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Abstract
The morphology of urban agglomeration is studied here in the context of information

exchange between different spatio-temporal scales. Urban migration to and from cities is

characterised as non-random and following non-random pathways. Cities are multidimen-

sional non-linear phenomena, so understanding the relationships and connectivity between

scales is important in determining how the interplay of local/regional urban policies may

affect the distribution of urban settlements. In order to quantify these relationships, we follow

an information theoretic approach using the concept of Transfer Entropy. Our analysis is

based on a stochastic urban fractal model, which mimics urban growing settlements and

migration waves. The results indicate how different policies could affect urban morphology

in terms of the information generated across geographical scales.

Introduction
In this paper we examine the transfer of information between two spatial levels in a spatial
hierarchy over time. The two spatial levels are termed regional and local reflecting their level of
resolution. The change model that we use to show change over time represents the temporal
dynamics and has three main components, a percolation process, a diffusion process and a
criticality process. The percolation model describes the changing character of the cells as they
become occupied. The diffusion takes place over the cells, one of which acts as a seed. As
migrants diffuse the cell occupancy increases up to a threshold after which the sandpile, that is
the accumulation of growth, collapses thus spreading the capacity of the cell in question to its
adjoining cells. At the termination of the process we have migrants occupying many of the
cells. The analysis then proceeds by identifying clusters using a subtractive clustering algo-
rithm. With clusters defined at regional and local levels we are then in a position to calculate
the transfer entropy between the two levels in both directions, regional to local and local to
regional, thus providing us with a new measure of spatial dependence.

Conventional models of metropolitan areas are usually confined to an analysis at one scale
or level [1, 2, 3, 4, 5] although interactions and migrations between the scales may be of impor-
tance in understanding the dynamics of the modelled system [6]. Classical theory [7] defines
three conditions that must be met for migration to occur:
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a. Complementarity: there must be a benefit in locating in the desired destination relative to
the origin

b. Intervening opportunity: where there is potential movement from an origin to a destination
intermediate competing destinations must also be taken into account.

c. Migration cost: this factor could be seen as a distance/friction parameter. If the cost of mov-
ing between an origin and a potential destination is too great, movement will not take place,
regardless of conditions (a) and (b).

We will embody these principles in the hypothetical urban model that we use to explore
interaction between spatial and temporal scales measuring these interactions using various
information measures that we will now describe.

Information Measures
We define below the measure that we use for analysis of the clusters, namely transfer entropy.
In information theory [8], the Shannon entropy represents the basic measure of information
and this is defined as,

HðXÞ ¼ �
X
x2X

pðxÞlog pðxÞ ;
X
x

pðxÞ ¼ 1 ð1Þ

which is the preferred measure for detecting the reduction in uncertainty by any measurement
x of a random variable whose probability is p(x). Extending Shannon entropy to measure the
uncertainty between two interacting random variables X and Y, at different temporal or spatial
scales for example, is accomplished using mutual information, I(X,Y), defined by

IðX;YÞ ¼
X
x2X

X
y2Y

pðx; yÞ log pðx; yÞ
pðxÞ:pðyÞ ð2Þ

One drawback with I(X, Y), is its lack of directionality as, I(X, Y) = I (Y, X), which, in our
analysis, would imply that the future has a causal effect on the past. Mutual Information can
also be expressed as the difference between two entropies thus

IðX;YÞ ¼ �
X

x2X;y2Y
pðx; yÞ logðpðxÞ:pðyÞÞ þ

X
x2X;y2Y

pðx; yÞ logðpðx; yÞÞ ð3Þ

with the first term of the right hand side representing the entropy assuming independence and
the second representing the observed entropy.

Transfer entropy, TE, was developed by Schreiber [9] to overcome the time symmetric limi-
tation of mutual information. Given two sample spaces of information, X = {x1, x2,. . ., xt} and
Y = {y1, y2,. . ., yt}, the transfer entropy from X to Y, is obtained from defining the entropy rate
between two systems as the amount of additional information gained from the next observa-
tion of one of the two systems.

