Two co-occurring word sets that share many visual
words are expected to enter the same hash bucket at least on
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one hash table.
Our algorithm to cluster co-occurring word sets ag-

glomeratively consists of the next 5 steps.

1. Each co-occurring word set is stored into l hash tables.
2. If a pair of co-occurring word sets φi, φ j are stored in

the same hash bucket on some hash table, they are re-
garded as a candidate pair to be merged.

3. For every candidate pair of co-occurring word set
(φi, φ j), we compute their overlap coefficient as

ovr(φi, φ j) =
| φi ∩ φ j |

min(| φi |, | φ j |) ∈ [0, 1].

4. We construct a graph G such that each co-occurring
word set φi becomes a node and an edge is built be-
tween a candidate pair of co-occurring word sets φi, φ j

with ovr(φi, φ j) > ε.
5. We compute all the connected components in G. Co-

occurring word sets (i.e. vertices) belonging to the
same connected component are merged into a single
cluster and becomes the final object model.

With this algorithm, chains of co-occurring word set
pairs with high overlap coefficient are merged into the same
cluster. As a result, co-occurring word sets associated with
the same object will belong to the same cluster even if they
share very few or no visual words, so long as they are mem-
bers of the chain. For example, consider three co-occurring
word sets φi, φ j and φk associated with the same object.
Even if φi and φ j do not share visual words at all, they will be
merged into the same cluster, in case φk shares many visual
words with both φi and φ j. In general, for any co-occurring
word set in a cluster, there exists at least one co-occurring
word set in the same cluster with which it has an overlap co-
efficient greater than ε. Conversely, two co-occurring word
sets have an overlap coefficient less than ε, if they belong to
different clusters.

In the example in Fig. 2, the agglomerative clustering
on the co-occurring word sets produces 4 object models
(from Model 1 to Model 4). Here, φ5, φ7 and φ15 are merged
into the same cluster to form Model 3, because they share
the stable visual words v4, v5 and v6. In this case, the object
model consists of the visual words contained in either φ5,
φ7 or φ15, i.e., v3, v4, v5, v6 and v7. Despite v3 and v7 are
never contained in the same co-occurring word set, they are
correctly assigned to the same object model by the agglom-
erative clustering.

3.4 Retrieval

Because our method generates object models by merging
co-occurring word sets, they are represented as a set of vi-
sual words. Since images are also represented as a set of
visual words in the BOF model, we can determine whether
a image contains a specific object from the number of visual
words shared between the object model and the image. Es-
pecially, we can efficiently identify all the images that share

visual words with the object model by searching the occur-
rence sets of the visual words in the object model. Next,
by investigating the number of shared visual words for these
images, we retrieve images that share many visual words
with the object model and therefore are likely to contain the
object. The retrieved images can be further ranked accord-
ing to the number of shared visual words in order to show
the most relevant images first.

3.5 Scalability

In order to achieve scalability with regard to execution
speed, we generate object models by simply analyzing the
occurrence pattern of visual words. In fact, our method only
searches for similar occurrence sets on the inverted file. This
contrasts to other methods that adopt expensive learning al-
gorithms. In addition, the most time-consuming tasks in our
method, namely mining and clustering co-occurring word
sets, are efficiently performed by Min-Hashing, which has
proved to be particularly suitable for handling large datasets
(see [3], [20], [21]). The time complexity to compute a min-
hash value for a set is linear to the number of elements in the
set, since we need to find the minimum from the numbers as-
signed to all the elements. Now, consider the time complex-
ity for the co-occurrence set mining. In the co-occurrence
set mining, the time to compute r · l min-hash values for |V |
visual words becomes O(r ·l ·W · |V |), where W is the average
number of images in the occurrence sets. In addition, before
the computation of Min-Hash values, a time of O(r · l · |Σ|)
is incurred to generate r · l randomly chosen permutations
for the image set Σ. Therefore, the total time complexity for
the co-occurrence set mining grows O(r · l · (W · |V | + |Σ|)).
Because W 
 |Σ| in general, this time complexity is linear
to the number of images, which shows the scalability of our
method. On the other hand, as object models are represented
as a set of visual words, we can also retrieve the images that
contain a particular object quite fast by searching the occur-
rence of the object model in the inverted file as explained in
Sect. 3.4.

As for memory consumption, Min-Hashing is pointed
out that it consumes much memory to store all the hash ta-
bles. However, both for mining and clustering co-occurring
word sets, we only need to store one hash table at a time.
Hence, we can avoid the high space complexity often asso-
ciated with Min-Hashing.

Thus, our method can be applied to both large
databases and large visual vocabularies.

