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We compared entropy for texts written in natural languages (English, Spanish) and artificial languages (computer

software) based on a simple expression for the entropy as a function of message length and specific word diversity.

Code text written in artificial languages showed higher entropy than text of similar length expressed in natural lan-

guages. Spanish texts exhibit more symbolic diversity than English ones. Results showed that algorithms based on

complexity measures differentiate artificial from natural languages, and that text analysis based on complexity

measures allows the unveiling of important aspects of their nature. We propose specific expressions to examine

entropy related aspects of tests and estimate the values of entropy, emergence, self-organization, and complexity

based on specific diversity and message length. VC 2014 Wiley Periodicals, Inc. Complexity 20: 25–48, 2015
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1. INTRODUCTION

T
he study of symbol frequency distribution for English

was initially addressed by Zipf [1] in 1949 and Heaps

during the 70s [2], giving rise to Zipf’s and Herdan-

Heaps’ laws, respectively (frequently referred to as Heaps’

law). Zipf [1] suggested that the scale free shape of the

word frequency distribution, typically found for English

long texts, derives from his Principle of Least Effort. As in

many other large scale phenomena, the origin of the tend-

ency of natural languages to organize around scale free

structures, remains controversial [3] and a plentiful source

of hypothesis and comparisons with other ‘‘laws of nature’’

[4–6]. The relationship between both Laws has been stud-

ied [7] and their validity for various natural alphabetic

languages tested [8–10]. Yet, a generally accepted mecha-

nism to explain this behavior is still lacking, as Zipf’s and

Heaps’ laws have been traditionally applied only to proba-

bilistic consequences of grammar structure and language

size.

Language grammar has been addressed in the study of

basic grammar rules and the mechanisms to buildup Eng-

lish phrases, initiated by Chomsky [11] in the late 50’s.
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Later Jackendoff developed the X-bar theory [12], fostering

the idea of underlying effects driving human communica-

tion processes to produce grammar properties common to

all natural languages. Yet clear descriptions of the funda-

mental sources of such a behavior, remains a matter of

discussion, perhaps because it is a problem too complex

to be completely understood using only theoretical

methods.

Important differences arise from the nature and con-

tent of message than is transmitted. Yet, languages viewed

as describing tools, have their own capacity to deliver a

message more effectively or more efficiently. Therefore,

languages are susceptible of being evaluated. As George

Markowsky [13] expressed:

‘‘An important point to stress here. . . is that the algo-

rithmic complexity1 of an object depends very much on

the language in which the object is described! We can

make the complexity of any particular object as small or

as large as we choose by picking the appropriate language

or by modifying an existing language.’’

In this article, we treat languages as complex systems

made of large sets of symbols, and following other

authors’ suggestion [14, 15], we compare messages

expressed in natural and artificial languages using metrics

developed to quantify complexity. Our comparison is

based on measurements of message symbol diversity,

entropy and symbol frequency distributions. Zipf’s distri-

bution profiles and Heaps’ functions are identified for dif-

ferent messages samples. We evaluate the impact of these

measures over emergence, self-organization and complex-

ity of messages expressed in natural and artificial

languages.

Our strategy is to evaluate a wide range of texts for

each language studied, including text pieces from a variety

of writers distributed over a timespan of more than 200

years. All texts were recorded in a computer file directory

and analyzed with purposely developed software called

MoNet [16] (see section 2.10), as explained in sections 2.1

to 2.6.

2. METHODS
We compared three aspects of English, Spanish, and

artificial languages: symbol diversity D, entropy h, and the

symbol frequency distribution f. For the available meas-

ures of diversity and information, we follow Gershenson

and Fernandez [17] to evaluate emergence and self-

organization for natural and artificial languages. For com-

plexity, we use the definition of Lopez-Ruiz et al. [18],

which sees complexity as a balance between chaotic and

stable regimes.

All computations are directed to the symbolic analysis.

We have made an effort to recognize slight differences in

the way words or punctuation signs are presented in a

text. Nevertheless our analysis disregards any syntactical

meaning.

2.1. Text Length L and Symbolic Diversity d
The length of a text L is measured as the total number

of symbols or words used and the diversity D as the num-

ber of different symbols that appear in the text. We define

the specific diversity d as the ratio of diversity D and

length L, that is

d5 specific diversity 5D=L: (1)

In this study, symbols are considered at the scale of

words. Here a word is a considered as a sequence of char-

acters delimited by some specific characters such as a

blank space (see section 2.9). Most recognized symbols

were natural and artificial language words. Nevertheless

some single character symbols, such as periods and com-

mas, appeared by themselves with complete meaning and

function and therefore playing a role comparable to that

of normal words.

2.2. Entropy h
Entropy calculations are based on Shannon’s informa-

tion [19], which is equivalent to Boltzmann-Gibbs entropy.

Message information is estimated by the entropy equation

is based on the probability of appearance of symbols

within the message. Symbols (words) are treated all with

the same weight, ignoring any information that might be

associated to meanings, length or context. Shannon’s

entropy expression for a text with a symbol probability

distribution P(pi) is:

h pið Þ52
X2
i51

pi log 2 pi : (2)

Shannon was interested in evaluating the amount of

information and its transmission processes; therefore his

entropy expression was presented for a binary alphabet

formed by the symbols ‘‘0’’ and ‘‘1.’’ Entropy measurement

in this study is at the scale of words, where each word is a

symbol, extending the original Shannon’s expression for a

D-symbol alphabet:

h frð Þ52
XD
r51

fr

L
log D

fr

L
; (3)

where we have replaced the term pi with its equivalent in

terms of the symbol frequency distribution FðfrÞ and the

text length L measured as the total number of symbols.