Following [6], let us consider two systems, X and Y and define two entropies. In the first
case we define an entropy (actually an entropy rate as it depends on time t, based on the
assumption that yt+1 depends on both xt and yt

h1 ¼ �
X

t

pðytþ1; yt; xtÞ logðpðytþ1jyt; xtÞÞ ð4Þ
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In the second case we define an entropy in which yt+1 depends only on yt thus

h2 ¼ �
X

t

pðytþ1; yt; xtÞ logðpðytþ1jytÞÞ ð5Þ

Eq 4 defines the entropy given dependence on xt and yt whilst Eq 5 shows dependence on yt
only.

Transfer entropy, TXY, the transfer of information from X to Y, is then defined as the differ-
ence between these two rates in the same way that mutual information was defined in Eq 3.
Then

TðX;YÞ ¼ h2� h1

¼
X
t¼1

pðytþ1; yt; xtÞ log
pðytþ1jyt; xtÞ
pðytþ1jytÞ

� �

¼
X
t¼1

pðytþ1; yt; xtÞ log
pðytþ1; yt; xtÞ:pðytÞ
pðyt; xtÞ:pðytþ1; ytÞ

� � ð6Þ

This measure of information transfer resembles the Kullback-Leibler distance but applied to
conditional probabilities. The transfer entropy T(Y,X) can be derived in a similar fashion giv-
ing

TðY ;XÞ ¼
X
t¼1

pðxtþ1; xt; ytÞ log
pðxtþ1; xt; ytÞ:pðxtÞ
pðxt; ytÞ:pðxtþ1; xtÞ

� �
ð7Þ

The asymmetry is confirmed as Eq 6 does not equal Eq 7.

The Urban Model
Our application is to the United Kingdom where we plant the first seed of growth at the his-
toric location of the City of London [10], one of the earliest major settlements in the country,
the first encampment of the Roman army in its invasion of Britain in 53AD. This represents
the initial historical event which we use to initiate our modelling of the settlement of the UK.
We model urban growth using two well-known fractal processes: percolation and diffusion
limited aggregation which is linked to the self-organising process defined by Bak, Tang and
Wiesenfeld (BTW) [11]. The BTW process converges to an attractor, the critical point of
which is reached from a wide variety of starting conditions. At the critical point the process
said to have achieved self- organised criticality (SOC). Our urban model aims to capture the
different spatial patterns and dynamics observed in a system of settlements at different geo-
graphical scales. For regional scales (~1:1,500,000) we applied diffusion and percolation in
order to represent two of the main drivers of urban growth: migration of the population and
the economics of agglomeration respectively. The morphology at local scales (~1:200,000)
derives from imposing SOC characteristics on the model. The idea of using far from equilib-
rium models to represent urban structures has been applied in previous studies, such as [12,
13]

A regular lattice was set up to cover the study area with a grid. This grid represents the avail-
able land for urban growth and occupies some 302x388 cells. Each of these cells, i represents a
region of the physical terrain of approximately 4.8 km2. Our simulations run through a series
of discrete steps, represented by time t, and at each step Ui(t) an urbanisation index for each
cell is defined by: non-urbanized (Ui(t) = 0; urbanised consolidated (Ui(t) = 1); and urbanized
non-consolidated (Ui(t) = 2). The meaning of these values and their derivation is described
below. They are used in the analysis to distinguish different types of cluster.
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The percolation process
Vicsek and Szalay proposed a cellular automaton model to study the fractal distribution of gal-
axies [14]. In their lattice model, a cell i which represents a mass element, would become part
of a galaxy based on two parameters; the potential of belonging to a galaxy at position i, and a
given threshold that regulates such a potential. Fujita and Thisse in their study of economic
agglomeration theory [15] say that “. . . just as matter in the solar system is concentrated in a
small number of bodies (the planets and their satellites); economic life is concentrated in a fairly
limited number of human settlements (cities and clusters). Furthermore, paralleling large and
small planets, there are large and small settlements with very different combinations of firms and
households.” Following these ideas, a percolation model to study the fractal distribution of gal-
axies based on [16] is applied here to model the development of urban settlements.

