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ABSTRACT

In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is
proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed
by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained using
univariate wind speed time series. Parameters of Support Vector Regression are tuned by a genetic al-
gorithm. The proposed method is compared against the persistence model, and autoregressive models
(AR, ARMA, and ARIMA) tuned by Akaike's Information Criterion and Ordinary Least Squares method.
The stationary transformation of time series is also evaluated for the proposed method. Using historical
wind speed data from the Mexican Wind Energy Technology Center (CERTE) located at La Ventosa,
Oaxaca, México, the accuracy of the proposed forecasting method is evaluated for a whole range of short
termforecasting horizons (from 1 to 24 h ahead). Results show that, forecasts made with our method are
more accurate for medium (5—23 h ahead) short term WSF and WPF than those made with persistence
and autoregressive models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind Speed Forecasting (WSF) is particularly important for
wind farms due to cost-related issues, dispatch planning, and en-
ergy markets operations [1,2]. These predictions are employed for
optimal operation policies and operative costs |3,4], load balancing
[1,5], site and capacity planning [6,7], and unit commitment for
electricity markets [1—3]. Tipically, wind farm energy production is
estimated using a fixed weighted measure of the wind farm's
nominal power and forecasts from historical atmospheric data
[8,9]. Further, it has been stated that wind speed is one (if not the
most) important variable related to wind power generation [10].
Fig. 1 displays the power curve related to wind power generation
for CERTE's wind turbine.! While energy demand can be forecasted,
inaccurate WSF will become a potential point of failure when
scheduling generation units (i.e. ramp rates) to satisfy energy
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demand [2,11,12]. Evenmore, WSF is of such criticallity that, in
countries with large wind power generation, producers have the
legal requirement to provide the energy markets with short and
mid-term production forecasting [13].

Recently, Support Vector Regression (SVR) has been used for
prediction of wind speed and other atmospheric variables with
positive results [4,14—21]. SVR is based on the Structural Error
Minimization principle; it is also equipped with the 'Kernel Trick’
and other optimization features which allow it to perform a noise-
robust, non-linear regression. SVR stability and accuracy depend on
several aspects, some of the most important are Parameter Tuning
(PT) and Feature Selection (FS). The former is a procedure which
consists in properly selecting the kernel function and its parame-
ters, and the penalization term [22]. Commonly tuned by an
exhaustive search technique, deterministic and stochastic methods
have also been proposed, where Genetic Algorithms (GA) have
obtained good results. The latter consist in selecting the most
important model variables to describe process behavior [23]. In the
current setup, one is faced with the problem to estimate wind
speed behavior as accurately as possible from only measures of
itself. Typically, autoregressive models are used as a statistical
proxy of dynamical systems by employing as variables past
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Fig. 1. KWT-300 power curve.

observations and stochastic shocks. From this family type of
models, one which is employed to analyze non-linear chaotic uni-
variate time series is Time Delay Coordinates (TDC) [24]. The
embodied philosophy of TDC is that the non-measured variables of
the system can be recovered from those measured, due the influ-
ence of the former over the latter [25]. If the studied process is
chaotic, by employing the TDC model and the Phase Space Recon-
struction (PSR) procedure, an approximate reconstruction of the
studied phenomenon feature space can be obtained from a uni-
variate time series [10,24,26,27].

This paper proposes a new algorithm to the short-term WSF
problem based on SVR. The algorithm developed here, named
PSR—SVRga, uses the TDC model and the PSR procedure as an FS
technique. Then, a genetic algorithm which uses the GA Boltzmann
selection method [22] is employed to tune the SVR parameters. The
proposed algorithm quality is compared against the Persistence
method (PM) and classical time series models: AutoRegressive
(AR), AutoRegressive Moving Average (ARMA), and AutoRegressive
Integrated Moving Average (ARIMA). AR-like models were tuned by
identifying the autoregressive and moving average orders through
Akaike's Information Criteria (AIC). Then, order weights were
optimized by the Ordinary Least Squares (OLS) method. Addition-
ally, time series are integrated to ensure stationarity; transformed
data is used by ARIMA and a variation of the proposed algorithm.
The accuracy of the methods is analyzed in terms of WSF and Wind
Power Forecasting (WPF). On one hand, WSF methods performance
is evaluated based on five statistical measures: the Mean Absolute
Error (MAE), Mean Bias Error (MBE), Root Mean Squared Error
(RMSE), Mean Absolute Scaled Error (MASE), and Directional Ac-
curacy (DA). On the other, WPF is analyzed in terms of the
Normalized Mean Bias Error (NMBE), Normalized Mean Absolute
Error (NMEA), and the Normalized Root Mean Squared Error
(NRMSE). According to the analysis of the obtained results, the best
model produced by the hybrid GA method is, in general, better to
forecast wind speed and wind power than persistence method and
AR and ARMA models.

Summarizing, the main contributions of our WSF methodology
are:

e The usage of a non-linear method called PSR, which is designed
to analyze and describe chaotic phenomena.

e A Genetic Algorithm is employed to select from a pool of kernel
functions the most adequate function for WSF altogether with
its parameters.

e A chaotic and complex analysis was performed over wind speed
data to corroborate the chaotic nature of wind data, and
therefore validating the usage of the PSR procedure.

o Further, we studied the influence of differentiation as a pre-
processing treatment over the forecasting performance of the
proposed method.

e A rigorous analysis was performed under a framework
composed of WSF and WPF quality metrics.

This paper is organized as follows. Section 2 describes WSF
classical time series methods and SVR state of the art. Section 3
presents the proposed method: first, the need for a forecasting
methodology while using SVR is presented; next, the feature se-
lection problem and how the PSR method is used is described; then,
SVR parameter tuning and the hybrid genetic method are detailed.
Section 4 presents the data description, the experimental setup,
and our results. Section 5 presents the conclusions of this work. A
nomenclature listing the abbreviations used is included before the
references.