1The concept of Algorithmic Complexity is not rigorously

the same concept of Complexity, Emergence or Information

we apply in this study. Still, Markowsky’s point of view justi-

fies perfectly our study.
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The values for the symbol frequency distribution FðfrÞ are

ordered on r, the symbol rank place ordered by their num-

ber of appearances in the text. Since there are D different

symbols, r takes integer values from 1 to D. Notice the

base of the logarithm is the diversity D and hence h is

bounded between zero and one.

2.3. Emergence e
As a system description is based on different scales—

the number of different symbols used—the quantity of

information of the description varies. Emergence meas-

ures the variation of the quantity of information needed

to describe a system as the scale of the description varies,

thus, emergence can be seen as a profile of quantity of

information for a range of system scales. Therefore, we

express emergence e as a function of the quantity of infor-

mation respect to the description length L (total number

of symbols) and the specific symbol diversity d. This is

given Shannon’s information (3), so we have:

e F frð Þð Þ5h F frð Þð Þ : (4)

2.4. Self-Organization s
The self-organization of a system can be seen as the

capacity to spontaneously limit the tendency of its com-

ponents to fill the system space—symbols in our case—in

a homogenous, totally random distributed fashion. Since

entropy reaches a maximum when the system compo-

nents are homogeneously randomly dispersed, self-

organization s is measured as the difference of the maxi-

mum entropy level hmax 51 , and the actual system

entropy [14].

s F frð Þð Þ5hmax 2h F frð Þð Þ5 12e F frð Þð Þ : (5)

2.5. Complexity c
Message entropy calculations are based on Shannon’s

expression [19]. Message information is estimated by the

entropy equation based on the probability of appearance

of symbols within the message. Symbols (words) have all

the same weight here, ignoring putative differences in

information associated to the word’s meanings, length, or

context. We used the complexity definition proposed by

L�opez-Ruiz et al. [18], and its quantifying expression pro-

posed by Fern�andez et al. [14]

c FðfrÞð Þ54 � e F frð Þð Þ � s F frð Þð Þ54 � h F frð Þð Þ � 12h F frð Þð Þ½ �:
(6)

In this definition, complexity is high when there is a

balance between emergence (entropy, chaos) and self-

organization (order). If either is maximal, then complexity

is minimal. Equations (4)–(6) depend on Shannon’s infor-

mation and can be reduced to it [14]. Still, it is explana-

tory to study each of these separately, as it will be seen in

our results below, emergency e is a measure of ‘‘disorder,’’

entropy s measures order and complexity c their balance.

2.6. Symbol Frequency Distribution f
For any message or text the number of words in a rank

segment [a, b] may computed as:

La; b5
Xb

r5a

fr ; (7)

where a and b are the start and the end of the segment

where symbol were ranked, respectively. For any segment,

a 5 1 and b 5 D.

Zipf’s law states that any sufficiently long English text

will behave according to the following rule [3, 8]:

f rð Þ5 fa

ðr2aÞg
; (8)

where r is the ranking by number of appearances of a

symbol, f rð Þ a function that retrieves the numbers of

appearances of word ranked as r; fa the number of

appearances of the first ranked word within the segment

considered, and g a positive real exponent.

For any message, we define Zipf’s reference Za;b as the

total number of symbol appearances in the ranking seg-

ment [a, b] assuming that it follows Zipf’s Law. Therefore

Za;b is

Za;b5
Xb

r5a

fr5
Xb

r5a

fa

rg
: (9)

Equation (8) allows us to determine the Zipf’s reference

Z for any segment within the symbol rank dominion.

We computed versions of Zipf’s reference Z for the com-

plete message, specifically named Z1; D, and for the tail

of the message frequency distribution (see Figure 1),

named Zu; D. The subindex u is used to indicate the rank-

ing position ru where the head-tail transition occurs.

Head-tail transition location can be a difficult parame-

ter to set and is often considered to be among a range of

possibilities. We used the following definition: for a dis-

crete symbol ranked frequency or probability distribution,

the region of the lowest frequency of ranked symbols

starts where the symbols with a unique frequency (or

probability 5 1) end. Figure 1 illustrates an example of

symbol frequency profile. The point signaled with the

arrow corresponds to the 20th rank position and has seven

occurrences, and no other symbol shares the same num-

ber of appearances. At that point we define the start of

the tail which includes the distribution domain shadowed

in yellow in the figure.
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2.7. Zipf’s Deviation J for a Ranked Distribution
The complete message Zipf’s reference is determined

by expression (8). The corresponding Zipf’s deviations J1;D

from a Zipfian distribution and the deviation of its tail Ju;D

are

J1;D 5 L2Z1;D

� �
=Z1;D; (10a)

Jh;D 5 Lh;D2 Zh;D
� �

=Zh;D: (10b)

Identifying the starting point for the tail of each mes-

sage or code profile is a search intensive task. We included

in the software MoNet, the capability of locating within a

frequency profile the points with properties characterizing

the start of the tail and to split messages and codes in

heads and tails. Once the tail starting rank ru is deter-

mined, Zipf’s tail deviation was obtained by applying Eqs.

(10a) and (10b).

2.8. Message Selection
We built text libraries containing consisting of large

text fragments, obtained from English and Spanish

speeches, segments of stories and novels, and computer

codes written in high level programming languages (C, C#,

Basic, Matlab, Java, HTML, and PHP). The program then

produced descriptive indices and attributes for each of

these. Each message could be analyzed as an individual

object or as a part of a collective group of objects.