4. Experiments

In this section, we demonstrate our method on the Oxford
buildings dataset [22]. We first evaluate our results qualita-
tively by visually examining the discovered objects. In par-
ticular, we analyze the meaningfulness and discrimination
power of the generated object models. We also carry out a
quantitative evaluation using a set of ground truth landmarks
and compare our results with the state-of-the-art. Finally, we
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Fig. 4 Image samples from the Oxford buildings dataset.

analyze the time and space efficiency of our method.

4.1 Setup

4.1.1 Oxford Buildings Dataset

This dataset consists of 5062 images retrieved from
Flickr [23] using particular Oxford landmarks as queries
(e.g. “All Souls Oxford”). Image samples from the Oxford
buildings dataset are shown in Fig. 4. Note that due to inac-
curate annotations, several images unrelated to the Oxford
landmarks (which serve as distractors) are also contained
in the dataset. For each image, affine covariant hessian re-
gions [17] are detected. Each of the detected regions is rep-
resented as a SIFT vector [18]. The total number of the de-
tected regions over all the images are 16,334,970. These
16 million SIFT vectors are classified into 1 million vi-
sual words by the approximate k-means clustering of Philbin
et al. [24]. The reason why we set the size of visual vocabu-
laries to 1 million is that [24] reported that this value yields
the best performance. In the experiment, we relied on the
files available at [22] which contain the precomputed visual
word IDs and geometries to construct the BoF models and
the inverted file. Visual words that occur in more than 30%
or less than 0.1% of the images in the dataset were discarded
by our stop list.

Manually generated annotations for the occurrence of
11 Oxford landmarks (see Fig. 5) are also provided as the
ground truth at [22]. In addition, images with the same land-
mark annotation are assigned one of the following three la-
bels.

• Good: a nice, clear picture of the object.
• OK: more than 25% of the object is clearly visible.
• Junk: less than 25% of the object is visible, or there is

a very high level of occlusion or distortion.

4.1.2 Parameter Tunings

The parameters of our method are set as follows. In co-
occurring word set mining, with respect to Min-Hashing,
the number of hash table l is 500 and each gi (1 ≤ i ≤ l) is

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 5 Ground truth landmarks of the Oxford buildings dataset:
(a) All souls, (b) Ashmolean, (c) Balliol, (d) Bodleian, (e) Christ Church,
(f) Cornmarket, (g) Hertford, (h) Keble, (i) Magdalen, (j) Pitt Rivers and
(k) Radcliffe Camera.

1 2 3 4 5

6 7 8 9 10

Fig. 6 Top-10 ranked objects. The rank of the object is shown under
each image.

built by concatenating r = 4 min-hash values.
In pruning co-occurring word sets, α = 0.7 and β =

0.8. Furthermore, co-occurring word sets are removed if
they contain less than 3 visual words or appear in fewer than
3 images.

For the agglomerative clustering, as for Min-Hashing,
l = 255 and r = 3. The threshold ε for the overlap coefficient
is set to 0.6.

4.1.3 Rankings

We define two kinds of rankings to examine and evaluate
our results: one over the images that contain the discovered
object and another over the discovered objects themselves.
For the image ranking, we use each object model (set of vi-
sual words) to query the image set through the inverted file.
Each query yields a list of images that contains a particular
object. Then, the images in the list are ranked based on the
number of matched visual words so that more relevant im-
ages have a higher rank. For the object ranking, we rank the
discovered objects according to the size of their models (that
is, the number of visual words) so that more representative
objects have a higher rank. Figure 6 illustrates the top-10
objects in the object ranking. Interestingly, the top-5 objects
correspond to ground truth landmarks (compare Fig. 5 and
Fig. 6).

4.1.4 Methodology

In our experiments, we apply our object discovery method
to all the 5,062 images of the Oxford buildings database to
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All
Soults

Christ
Church

Hertford

Radcliffe
Camera

Fig. 7 Sample images of four objects corresponding to ground truth landmarks. The original images
(top) and the images with the matched affine covariant regions displayed (bottom) are presented for each
object.

extract object models. Then, we use each object model to
retrieve the images with the corresponding object. We fur-
ther rank the retrieved images according to the ranking in
Sect. 4.1.3. We will confirm the meaningfulness and robust-
ness of derived object models from the fact that the objects
annotated by human are discovered with high accuracy by
using the object models. Here, the accuracy is evaluated by
the ranking result.

We do not split the dataset in a training and a test set.
However, this is also the case for other state-of-the-art meth-
ods such as [10] and [11]. Because our primary goal is to
extract meaningful object models from a set of images au-
tomatically, our experiments focus on automatic object dis-
covery rather than on the ability to recognize unseen new
views of the objects.

