Feed aggregator

Anger while driving in Mexico City

Complexity Digest - Tue, 10/08/2019 - 11:42

This study aims to analyze the level of anger developed by drivers in Mexico City and also understand the behavior that those drivers use to express that anger, using four different survey methods. The first focuses on personal information, the second Driving Anger Expression Inventory (DAX), the third refers to a shorten version of Driving Anger Scale (DAS) and the fourth being the Dula Dangerous Driving Index (DDDI). These have previously been applied and validated in several different countries. The questionnaires were filled out online by 626 drivers. Using the data collected through the online platform, it was possible to identify the kind of reactions volunteers displayed while driving. Also, it was possible to identify that people in Mexico City developed anger depending on their driving area. Our analyses shows that in the Adaptive/Constructive Expression subscale, males and females show a significant difference in their mean score, with women express their anger in a more constructive way than males.

 

Hernández-Hernández AM, Siqueiros-García JM, Robles-Belmont E, Gershenson C (2019) Anger while driving in Mexico City. PLoS ONE 14(9): e0223048. https://doi.org/10.1371/journal.pone.0223048

Source: journals.plos.org

The Nobel Prize in Physics 2019

Complexity Digest - Tue, 10/08/2019 - 11:25

The Nobel Prize in Physics 2019 was awarded "for contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos" with one half to James Peebles "for theoretical discoveries in physical cosmology", the other half jointly to Michel Mayor and Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star."

Source: www.nobelprize.org

Chaos Scientist Finds Hidden Financial Risks That Regulators Miss

Complexity Digest - Tue, 10/08/2019 - 09:19

Today, in a more bucolic setting—the Institute for New Economic Thinking at the Oxford Martin School—Farmer is drawing on decades of complexity research that began with roulette. After winning acclaim as a pioneer of chaos theory, which helps explain the unpredictability of complex systems such as the weather, he jumped into markets, co-founding one of the early quantitative investment firms in the 1990s. Now, Farmer and a band of central bank researchers are focusing on the tangled web of global finance, using a tool of the natural sciences called agent-based models to find dangers lurking in the system and uncover ways to avoid them.

Source: www.bloomberg.com

Self-domesticated by violence to be peaceful. And violent

Complexity Digest - Mon, 10/07/2019 - 11:14

R Wrangham. The goodness paradox: How evolution made us both more and less violent. London, England: Profile Books, 2019, 400 pp., ISBN: 9781781255834 (hbk), £25.

In comparison to other species, humans are both surprisingly peaceful in their day-to-day interactions with unrelated conspecifics and unprecedently violent toward them when the situation requires it. A goodness paradox, as Wrangham (2019) dubs this strange relationship of humankind to violence, is the theme of his latest book attempting to comprise decades of research into a coherent theory of aggressive behavior focused on humans. Drawing on his expertise in primatology, Wrangham presents an evolutionary theory that not only expands contemporary thinking about human behavior but also challenges and refines several crucial notions of human evolution.

 

Self-domesticated by violence to be peaceful. And violent
Dan Řezníček

Adaptive Behavior

Source: journals.sagepub.com

The 2019 Nobel Prize in Physiology or Medicine 

Complexity Digest - Mon, 10/07/2019 - 08:59

Animals need oxygen for the conversion of food into useful energy. The fundamental importance of oxygen has been understood for centuries, but how cells adapt to changes in levels of oxygen has long been unknown.

William G. Kaelin Jr., Sir Peter J. Ratcliffe and Gregg L. Semenza discovered how cells can sense and adapt to changing oxygen availability. They identified molecular machinery that regulates the activity of genes in response to varying levels of oxygen.

The seminal discoveries by this year’s Nobel Laureates revealed the mechanism for one of life’s most essential adaptive processes. They established the basis for our understanding of how oxygen levels affect cellular metabolism and physiological function. Their discoveries have also paved the way for promising new strategies to fight anemia, cancer and many other diseases.

Source: www.nobelprize.org

Pages

Subscribe to Self-organizing Systems Lab aggregator