2.8.1. Natural Language Message Selection

Natural language messages were collected from historic

speeches available in on the web as texts expressed in

English or Spanish. Natural language texts include

speeches from politicians, human rights defenders, and

literature Nobel Laureates. The language used to write the

original speech was not a selection criterion. There are

speeches in our selection originally written in English,

Spanish, French, Russian, Italian, German, Arabic, Portu-

guese, Chinese, and Japanese. Translated speeches and

texts are indicated as such, providing data for studying

translations. Novel fragments were authored in English or

Spanish by popular writers and by some Nobel laureates

in literature.

We collected 156 texts in English and 158 in Spanish.

The shortest speech was 87 words long, whereas the lon-

gest speech contained more than 20,000 words.

2.8.2. Artificial Language Message Selection

We included 49 computer codes devoted to perform

recognizable tasks. Artificial text lengths go from a C#

code which generates Fibonacci numbers with just 62

symbols, to computer logs with more than 160,000 sym-

bols. This selection of artificial texts include codes written

in C, C#, Basic, Java, MatLab, HTML, and PHP. The Table

in Appendix A gives details of codes and their fragments

used here.

2.9. Symbol Treatment
Special treatment of certain character strings or sym-

bols were considered as follows:

Word: A word is any character string isolated by the

characters ‘‘space’’ or ‘‘line return.’’ The word is the

symbolic unit.

Space: The space works as a delimiter for symbols

or words.

Line Return or Line Feed: Is a delimiter for

paragraphs.

Punctuation Signs: Any sign is considered as a

complete independent symbol. In natural languages,

the punctuation signs have specific meaning that, with

very few exceptions, are not sensitive to other sur-

rounding characters. When located next to numeric

characters, if a punctuation sign appeared attached to

another symbol, the sign was handled as being sepa-

rated by the space character to keep it as a single

symbol. This rule provides a coherent solution to the

very frequent case where words appear attached to

punctuation symbols.

FIGURE 1

Typical symbol ranked profile. Red dots indicate the number of
occurrences and the ranking position of the symbols of a given
text. Message Zipf’s and tail Zipf’s references are the blue and yel-
low shadowed areas, respectively.
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Numbers: For natural languages, a digitally written

number might be a unique sequence of characters.

Numbers express quantities and work as adjectives or

modifiers of an idea. All numbers in a natural lan-

guage message are then considered as different

symbols.

Synonyms: Since ours is a symbolic analysis, syno-

nyms are considered as different words.

Capital letters: Words are case sensitive. In English

and Spanish, a word with its first letter written with a

capital letter, refers to a specific name. Therefore, a

name appropriately written with a first capital letter is

different from the same character sequence written

with all letters in lower case. But when the word start-

ing with capital letter comes after a period sign, we

assume it is a common lower case word, unless other

appearances of the same word indicates it certainly is

a proper name that should keep its first capital letter.

For Spanish messages

Accents: in Spanish, vowels are sometimes marked

with an accent over it to indicate where the sound stress

or emphasis should be. Rules to indicate when the

accent mark should be present and when it should not,

are easy to apply and are part of what any Spanish

speaker should know from elementary school. Forgetting

accent marks when they should appear is associated

with poor writing abilities; it is unacceptable in any seri-

ous literary work. We consider that any accented word is

different, and has some different meaning, from the

same character sequence without accents.

For artificial languages (computer code)

Comments: in artificial languages comments do not

affect any action of the interpreter or compiler. Addi-

tionally, comments are intended to convey ideas to the

human programmer, administrator or maintenance

personnel, hence most comments are written in

phrases dominated by natural languages. Comments

were thus excluded from any code analyzed.

Computer Messages: Most computer codes rely on

the possibility of informing the user or operator about

execution parameters. This information is normally

expressed in different languages to that of the code.

Computer message contained in a code were converted

to a single word by extracting all spaces.

Numbers: Differently from natural languages, in

artificial languages sequences of digits may represent

variable names or memory addresses, which are

objects with different meaning. In artificial languages,

any difference in a digit is considered to result in a

different word.

Capital letters: We considered artificial language

symbols as case sensitive.

Variables: When in different parts of the code, two

or more variable names were presented as the same

symbol or characters string, but we know that some-

times they could have a totally different meaning since

they could be pointing to a different memory address.

This may introduce some deviation in the results.

2.10. Software
Two software programs were developed to analyze the

texts. First, we built a file directory structure containing,

and classifying the messages each with its inherent and

invariant text-object properties. We refer to the file direc-

tory as the library. The second software program, called

MoNet, manages the library and produced the data for our

study.

2.10.1. Library

The library holds descriptions of each existing text-

object with its attribute values. The scope of each object

description can be adjusted adding attributes or even

modifying their data representation nature and dimen-

sionality. We built a text library containing hundreds of

these text-objects. Libraries can be updated by deleting or

adding text-objects.

2.10.2. MoNet

MoNet is a bundle of scripts, interpretations, programs,

and visual interfaces designed to analyze complex systems

descriptions at different scales of observation. MoNet

describes a system as a collection of objects and object

families connected by hierarchical and functional

relationships.

MoNet can treat every text included in a library as well

as the library itself, offering results for text-objects as

independent elements or as groups. For every component

of the system modeled, descriptions at different scales can

coexist. Individual objects can be selected combining logi-

cal conditions based on properties or attribute values.