We consider a potential for urbanization Pi(t) in cell i. As development takes place more
cells develop the potential to urbanize and the decision on whether cell i becomes urbanized or
not depends on an external parameter, the development threshold T. If Pi(t)> T and cell i has
not already undergone urbanization, then cell i becomes urbanized and is consolidated with
Ui(t) = 1. Once a migrant unit is attached to an urban settlement at i, it could be the case that
for this particular i, Pi(t) is not greater than T; if that is the case, the cell i, occupied by the
migrant unit would became an urbanized non-consolidated urban settlement with Ui(t) = 2;
this reflects a pattern of development in many of the urban belts formed around metropolitan
areas. If after recalculation of Pi(t) a migrant unit arrives at a cell with Ui(t) = 2 and Pi(t)> T,
then the value of Ui(t) becomes equal to 1.The potential Pi(t + 1) is defined as:

Piðt þ 1Þ ¼
X
j2O

PjðtÞ
5

þ K � Ci ðtÞ þ εi ðtÞ ð8Þ

where O represents the cell, i, plus its von Neumann neighbourhood (The north, south, east
and west cells of the central cell i) and εi(t) is either 1 or −1 with equal probability. The inclu-
sion of random events prevents any tendency towards equilibrium since noise is continually
being introduced into the system. Once cell i becomes urbanized and consolidated, it cannot
reverse this process, even if its potential Pi(t) falls below the value of T.

The function Ci (t) calculates the current number of urban units (buildings for example)
that a cell i has at a particular time t. The constant K> 0 which is a damping factor, is fixed at
the beginning of the simulation and represents the influence that the local settlements have
over the regional potential (K = 0.1 in our simulations). The formulation for Ci(t) is given in Eq
11.

The diffusion process
As discussed in the introduction, the conditions for migration to occur are fulfilled by a diffu-
sion limited aggregation-like process [17]. At each time t (Eq 11), we select a fixed number of
random positions over the study area and at each of these positions we create a migrant unit
that begins a walk (diffusion) over any configuration that is emerging at that particular t until
reaches some cell i, being in the nearest neighbourhood of an already occupied cell j. The
nature of the walk is address in section 3.3. The number of migrant units N(t) created is not
fixed in all the simulations but is defined from:

NðtÞ ¼ 0 for t < 50

tmod10 for 50 � t � 500
ð9Þ

(

so N(t) increases over time.
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Self-Organized criticality
Self-Organized Criticality (SOC) is a characteristic possessed by spatially extended dynamical
systems and other complex systems [11, 18]. When a phenomenon changes state, the resulting
reactions are distributed across time and space at all levels in a way that can range from a sim-
ple isolated movement, to chain reactions involving all activities in the system. A good example
is the sand pile model, as presented in [18, 19] and, based on this we introduce SOC into our
model. However, instead of sand grains, we have urban units that migrate and in doing so, may
trigger a chain reaction in which other units also relocate. To model this, two parameters are
required for each cell i, a maximum capacity Cmax

i and a current capacity Ci(t). The Cmax
i param-

eter represents the maximum number of urban units that cell i can hold and is defined as

Cmax
i ðrÞ ¼ Cmax

seed :r
�a ð10Þ

where r is the Euclidean distance from the spatial position of the seed to cell i and, Cmax
seed is the

maximum capacity for the historical accident, which is set here to 100 to ensure that its capac-
ity is never constrained, and α is a parameter of the distance distribution which we define as a
power law. Eq 10 constrains the density of an area by how far it is from the seed. The exponent
α (which is set to 0.3 in our simulations) can be thought as a density gradient held constant
over time. In reality appears to decrease gradually as the city grows [16]. In terms of the sand
pile model, the critical slope of the distribution of the urban units over an area is controlled by
α.

Once we have calculated the Cmax
i for every cell i, (except the seed cell which has fixed capac-

ity) we need to set up the current capacities, Ci(t), for the whole lattice excepting the seed cell
which is equal to 1, as we assume that at least one urban unit is already there.