4.2 Results

4.2.1 Qualitative Evaluation

Several different objects were discovered by our method, in-
cluding objects corresponding to the 11 ground truth land-
marks†. Figure 7 shows typical samples of the top ranked
images associated with All Souls, Christ Church, Hertford
and Radcliffe Camera. The samples displayed in Fig. 7 are
presented in descending order of rank: from the top-ranked
images (left) to lower-ranked images (right). Although not

†Some ground truth landmarks had more than one associated
object.
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(a)

(b)

(c)

(d)

Fig. 8 Sample images of four objects not associated with ground truth landmarks: (a) St Michael at
the North Gate, (b) Trinity College, (c) black letters over light background and (c) a cartoon picture on
a wall.

presented in this paper, all the high-ranked images are simi-
lar to the examples shown here. Note that the matched affine
covariant features within each image are correctly localized
on the corresponding object (even in the lower-ranked im-
ages) despite occlusions, clutter and extreme variations of
scale, illumination and viewpoint. These examples demon-
strate the meaningfulness and robustness of the object mod-
els. A quantitative evaluation using the ground truth land-
marks is given in Sect. 4.2.2.

As mentioned before, in our method the number of ob-
ject kinds is not fixed but rather depends on the correlation
of the visual word occurrences. As a consequence, many
objects different from the ground truth were also discov-
ered. Four examples of such objects are illustrated in Fig. 8.
The rows (a) and (b) correspond to other Oxford landmarks
whereas (c) and (d) rows are non-building objects, namely
dark letters over light background and a cartoon picture on a
wall. Notice that the cartoon picture is quite small relatively
to the image size. This shows that our method can discover
objects even if they cover only a small portion of the images.

Remarkably, different objects that appear in some im-
ages together were correctly discriminated (see Fig. 9).
Again, the matched affine covariant features are mostly lo-

(a) (b) (c)

Fig. 9 Sample images containing multiple discovered objects (a) All
Souls and Radcliffe Camera, (b) Magdalen Cloisters and New Building and
(c) Hertford Bridge and Sheldonian Theater.

calized on the corresponding object, which shows that our
method generates highly discriminative models.

4.2.2 Quantitative Evaluation

To evaluate the performance of our method quantitatively,
we score the ranked image lists described in Sect. 4.1.3 with
the average precision (AP)†. The AP ranges from 0 to 1 and
is given by the area under the precision-recall curve, where

†The AP is typically used for ranked lists because it takes into
account the position of the relevant results.
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Table 1 Highest APs for LDA, gLDA, spectral clustering (SC) and our method with and without
pruning.

Ground truth LDA [11] gLDA [11] SC [10] Our Method Our Method Object Rank
Landmark (Without Pruning)

All Souls 0.90 0.95 0.93 0.75 0.98 2
Ashmolean 0.49 0.59 0.62 0.84 0.85 26
Balliol 0.23 0.23 0.33 0.64 0.56 73
Bodleian 0.51 0.64 0.61 0.70 0.83 4
Christ Church 0.45 0.60 0.67 0.72 0.72 3
Cornmarket 0.41 0.41 0.65 0.66 0.66 108
Hertford 0.64 0.65 0.70 0.90 0.90 5
Keble 0.57 0.57 0.93 0.93 0.95 43
Magdalen 0.20 0.20 0.20 0.51 0.43 56
Pitt Rivers 1.00 1.00 1.00 1.00 1.00 39
Radcliffe Camera 0.82 0.91 0.97 0.98 0.98 1

Average 0.56 0.61 0.69 0.78 0.80

precision is the ratio of retrieved positive images to the to-
tal number of retrieved images and recall is the ratio of re-
trieved positive images to the total number of positive im-
ages. When AP = 1, the precision-recall curve becomes
ideal, namely a precision 1 for any recall value. Here, the
images labeled as Good and OK are treated as positive im-
ages while images where the landmark is not present are
treated as negative images. Images labeled as Junk are com-
pletely ignored and do not affect the AP.

To further compare our results with other existing
methods, we follow the same approach of [10] and [11].
First, for each discovered object model, the AP with re-
spect to the ground truth landmark is computed from the
ranked image list. Then, for each ground truth landmark,
the discovered object model with the highest AP is selected.
Table 1 shows the highest APs for LDA [11], gLDA [11],
spectral clustering [10]† and our method. To see the effect
of pruning co-occurring word sets in Sect. 3.2.1, this table
also includes the result of our method without pruning co-
occurring word sets. Note that our method without regard
to pruning obtained better results for all the landmarks (ex-
cept Pitt Rivers for which all the methods obtained a perfect
score) and in many cases with a substantial difference than
the other three methods. This is clearly reflected on the av-
erage of the highest APs, where our method obtained a sig-
nificantly better result. From Table 1, pruning co-occurring
word sets improves the average of highest APs. This is be-
cause without pruning co-occurring word sets, meaningless
object models can be derived from noisy co-occurring word
sets.