3. RESULTS
3.1. Diversity for Natural and Artificial Languages

Figure 2 shows how diversity varies with the message

length in texts written in English, Spanish, and computer

code. Diversity increases as messages grow in length, but

there seems to be an upper bound of diversity for each

message length. For English this upper bound is slightly

lower than for Spanish. As message length increases, Eng-

lish also shows a wider dispersion toward lower diversities

of words. Artificial messages represented by computer

code showed a much lower diversity than the natural lan-

guages. The regression models of Heaps’ law [9] for mes-

sage diversities and message length are:
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English : D5 3:766 � L0:67 : (11a)

Spanish : D5 2:3 � L0:75 : (11b)

Software : D5 2:252 � L0:61 : (11c)

3.2. Entropy for Natural and Artificial Languages
Figure 3 shows entropy h values for texts expressed in

natural languages and computer code programs as a func-

tion of specific diversity d (see section 2.1). Extreme val-

ues of entropy are the same for messages expressed in all

languages; entropy drops down to zero when diversity

decreases to zero and tends to a maximum value of 1 as

specific diversity approaches 1. For artificial messages

entropy is dispersed over a wider range of values, perhaps

as a consequence of the many different computer lan-

guages included in this work’s sample. Natural languages

show less dispersion in entropy levels, nevertheless differ-

ences among languages show up in the areas they cover

over the plane of entropy-diversity with few overlapping

shared areas over that space. See Figure 3.

The entropy expression shown in Eq. (3) is a function

with D –1 degrees of freedom; there are D –1 different

ways of varying the variable F that affect the resulting

value of entropy h. Nevertheless, when specific diversity is

at extreme values d50 and d51, the distribution F

becomes homogenous and function hðFÞ adopts the fol-

lowing predictable behavior.

hðF j d ! 0Þ5 0 (12a)
hðF j d ! 1Þ5 1 (12b)

Having these extreme conditions for hðFÞ, we propose a

real function hðdÞ to characterize the entropy distribution

FIGURE 2

Diversity for messages expressed in English, Spanish, and computer code. Lower row presents fit dots (black) for messages expressed in English (left),
Spanish (center), and Software (right).
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of a language over the range of specific diversity. The dis-

persion of the points is due to the fact that none of the texts

obeys perfectly a Zipf’s law, yet each language tends to fill a

particular area of the space entropy-specific diversity.

To model the curves along the core of these clusters of

dots, that is entropy as a function of specific diversity, we

refer to the so called Lorenz curves [20] which can be

used to describe the fraction of edges W of a scale-free

network with one or two ends connected to a node which

belongs to the fraction P of the nodes with highest degree

[5]. The family of Lorentz curves is expressed by

W 5 Pða22Þ=ða21Þ : (13)

Now consider the network associated to a text where the

nodes represent words or symbols and the edges represent

the relation between consecutive words. In a network like

this, all nodes, except those corresponding to the first and

the last words, will have a degree of connectivity that dou-

bles the number of appearances of the represented word.

Thus, the resulting ranked node degree distribution will be

analogous to a Zipf’s distribution and therefore, the net-

work as defined, will have a scale-free structure. Conversely,

entropy can be interpreted as the cumulative uncertainties

that every symbol adds or subtracts from the total uncer-

tainty or entropy. Viewing entropy h of a ranked frequency

distribution as the cumulative uncertainty after adding up

the contributions of the D most frequent symbols, we

should expect this entropy h to have a scale-free behavior

with respect to changes D. After the analogies between

these conditions and those needed to expect a behavior like

the Lorentz curves dictate, we propose the use of the one-

parameter expression (13) to describe any language’s

entropy as a function of d and the parametera. So that:

h5
D

L

� �ða22Þ=ða21Þ
5 dða22Þ=ða21Þ : (14)

Figure 4 compares the data using the entropy model

for the languages studied. Values of a were obtained to

minimize square errors between the entropy model and

the experimental results obtained from each text of the

library. Numerical results were a52:123 for Eng-

lish, a52:178 for Spanish and a52:1 for artificial. The fig-

ure shows a much wider range of entropy values for

artificial languages compared to the natural languages

studied. Equations (15a)–(15c) present specific cases of

function hðdÞ for each language studied:

English : h5 d0:1511 (15a)

Spanish : h5 d0:1756 (15b)

Software : h5 d0:09091 (15c)

3.3. Emergence, Self-Organization, and Complexity
Starting with functions for entropy, obtaining expres-

sions for emergence, self-organization and complexity is

straightforward using results of Eqs. (15a)–(15c) with Eqs.

(4)–(6). Figure 5 illustrates these results.

To obtain expressions of emergence, self-organization

as functions of the message length L, we combined Eqs.

FIGURE 3

Messages entropy vs. specific diversity for English (blue rhomboids), Spanish (red circles) and computer code (orange squares). On the left graph each
dot represents a message. The right graph shows the area where most messages lie upon its corresponding language.
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(15a)–(15c) with (11a)–(11c), respectively. See the results in

Figure 6. For all languages, emergence increases with spe-

cific diversity and decreases with length. Self-organization

follows opposite tendencies, decreasing with specific

diversity and increasing with length. Complexity is maxi-

mal for low specific diversities and then decreases,

although much less for natural languages. Complexity

increases with length for all languages.

The most conspicuous result here is that artificial lan-

guages show a different pattern in complexity depending

on specific diversity, as the maximum complexity for arti-

ficial languages is close to zero and then decreases faster

than natural languages. This might reflect fundamental

differences in organizing the symbols (grammar) between

both types of languages.