Capacities are then defined as follows in Eq 11 which represents the sand pile process. If
CiðtÞ > Cmax

i for a cell i, then an avalanche begins (as in the sand pile model) around cell i by
its losing 4 urban units to its von Neumann neighbourhood. The damping constant now
defined as κ> 0, similar to that introduced in Eq 8, is fixed at the beginning of the simulation
with a value of 0.1 and represents the influence that the regional settlements have over the local
capacities. The value of K and κ ensures that the analysis of asymmetric regional and local
influence is not biased by a varying damping factor. The idea of using damping factors as a
parameters which can help us to control and explain the interactions between regions and peo-
ple is explored in [20, 21]. Cell capacities are updated using the following algorithm

Ciðt þ 1Þ ¼

0 for t ¼ 0

CiðtÞ þ 1 for t 6¼ 0 and Piðt þ 1Þ > PiðtÞ

CiðtÞ � 4 and COðt þ 1Þ ¼ COðtÞ þ 1þ kPiðtÞ for

t 6¼ 0

and

CiðtÞ > Cmax
i

ð11Þ

8>>>>><
>>>>>:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Table A in S1 File summaries all the parameters used in our model along with its initial val-
ues and a brief description.
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Running the model
We defined a set of four thresholds T equal to 4.0, 4.5, 5.0 and 6.0 relating to the difficulty of
development actually occurring, which are determined by physical or policy factors. We fixed
the length of the simulation to t = 500 iterations as this gives sufficient time for patterns to
emerge. At time t = 0 all grid positions, except the seed, have a potential Pi(0) = εi. To represent
the importance of the historical accident across time, its initial potential is Pseed(0) = 20 which
remains constant through all the iterations, so Eq 8 is never applied to the seed cell and its
potential always exceeds the threshold. A typical configuration obtained with this model is
shown in Fig 1. As our approach is stochastic we performed 1000 runs per configuration in
order to derive robust statistics. All the quantities and measures derived are then the averaged
over each configuration. We refer the reader to [22, 23] for examples in which aspects of this
model have been applied.

Urban migration
Migration units walk across the lattice (as described in section 3.1) until they fix their position
in a cell i according to the rules set out above. This walk is achieved by selecting a subset of all
possible trajectories that migrant units may take. We accomplish this in two different ways:

a. All migration units scan a defined area in search of the location with the highest potential,
and when they find it, they walk a certain distance in terms of their units towards that
location;

b. An area of influence with a radius of 100 cell units, centred at the seed is created. Once a
migration unit enters this influence zone, it will prefer to move towards the seed and condi-
tion a) no longer applies.

Analysis

Time series construction
A ten point time series is defined for the configurations obtained by our model. This was
accomplished by recording the pattern of urban structures generated at times t = {50, 100,
150. . . 500}. We label each point in the time series as tj, with t1 = 50, t2 = 100, until t10 = 500.

Fig 1. Three different stages in our model evolution. From right to left we can observe structures formed
at (A) t1 (t = 50) (B) t5 (t = 250) and (C) t10 (t = 500). Consolidated structuresCi(t) = 1 are shown in black, while
non-consolidated ones Ci(t) = 2 are shown in white. The red circumference around the London area is the
area of influence defined around the initial seed. Source: Black and white structures compiled by authors;
Coastline made with Natural Earth. Free vector and raster map data@ naturalearthdata.com

doi:10.1371/journal.pone.0133780.g001
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The main problem here is how to assign them a unique value in order to apply Eq 4. We per-
formed a classification analysis based on the number of clusters N detected at each tj, applying
a subtractive cluster algorithm [24] that strongly depends on a predefined cluster radius rc
which is used as a cut-off to define these time series at different geographical scales. The logic is
as follows: at a local level, we can observe in great detail the urban structures that surround us
and easily distinguish one structure from another, but our observation area is very limited
(based on the small radius of rc); as we begin to increase the geographical scale, much of the
urban detail begins to disappear, as many structures become indistinguishable from each other
but now our observation area covers many more structures (based on a larger radius rc).

The subtractive cluster algorithm can be summarized in three steps:

1. Select the data point k with the highest potential G to became a cluster or group centre,
according to

Gk ¼
X

j2k�j�rc

e�bkk�jk2 ð12Þ

2. Where b ¼ 4
r2a
and ra is a positive constant and kk − jk is the Euclidean distance between

points k and j.