Table 1 also shows the object rank of the discovered
object models achieving the highest AP for our method. We
confirmed visually that the object model achieving the high-
est AP had the highest object rank among the object mod-
els associated with the same landmark for any ground truth
landmark. This fact also supports the meaningfulness of our
object models.

Finally, we investigate how our method is sensitive to
the parameter ε, which is the threshold for the overlap coef-
ficient to merge co-occurring word sets. Figure 10 illustrates
the average of highest APs for different values of ε. Remark-

Fig. 10 Average of the highest APs over different ε.

ably, our method performs stably for a wide range of ε from
0.33 to 0.99. Thus, we can say that our method is insensitive
to the choice of ε.

4.3 Speed

All the experiments are carried out on a single 2.27 GHz In-
tel Xeon PC with 4 GB of memory. Table 2 summarizes the
execution time for each step of our method with and without
pruning. Interestingly, pruning accelerates the speed of the
object discovery. This is because pruning removes noisy and
uninformative co-occurring word sets, shrinking the time
for the agglomerative clustering of co-occurring word sets.
Without pruning, while a huge number of objects were dis-
covered, many of them are meaningless and exploring the
results may be cumbersome.

To demonstrate the scalability, we apply our method
to a bigger dataset of 101,991 images which we call
Rome100k. Rome100k was retrieved from Flickr using the
keyword “Rome” as a query. We use the same parameter

†The method in [10] does not explicitly generate an object
model. It only clusters images of the same object.
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Table 3 Processing times of different methods.

Method Dataset # of Images # of Features Platform Time

LDA, gLDA [11] (matching graph only) Rome [25] 1,021,986 1,702,818,841 Cluster of 30 PCs 1 day
LDA, gLDA [11] (matching graph only) Statue of Liberty [25] 37,034 44,385,173 Single PC 2 hours
SC [26] Paris500k [27] 501,356 1,564,381,034 Cluster of PCs 61.5 days
Our Method Rome100k 101,922 460,894,893 Single PC 26.73 minutes
Our Method Oxford [22] 5,062 16,334,970 Single PC 6.4 minutes

Table 2 Processing time of our method with and without pruning.

Without pruning With pruning

# of co-occurring word sets 950,730 287,927
# of discovered objects 649,876 33,102
Time for mining co-occurring 288.110 288.110
word sets (secs)
Time for pruning (secs) 0 21.881
Time for clustering (secs) 191.695 75.508
Time for ranking images (secs) 6.092 2.676
Time for ranking objects (secs) 0.020 0.004

Total time (secs) 485.917 388.179

values in Sect. 4.1.2 also for the Rome100k dataset. The
time for discovering objects from the Rome100k and the
Oxford datasets is presented in Table 3. Because the time for
the Rome100k increased only slightly compared to that for
the Oxford dataset, our method scales well with the number
of images. Table 3 also summarizes the processing time of
other object discovery methods reported in literatures which
were executed on various datasets and platforms. Though
some literatures use PC clusters, it still takes much time to
discover object. Because the platforms are different, it is
difficult to compare the processing time between different
methods. [11] reported that it took 2 hours on a dataset of
37,034 images to construct the matching graph [11] only on
a single PC, while our method took 26 minutes on 101,991
images to derive the final object models on a single PC. We
interpret this result as that our method is at least comparable
to [11].

As for the memory consumption, for the Rome100k
dataset, mining and pruning co-occurring word sets con-
sumed at most 806 MB of which the inverted file occupied
774 MB. On the other hand, the agglomerative clustering
utilized only 46 MB.

5. Conclusions

We presented an efficient method for automatically discov-
ering particular objects from unordered image sets. Our
method pays attention to visual words that appear together
in multiple images under the assumption that such co-
occurring visual words are associated with the same ob-
ject. We demonstrated that Min-Hashing can be used to
efficiently extract co-occurring visual words from the in-
verted file and that extracted co-occurring word sets contain
discriminative visual words. Furthermore, to deal with un-
stable visual words, our method obtains object models by
clustering co-occurring word sets that share common visual

words in an agglomerative manner. We showed that, despite
our method not exploring geometric relations between vi-
sual words, the generated object models are highly discrim-
inative and robust to occlusion, clutter and large variations
of illumination and viewpoint. In a quantitative evaluation,
our method achieved higher scores than the other state-of-
the-art methods.

Finally, it is important that the proposed method is scal-
able to huge image sets and large visual vocabularies as it
performs the most demanding tasks by Min-Hashing.
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