3.4. Symbol Frequency distributions
Profile of symbol frequency distributions were

inspected in two ways: first by a qualitative analysis of

their shapes and second by characterizing each profile

with its area deviation J with respect to a Zipfs distributed

profile.

A sample of symbol frequency distributions profiles for

the considered languages is represented in Figure 7. Each

sequence of markers belongs to a message and each

marker corresponds to a word or symbol within the mes-

sage. While no important differences are observed among

messages profiles expressed in the same language, a

noticeable tendency to a faster decreasing frequency pro-

file appears for messages expressed in artificial languages,

perhaps a consequence of the limited number of symbols

these types of languages have.

By building these frequency profiles, we could obtain a

list of the most used words in English and Spanish. An

equivalent list for artificial languages is also obtainable;

however it is difficult to interpret due to the diversity of

programming languages used in our artificial text sample.

Table 1 shows statistics about the use of symbols for Eng-

lish and Spanish. Table 1 was constructed overlapping

symbol frequency profiles of English and Spanish mes-

sages contained in our working library. After these calcula-

tions, two frequency profiles (probability distributions)

were obtained: one for English, the other for Spanish. The

first 25 rows of Table 1 correspond to the 25 most used

symbols. After this high ranked symbols, rows in Table 1

show groups of symbols sharing ranges with the same or

approximate percentage of use. In accordance with our

definition of tail form this study, head-tail transition

occurs at rankings 40 and 35 for English and Spanish,

respectively.

Joining the text messages in three sets, according to

the language they are written with, we obtained an

approximation of the symbol frequency profiles for the

‘‘active’’ fraction of the languages studied (see Discussion).

Figure 7 shows these profiles. Natural languages exhibit a

wide range of ranks where the symbol frequency decays

with an approximately constant slope g, sustaining Zipf’s

law for English and extending its validity to Spanish, at

least up to certain range of the symbol rank dominion.

Even though we included many programming languages

and artificial code as if they were all part of a unique lan-

guage, which they are not, artificial languages do not

show a range where we can consider slope g a constant,

evidencing the fact that artificial languages are much

smaller than natural ones. The values of exponent g were

calculated for the three profile tails and included in Figure

7; profile slopes are all negative but g values are shown pos-

itive to be consistent with Eq. (8). Notice that Spanish has,

FIGURE 4

Messages entropy vs. specific diversity for English (left), Spanish (center). and artificial languages (right).
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FIGURE 6

Emergence (left), self-organization (center), and complexity (right) for English, Spanish, and computer code. Vertical axis is dimensionless [021]. These
plots are based on Eqs. (4)2(6) combined with Eqs. (15a)2(15c), (11a)2(11c).

FIGURE 5

Emergence, self-organization, and complexity for English (left), Spanish (center), and computer code (right). Vertical axis is dimensionless [021].
Graphs placed on the lower row correspond to the detail very near the value zero for horizontal axis. These plots are based on Eqs. (4)2(6) combined
with Eqs. (15a)2(15c).
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among the languages studied here, the smallest tail slope,

meaning the heaviest tail; an indication of the variety of

words included in all the Spanish messages. At the other

end of our sample, artificial languages present the fastest

decaying slope and the most limited number of symbols.

Direct measurement of differences between profile shapes

is not straight forward. We converted the symbol frequency

distributions into probability distributions and graph their

corresponding cumulative function distribution (CDF) shown

in Figure 8. As expected, artificial languages’ CDF grow faster

than the others; the 500 most frequently used symbols are

enough to comprise almost 90% of all symbols included in

our list of more than 13,000 artificial symbols. The first 500

words cover 74% of the 23,398 English words included in our

library and 70% for the 33,249-word Spanish library.

The profile heads also reflect some differences between

languages. In spite of the general faster growing English’s

CDF as compared with Spanish, the latter’s CDF is higher

up to symbol ranked about 56, where the two curves

cross. This Spanish faster growing CDF within the head

region implies a more intensive use of the close-words

group and consequently the tendency of a more struc-

tured use of this particular language.

3.4.1. Zipf’s Deviation J1, D for Ranked Distribution

We computed Zipf’s deviations J1;D for natural and arti-

ficial languages. Figure 9 shows the result of these calcula-

tions on the plane Zipf’s deviation J1;D vs. Length L.

Dependence between Zipf’s deviation J1;D and length L was

evaluated with standard deviation and correlations. We also

performed two tests with Student-t distributions to com-

pare the Zipf’s deviations J1;D. The first tests the hypothesis

of English and Spanish Zipf’s distribution being the same.

The second tests the hypothesis for natural and artificial

languages to be the same. Results for all tests show that p-

values are very small indicating that Zipfs deviation differed

statistically in very significant ways between the three dif-

ferent languages studied. Table 2 summarizes these results.

3.4.2. Tail Zipf’s Deviation J1, D for Ranked Tail
Distributions

Zipf’s deviation was also inspected for the tails of the

ranked frequency distributions as described in Section 2.6.

This evaluation provides some further understanding of the

tails shapes and relates some tendencies to other variables

associated to the messages and the languages. Figure 10

shows the Zipf’s deviation Ju; D based on the messages tails

for the three languages included in this study. The incidence

of language and different group of writers over the tail of

ranked frequency distributions was evaluated by perform-

ing a Student-t test which results are included in Table 3.

Student-t tests to compare the distributions of the texts tail

Zipf’s deviations Ju;D show very small p-values, indicating

that tail Zipfs deviation differed statistically in very signifi-

cant ways between the three different languages studied.