3. All data points in point k’s ra vicinity are labelled as one cluster and removed from further
calculations.

4. The process continues iterating on steps 1 and 2 until all the data is within radii ra of a clus-
ter centre

In our calculations, parameter ra takes values in the range {1, 46.6, 92.3, 138, 183.6, 229.3,
275, 320.6, 366.36, 412}. This selection is constrained by the maximum (1) and minimum
(412) Euclidean distance that a pair of cells i and j can have in our lattice. The intermediate val-
ues are calculated dividing 412 by 10, as we are defining 10 different geographical scales. For
example, for T = 4.5 we obtained the time series shown in Table 1.

Table 1. Times series for T = 4.5 showing the number of clusters generated at each scale.

Time periods

Scale t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1 51 87 154 230 315 408 502 607 732 873

2 4 5 7 9 11 14 16 20 24 29

3 3 4 6 7 8 9 10 11 12 13

4 3 4 5 6 7 7 7 8 8 9

5 3 4 5 5 4 6 6 6 7 7

6 3 3 4 4 4 4 5 5 5 5

7 3 3 3 4 4 4 4 4 4 4

8 2 3 3 3 3 3 3 3 3 4

9 2 3 3 3 3 3 3 3 3 3

10 2 2 2 2 2 2 2 2 2 2

As the scale increases, the number of cluster between time periods became more and more stable, because the urban structures became

undistinguishable from each other at larger scales. At scale 10, we have only two big clusters representing the whole study area at any time period.

doi:10.1371/journal.pone.0133780.t001
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Using the previous method, three more tables were constructed giving a total of four tables,
one for each T. These other three tables can be found in Tables B, C and D in S1 File.

Transfer entropy calculations
In Eq 6 the joint probability calculation is key to obtaining the TE value. Estimating these prob-
abilities has been proved to be a very difficult task. Several methods via probability density
function estimation have been proposed to solve this problem [25]. In this research, represent-
ing the different scenarios, through the four tables mentioned above, we calculated the empiri-
cal joint probabilities for the emerging configurations, i.e., we calculated the probability of
having a certain number of clusters between scales, assuming that if a particular configuration
is not found in a particular table, and then the joint probability for that configuration is zero.
Thus, if we take Table 1, in order to calculate the TEScale 1!Scale 2 at step t1, we need to find out
the probability p(y2,y1,x1) as required by the first term of Eq 8. This probability is easily
obtained inspecting the first and second rows of the mentioned table (as Scale 1 is represented
by the first row and Scale 2 by the second row). The term y2 corresponds to the value located
in the second column, second row; y1 is the value at the first column, second row and x1 is
located in the first column, first row position, i.e., p(y2,y1,x1) = (5,4,51). We then count how
many combinations of these values exist in these two rows. For this example there is only one,
so p(y2,y1,x1) = (5,4,51) = 1/10, as there are 10 positions in the time series. Now, if we take
TEScale 7!Scale 8 and t4, then we examine rows 7 and 8 to find the values for y5,y4 and x4, which
are 3, 3 and 4, so, p(y4,y3,x3) = (3,3,4) = 5/10, as there are seven identical (3,3,4) combinations
between rows 7 and 8.

Results and Discussion
Taking Table 1 again as a typical cluster configuration, we observe that at time t1, except for
Scale 1 (the most local scale), the number of clusters at all scales is very low, because at this
point almost no urban structures are formed; for at time t10 the number of clusters reported is
constant, which suggests that when the urban structures reach the point of consolidation, the
probability of detecting new developments is low; on the other hand, the change between t1
and the rest of the temporal sequence is dramatic, implying at this early stage, the full complex-
ity of the urban structures is only measurable at a local scale.

To construct a coherent analysis for the TE results among all our scales and thresholds, they
were categorised as:

a. TE between contiguous scales (scale 1 vs scale 2, scale 2 vs scale 3, etc.)

b. TE between non-contiguous scales (scale 1 vs scale 3, scale 1 vs scale 4, etc.).

This shows how much of the information generated at one scale i is responsible for the
information obtained at scale j and how the middle scales filter such information. As in the
analysis of clusters above, the TE values obtained reflect the differences between different
thresholds. This suggests that as settlements become harder to generate, as a result of policy or
physical factors, the probability that a migrant unit settles, decreases since it becomes harder
for it to find a consolidated area to attach to. In reality, these migrant units would still settle
somewhere, regardless of the urban policy, but in our model this fine grain detail is not taken
into account.

In general, the TE in the local!regional direction dominates that for the regional!local, as
is show in Fig 2. Information flows less easily from regional to local scales, a situation that
might be expected as the information generated at the higher scale of the urban system is not
ultimately responsible for the creation of the local structures; policies established at a regional
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level, unless they are very restrictive and impose a particular local development pattern, would
tend to become diluted (and be less effective) at the more local scales. One notable aspect of
all the plots in Fig 2 is that the TE rises initially with the length of the rise decreasing as the
threshold increases. At the early stages of urban structure formation, the system always
increases the transfer of information in both directions. But this tendency does not hold as the
system continues to grow. As the urban systems get larger, the information transfer tends to
equalise with, in the higher threshold cases, the regional!local direction dominating that for
the local!regional as the scale increases. This equalisation may simply represent the conver-
gence of the two ra values at each mark as the mark number increases but it suggests that the
information transfers at the higher scales are less significant in both their absolute size and in
their directional difference. Where the dominance reverses, the difference in information flows
is small suggesting a similarity in the cluster pattern. This might be expected if growth was con-
centrated mainly at the cluster edges and the increase in ra left the number of clusters substan-
tially unchanged. The peaks in TEmay therefore be seen as the points at which the growth
pattern changes from one of many new separated clusters to fewer larger clusters caused ini-
tially by edge accretion of cells and in the later stages by amalgamation of larger clusters. This
would account for the multiple peaks observed in the local!regional TE. Interestingly enough,
for T = 4.5, mark 4, TE values, in both directions equal zero, meaning that the number of clus-
ters detected from scale 4 to scale 5 is exactly the same. There was no particular change in the
overall structure of the system from one scale to the other. Further research is needed concern-
ing this effect.

For the threshold T = 5.0, representing a moderate urban policy at mark 4, TE values for the
regional!local direction are greater than the local!regional until mark 8 (except for mark 6
in which both values are practically equal). At these points, the structure of the information
changes in a way that allows the information generated at higher scales to flow to lower ones.
From mark 6 this is not that surprising, because we are operating at the higher scales and the
information generated at a regional level is mainly responsible for the structures observed at
this level. At mark 4 (TE between scales 4 and 5, in both directions) the net direction of the
information is indistinguishable in practical terms. This suggests that the regional pattern of

Fig 2. TE between contiguous scales. The x axis should be read as follows: Mark 1–TE Local!Regional
(Scale 1, Scale 2) and TERegional!Local (Scale 2, Scale 1); Mark 2–TE Local!Regional (Scale 2, Scale 3)
and TERegional!Local (Scale 3, Scale 2), etc.

doi:10.1371/journal.pone.0133780.g002
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information is leading the local but this may simply be the effect of scale with the regional scale
identifying as clusters those settlements at a local scale which are growing by accretion. In Fig 3
we show a section from one typical configuration generated for scales 4 and 5, T = 5.0.
Although the latter contains a greater proliferation of urban structure, it does not seem to con-
tain more clusters, thereby reinforcing the view that the TE equality reflects growth by accre-
tion and amalgamation with little change in the cluster numbers. The reversal of dominance
and the near equality of TEs from thresholds 4.0, 4.5 and 5.0 reflect a change in the distribution
of the settlements.

Finally, for T = 6.0, this represents a more restrictive urban policy. Once the scales begin to
increase, the number of clusters generated at this threshold begin to stabilize, so when we calcu-
late the TE between series it tends to zero. As stated above, when T!1 the number of clusters
tends to zero so the TE would also tend to zero in the process. This unrealistic scenario implies
restrictive urban policies, to the point where no urban structures could be created. Alterna-
tively, when T! 0, (no restrictions at all) this would lead to same result since each location
can be urbanized, giving one big cluster with zero TE.

The last TEmeasure performed was over the non-contiguous scales. Fig 4 presents 10 plots
at T = 5.0. First, notice that from Scale 2, all plots, in both directions, have a zero value. This
point represent the TE (Scale i, Scale i), so it should not be considered as part of the analysis per
se. We kept this in order to generate a continuous sub-plot.