4. DISCUSSIONS
4.1. Diversity for Natural and Artificial Languages

Setting a precise number for the total number of words

of a natural language is impossible, as words appear and

disappear constantly. However it has been estimated that

FIGURE 7

Ranked symbol frequency distribution for English (left), Spanish (center), and computer code (right). A sample of three or four messages for each language
is shown. English: square: 1945.BS.Eng.GabrielaMistral; triangle: 1921.MarieCurie; rhombus: 1950.NL.Eng.BertrandRussell; circle: 1890.RusselConwell.
Spanish: square: 1936.DoloresIbarruri; triangle: 1982.Gabriel Garc�ıa M�arquez; rhombus: JoseSaramago.Valencia; circle: CamiloJoseCela.LaColmena.Cap1.
Artificial: square: FibonacciNumbers.CSharp; triangle: QuickSort.CSharp; rhombus: Sociodynamica.Module3; circle: WebSite.Inmogal.php.
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English contains more words than Spanish [21–23]. Living

languages evolve over time and structural differences

make it difficult to compare figures of language size mea-

sure. Nevertheless the numbers of lemmas in dictionaries

provide us a reference to compare language sizes. The dic-

tionary of the Real Academia Espa~nola contains 87.718

Spanish lemmas [24] while the Oxford English dictionary

includes about 600.000 words [25]. Despite the larger size

of English dictionaries, Spanish texts showed higher and

less dispersed symbol diversity than English.

The higher word diversity of Spanish may thus be due

to factors such as syntactical rules or grammar which

affect both languages differently. Verb tenses and conjuga-

tions, for example, are all considered as one word when

TABLE 1

Most Frequently Used Symbols in English and Spanish.

Natural Languages Symbol Frequency

English. Total Symbols 5 23,398 Spanish. Total Symbols 5 33,249

Rank Word (Symbol) Use (%) Rank Word (Symbol) Use (%)

1 the 5.51921 1 5.7697
2 , 4.96449 2 de 5.0643
3 . 4.58479 3 3.8664
4 of 2.96836 4 la 3.5446
5 and 2.89258 5 que 3.0410
6 to 2.39816 6 y 2.8992
7 a 1.71795 7 el 2.3789
8 in 1.63451 8 en 2.0957
9 that 1.42234 9 a 1.9270
10 i 1.33711 10 los 1.5953
11 is 1.29327 11 no 1.1690
12 it 1.09772 12 las 0.9659
13 we 1.09103 13 un 0.9562
14 not 0.79216 14 se 0.9486
15 ‘‘ 0.78874 15 con 0.8530
16 for 0.73284 16 del 0.8395
17 he 0.70253 17 por 0.7923
18 have 0.70204 18 una 0.7836
19 was 0.63881 19 para 0.6962
20 be 0.62708 20 es 0.6939
21 this 0.55440 21 - 0.6241
22 as 0.54185 22 lo 0.6229
23 you 0.53549 23 su 0.5637
24 are 0.53370 24 al 0.4811
25 with 0.52637 25 mas 0.4503
26 they 0.50694 26 como 0.4330
. . . . . . . . . . . . . . . . . .
58 man 0.24761 58 pueblo 0.1435
. . . . . . . . . 59 mundo 0.1408
62 people 0.23883 60 sobre 0.1344
. . . . . . . . . . . . . . . . . .

71 world 0.17423 67 vida 0.1256
. . . . . . . . . . . .

500. . . indeed. . . 0.01867... 500. . . poeta. . . 0.01749...
. . .8000 . . .yard . . .0.000732 . . .7339 . . .flujo . . .0.000843
8002 - 9920 adapt - vitiated 0.00055 7340-8841 funda. . .insurgimos 0.000843
9923 - 13505 actress - Zemindars 0.00037 8842-11,736 adictos . . .zumbido 0.000632
13506 - 23398 Aaron-Zulu 0.00018 11,737-15,622 abastecimientos . . . Zelli 0.000419

15,783-33,249 abanderado . . . Xavier 0.000209

Open-class words are shown with italic characters. Closed-class words are shown with normal characters. Top ranked open-class words are shown

with italic-bold letters.
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included in a dictionary, but each of them was recognized

as a different symbol here.

For Spanish, most articles, pronouns and subject gen-

res vary from masculine to feminine while for English this

only happens for particular cases like his/her. These gram-

mar characteristics may increase the number of different

symbols used in any Spanish texts, but considering the

relative size of closed and open word groups, this effect

should be marginal with regard to general text symbol

diversity. Conversely, verbs, which belong to the open

group of words, have more tenses and conjugations for

Spanish and therefore increase Spanish word diversity in

ways not accounted for in dictionaries. Grammar is then

one feature that explains greater Spanish word diversity

compared to English.

These differences might explain only parts of the

results shown here. A wider use of words in Spanish, com-

pared to English, despite a larger number of words in Eng-

lish dictionaries, cannot be excluded.

4.2. Entropy for Natural and Artificial Languages
There is no qualitative difference for this property

between English and Spanish, perhaps a consequence of

the similar structure and functionality both natural lan-

guages share. Nevertheless entropy appears slightly higher

for messages expressed in English than for those in Span-

ish; being English a larger language in terms of words, this

result might be explained as consequence of a more ela-

borated grammar in Spanish allowing for lower entropy

levels. The topic also has an impact over the properties

we measured. For example, religious speeches in English

and political speeches in Spanish show a lower symbol

diversity than those texts influenced by other topics.