These plots show us in one single frame the behaviour between directions of information
flow. From sub-plot Scale 3 onwards, the regional!local direction TE values dominate where
they are to the left of TE = 0. Conversely to the right of TE = 0, the local!regional tend to dom-
inate. The division where we lose the non-consolidated structures from the analysis is very
clear: until Scale 5, there is a constant gap at the right part of the TE zero value, while from
Scale 6, this gap can be found on the left part. The fact that the TE value between directions is
kept constant is evidence that the amount of information that is flowing from one scale to the
rest does not get amplified or decreased at these bands. From Scale 6, the situation is similar,
but mirroring at the left part of the TE zero value and at the right part, the values between
directions are very close to each other, as we have already established at this scale.

The other somewhat unusual result is that the TE between Scale 1 every other, in the regio-
nal!local direction, is practically zero. All the information generated at the regional scale
never reaches the local level, a situation that is also reflected in all the other thresholds. This sit-
uation is observed on a daily basis in our cities, where political decisions, imposed at the
regional level, never reach or find their way down to improve the lives of citizens at local level.
The current debate in British politics and government for example, is largely about these issues
of regionalism and localism.

Fig 3. The London area zoom generated with our urbanmodel for T = 5.0. (A) t4 (B) t5. Source: Black and
white structures compiled by authors; Coastline made with Natural Earth. Free vector and raster map data@
naturalearthdata.com.

doi:10.1371/journal.pone.0133780.g003
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Conclusions
The information transfer between scales i and i+n, cannot be constructed as the sum of the
transfer information between scales i and scale i+1 plus scale i+1 and scale i+. . .scale i+j and
scale i+n, with 1<j<n. This is one of the classic footprint for a complex system. It shows that
urban patterns are not reducible to description at a single scale, but require a multi-scale
description. This asymmetry reflects the hierarchical structure of spatial analysis where ques-
tions of scale are important. The model identifies London, the West Midlands, and the North
West as urban centres, which is reassuring given the simplicity of the assumptions. Our results
support the idea that decisions or information are flowing more easily from the local scale to
the regional than the other way around. This is because TE is higher from lower scales to higher
scales than vice versa. Transfer entropy seems a promising analytic tool for examining the
effect of scale but requires further testing against a range of assumptions for K and κ and for
the area of influence. Alternatively, these could be defined endogenously.

The loss of the non-consolidated structures from the calculations appears as the key factor
in this change of regime or phase between contiguous scales and may prove policy relevant par-
ticularly in those studies where competition between regulated and unregulated development
is of importance.

There are still outstanding questions which we need to explore further. Further work would
include comparisons with real data, studying lower scales [26], other urban regions, and more
sophisticated models to test different hypotheses about the effects of local vs. regional urban
planning and growth. A similar asymmetric flow of information is also likely to be seen in orga-
nisational and social hierarchies and this offers some scope for an integration of social and spa-
tial analysis.

Fig 4. TE between non-contiguous scales, T = 5.0. Each one of the 10 sub-plots presented is labelled as
Scale i (i from 1 to 10), meaning that this particular plot represents the values for the TE between Scale i and
the rest of the scales. The marks axis should be read as follows: 1–TE Local!Regional (Scale i, Scale 2) and
TERegional!Local (Scale 2, Scale i); 2–TE Local!Regional (Scale i, Scale 3) and so on until 10–TE
Local!Regional (Scale i, Scale 10) and TE Regional!Local (Scale 10, Scale i).

doi:10.1371/journal.pone.0133780.g004
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Supporting Information
S1 File. Table A. List of parameters used in the urban model. The initial values are based on
the exploration of a subset of the system’s phase space and not in a calibration procedure
against any particular real urban process. The values selected here are the ones where the over-
all of the structures generated resembles the ones observed in the UK. The fourth column spec-
ifies if a parameter’s initial value is changed throughout the execution of the model or not.
Table B.Times series for T = 4.0 showing the number of clusters generated at each scale.
Table C.Times series for T = 5.0 showing the number of clusters generated at each scale.
Table D.Times series for T = 6.0 showing the number of clusters generated at each scale.
(DOCX)
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