Clearly, the semantic speech content has an incidence

over the text properties as the symbolic diversity

and entropy. In addition to these theme-associated differ-

ences, there are however, overlapping differences between

the languages themselves. We think the number of mes-

sages considered and the wide range of natural language

themes and computer code functions included in our

library of study, suffice to avoid any important bias

in our comparison between natural and artificial

languages caused by the differences in the semantic con-

tent of texts.

Natural languages have developed to express concepts

and complex ideas. Natural languages can express many

FIGURE 9

CDF of symbols ranked by frequency. Horizontal axis is scaled to
show the curves for the 4096 most frequently used words for Eng-
lish, Spanish, and artificial language. Note the logarithmic scale in
horizontal axis.

FIGURE 8

Ranked symbol frequency distribution for English (left), Spanish (center) and artificial languages (right).
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different types of messages such as information, persua-

sion, inspiration, instruction, distraction, and joy. Artifi-

cial languages, in contrast, are designed to give precise

instructions; they are more formal than natural ones [26]

as they must convey precise and unequivocal informa-

tion to machines. Artificial languages are represented by

computer programs; collections of instructions having

extensive number of symbols and commands. The num-

ber of symbols that an artificial language usually con-

tains is very small when compared to natural ones.

Connecting and auxiliary words like prepositions and

articles are limited to conditional and logical expressions.

Adjectives are replaced by numeric variables which may

quantify some aspects modeled. With these limitations,

computer languages have little room for style compared

to natural languages. Computer code is valued for its

effectiveness rather than its beauty. The limited structure

to form sentences in artificial languages leads to a rela-

tively flatter frequency distribution and therefore higher

entropy levels.

Since emergence is defined as equivalent to Shannon’s

information (entropy), the higher emergence for artificial

languages implies that less symbols are used to produce

‘‘more meaning.’’ In other words, there is less redundancy

in artificial than in natural languages. Redundancy can

lead to robustness [27], which is desirable in natural lan-

guages where communication may be noisy. However,

artificial languages are created for formal, deterministic

compliers or interpreters, so there is no pressure to

develop robustness.

TABLE 2

Zipf’s Deviation J1,D and its Correlation with Length L for English, Spanish, and Artificial Messages.

Zipfs’ Deviation J1,D for Natural and Artificial Languages

n J1,D average J1,D Std. Dev Correlation J1,D:L

English 156 0.0045 0.1719 0.560
Spanish 158 20.1074 0.0943 0.351
Computer Code 49 0.6944 0.4961 0.102
t-test n1-n2 p-value

English-Spanish 156-158 6.58E-12
Natural-Software 314-49 9.47E-64

FIGURE 10

Zipf’s deviation J1,D of symbol ranked frequency distributions depending on text length L. English (left), Spanish (center), and software (right). English:
square: 1945.BS.Eng.GabrielaMistral; triangle: 1921.MarieCurie; rhombus: 1950.NL.Eng.BertrandRussell; circle: 1890.RusselConwell. Spanish: square:
1936.DoloresIbarruri; triangle: 1982.Gabriel Garc�ıa M�arquez; rhombus: JoseSaramago.Valencia; circle: CamiloJoseCela.LaColmena.Cap1. Artificial:
square: FibonacciNumbers.CSharp; triangle: QuickSort.CSharp; rhombus: Sociodynamica.Module3; circle: WebSite.Inmogal.php
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Self-organization, as opposed to emergence, is higher

in artificial than in natural languages. This is because of

the same reason explained above: artificial languages

require more structure to be more precise, which fulfills

their purpose. Natural languages are less organized

because they require flexibility and adaptability for their

purpose, which includes the ability of having different

words with the same meaning (synonymy) and words with

different meanings (polysemy).

For the same specific diversity d, complexity is higher

for natural languages (Figure 5). However, for the same

length L, complexity is higher for artificial languages, as

emergence dominates the properties of all languages

(e > 0:5) (Figure 6). Artificial languages are slightly more

regular, but all languages have a relatively high entropy

and thus emergence.

4.3. Symbol Frequency Distributions
Intuition may suggest that the symbol frequency profile

of a symbol limited language will decay faster than a

richer language in terms of number of available symbols.

Figures 8 illustrates how, for the natural languages consid-

ered here, the points of each message rank distribution

profile lay close to a straight line connecting the first with

the last ranked word. This indicates that g values for natu-

ral languages are approximately constant over the range of

symbol ranking. For artificial texts, on the contrary,

symbol-frequency vs. symbol-ranking does not show a

constant decay value. The slope of the graph is low for

most used symbols and increases its decay rate as the

symbols considered approach the least used ones, giving

the rank symbol profile of artificial language the concave

downward shape characteristic of an approximation to the

FIGURE 11

Tail Zipf’s deviation J_(h,D) for symbol ranked frequency distributions vs. text tail length L. English (left), Spanish (center), and software (right). Refer-
ence texts are highlighted with filled markers. English: square 21945.BS.Eng.GabrielaMistral; triangle: 1921.MarieCurie; rhombus: 1950.NL.Eng.Ber-
trandRussell; circle: 1890.RusselConwell. Spanish: square: 1936.DoloresIbarruri; triangle: 1982.Gabriel Garc�ıa M�arquez; rhombus:
JoseSaramago.Valencia; circle: CamiloJoseCela.LaColmena.Cap1. Artificial: square: FibonacciNumbers.CSharp; triangle: QuickSort.CSharp; rhombus:
Sociodynamica.Module3; circle: WebSite.Inmogal.php.

TABLE 3

Tail Zipf’s Deviation Jh,D and its Correlation with Message Tail Length Lh for English, Spanish, and Artificial Messages.

Tail Zipfs’ Deviation Jh,D for Natural and Artificial Languages

n Jh,D average Jh,D Std. Dev Correlation Jh:Lh

English 156 0.1502 0.2108 0.809
Spanish 158 0.0235 0.1493 0.856
Computer Code 49 0.3528 0.3062 0.640
t-test n1-n2 p-value

English-Spanish 156-158 2.34E-09
Natural-Software 314-49 2.79E-15
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cut-off region [28]. This increasing slope g that artificial

messages exhibit over ranges of the ranking dominion

indicate these languages are close to the physical limit of

their total number of symbols. For natural languages

g values are not only lower but also closer to a constant,

denoting that natural language profiles are within the

scale-free region and therefore far from the physical limit

[28] imposed by the number of symbols they are consti-

tuted with. Natural languages are significantly larger than

the artificial languages all together.

There is a qualitative difference of the symbol fre-

quency distributions for natural and artificial languages;

texts written in natural languages correlate with a power

law distribution for all the symbol ranking ranges while

artificial texts show an increasing decay slope for ranges

of least used symbols. This difference may be related to

the fact that for natural languages any message uses only

a tiny fraction of the whole set of words of the language,

while any reasonable long computer code will use a large

fraction of the whole set of symbols available in the com-

puter language.

The most conspicuous difference between natural and

artificial languages was revealed using ZIpf’s

deviation J1; D. Statistical analysis revealed highly signifi-

cant differences between natural and artificial languages

in this variable. Tail Zipf’s deviation Ju; D , confirmed

these differences, focusing only on the tails of these distri-

butions. No loss of information was evidenced when

focusing our analysis only on the tails, compared with

analysis using the complete frequency profile of the ZIpf’s

deviation J1; D.

Another interesting aspect of this list of symbols is

where the words of open and close classes lay according

to their frequency of use; close and open word classes are

also known as core and noncore word types. As Moore

explained [29], English grew by adding new words to its

open-word class consisting of nouns, verbs, and qualifiers,

(adjectives and adverbs). The close-word class contains

determiners, pronouns, prepositions, and conjunctions;

words that establish functionality and language structure.

The dynamic process of word creation and the ‘‘flow’’ of

words from one class to the other have been recently

modeled [30]. Changes over time are slow, thus for our

purpose of this study, we considered the open and close

classes as invariant groups. Being the open-class the sus-

tained faster growing type of words of natural languages,

it is reasonable to expect the open words class to be

much larger than the group of closed words. The smaller

size of the closed-word class and the highly restricted

character of its components (most of them do not even

have synonyms), explain the high frequency of their use

and their tendency to be placed near the top of the ranked

list shown in Table 1, letting the open-class words to sink

down to lower ranked positions of the list. There are for-

mal indications of this tendency of close words to group

near the top of frequency ranked list in a study by Monte-

murro and Zanette [31], where pronouns are presented as

the most frequently used word-function in Shakespeare’s

Hamlet.

Besides being necessary to understand the structure of

English and Spanish, the classification of words as mem-

bers of the open and closed groups is important because

analyzing the ranking among the open-class words may

lead to some practical uses as the recognition of message

subject or theme. The highest ranked open-class words

are represented using italic-bold characters. For the mes-

sages included in this study, the most used open-class

words were ‘‘man,’’ ‘‘people’’ and ‘‘world’’ for English, and

‘‘pueblo,’’ ‘‘mundo’’ and ‘‘vida’’ for Spanish; all of them are

terms with strong connection to government, religion, and

human rights as the main theme treated by the majority

of the messages.

5. CONCLUSIONS
Diversity is higher for Spanish messages than for Eng-

lish ones, suggesting that there is influence of cultural

constraints over message diversity. Being more restricted

to very specific uses and less dependent on writing style,

artificial languages showed a considerably lower diversity

than natural languages.

Entropy measures for natural languages are higher than

those for artificial. The larger symbolic diversity for natu-

ral languages dominates the resulting text entropies, leav-

ing frequency profiles to a more subtle influence. When

comparing English and Spanish, however, symbolic diver-

sities are closer to each other while entropy differences

become relevant. Future work could include sets of legal,

clinical, or technical documents. Since these seem to be

more specific, they should have properties in between the

natural and artificial sets studied here.

We have shown that important differences among lan-

guages become evident by experimentally measuring sym-

bolic diversity, emergence, and complexity in collections

of texts. The differences detected are the result of the

combination of the current status of their respective evo-

lution as well as cultural aspects that affect the style of

communicating and writing. These differences among lan-

guages are evidenced measuring symbolic diversity, emer-

gence, and complexity in collections of texts. Yet the most

reliable measure was the symbolic diversity. Applying this

procedure over the basis of a ‘‘grammar scale complexity’’

would provide a deeper sense of languages nature and

behavior.

From a wider scope, the results obtained constitute a

strong indication that languages can be regarded beyond a

large set of words and grammar rules, and as a collections
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of interacting organisms to which the concepts of com-

plexity, emergence, and self-organization apply.

We believe that the present study showed that com-

plexity analysis can add to our understanding of features

of natural languages. For example, automatic devises to

differentiate text written by computers from text produced

by real persons might be feasible using this knowledge.

Yet our study also revealed that complexity science is in a

very incipient state regarding its capacity to extract mean-

ing from the analysis of texts. Much interesting work lies

ahead.
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Appendix A: Artificial texts
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