2. Background

WSF models are usually divided into physical-based models and
statistical models [11]. The former are based on numerical weather
models which employ several equations to describe the governing
motions and forces affecting fluids. The latter analyze previous
wind patterns over time and extrapolate them to predict future
wind behavior. The scope of this work focuses on statistical
methods.

2.1. Persistence models

Before we continue, its necessary to introduce the benchmark
method for WSF, the Persistence model. PM states that due the high
autocorrelation underlying WS behavior, any wind speed future
value is equal to its last known value [28]. Despite its simplicity, PM
achieves very good results in the WSF problem and is used to
compare the quality of new forecasting approaches [2,29]. Typi-
cally, PM predicts a future WS value as ;. , = X;, where X stands for
the forecasted value, t for the current time step, and h for the
forecasting horizon. In the case where the day-ahead forecasting is
required, a persistence method called Day-to-Day (D2D) is used
[28]. D2D  method forecast a  future value as
Xi1n = X@dn, h=1,...,24, where d stands for the current day.

2.2. Classical time series forecasting models

Autoregressive (AR) models are commonly used for time series
forecasting since they are able to capture persistence in a time
series [30]. In simple terms, an AR(p) model relates p past obser-
vations to the current value x; as:

p
Xe=p+ Y oiXei+et, (1)
i1

where u is the mean value, g; is a coefficient which reflects each
past observation x;_; influence on current value, and & is the actual
stochastic perturbation [30].

2.2.1. ARMA and ARIMA

AR models have been extended for more robust versions like the
Autoregressive Moving Average models (ARMA) and the Autore-
gressive Integrated Moving Average models (ARIMA). These type of
models, describe a univariate time series as the relation between
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actual observations x; respect p AR components and a Moving
Average (MA) process [30].
Altogether, an ARMA(p,q) model, is defined as:

p q
Xt=u+ Z biXe_i + Z Ojer_j + et, (2)

i-1 =

where ¢; and 6; are weight coefficients which reflect the influence
of past p observations and g stochastic perturbations on the current
value.

ARIMA models proposed by Box et al. [30] are an ARMA
extension to deal with non stationarity in data by making data
ergodic through d differentiation steps; then, an ARMA model like 2
is estimated and used. Therefore, the model is denoted as
ARIMA(p,d,q).

Moreover, in accordance to the Box—Jenkins (B—]) methodology
[30], an optimal ARIMA model is obtained by the optimization of
(p, q) orders. In this paper, AR and MA orders were approximated by
Akaike's Information Criterion [31].

The first kernel is parameterless, the second employes param-
eter d to determines the polynomial degree and r as a constant. The
third function is a radial function, where v is a scaling factor of the
Euclidian distance between patterns.

2.3. Support vector regression

Recently, more robust semi-parametric methods like SVR have
been successfully applied to the prediction of WS and other time
series [4,14—22]. SVR, an extension of Support Vector Machines
(SVM), was proposed by Drucker et al. [32]. SVR pursues the best
trade-off between the model's Empirical Error and the model
complexity [33]. This compromise is achieved by constraining SVR
regression function f{-) to the hyperplanes function class, and
employing a margin, also called insensitive tube, around the hy-
perplane. Moreover, f{(+) only depends on a reduced set of the
training data called the Support Vectors (SV), those which corre-
spond to the active constraints in the optimization problem.

Formally, given a data set of the form (x;,y;) € RV xR, the SVR dual
optimization problem is formulated as:

-1 m
maximize W(a,o*) = —=
ij=1
. m
Subject toy" (a;
i=1
0<a;<C,Vi=1,...m
0<of<C Vi=1,....m

~aj) -0

where C is the complexity penalization term, and «,&" correspond
to the dual variables for the active constraints [33].
Evenmore, SVR is able to perform a non-linear regression due

Table 1
Classical kernel functions.

Linear Kiinear(Xi.X)=X;"X;
Polynomial Kpotyn(Xi.X))=((x;"X;)+1)"
Gaussian Koauss(Xi.X;)=exp(—v][Xi"x;|*)

m

5> (e =) (0~ o) <¢(x,-)7¢(xj)> - f;)

the kernel trick. Colloquially, it consist in providing SVR with a
specific kernel function which maps data from the input space to a
high dimensional feature space where a linear regression is per-
formed. Typical kernel functions are Linear, Polynomial, and
Gaussian, those which are depicted in Table 1.

Once Eq. (3) is solved and the hyperplane function found, a
future value can be predicted employing Eq. (4).

N

=" (o — o )k(x;, X) + b. (4)

i=1

fX, o, 0)

3. Proposed method PSR—SVR¢a

In the current WSF setup, we want to fit a hyperplane (i.e.
SVR model) to wind speed data in order to use it as a proxy of
the evolution of WS phenomenon. Even while SVR is one of the
most renowned machine learning methods, there are several
opportunity areas to increase the model stability and accuracy.
For example: the selection of relevant variables, or the selec-
tion of a kernel map and its parameter tuning. Moreover,
typical machine learning and classical B—] methodologies
consider one or more of these procedures: Data pre-processing,
Feature Selection, Model Parameter Tuning, and Model Vali-
dation [10,19,21,30,34]. Inspired on these previous works, and
given wind speed characteristics like its non-linearity, non-
stationarity, high fluctuations and irregularity, the methodol-
ogy PSR—SVRg4 is proposed.

As the classical B—] methodology, PSR—SVR¢4 consists of four
steps. First, data pre-processing following human expert heuristics,
and data scaling is applied. Then, a chaos theory model called Time
Delay Coordinates (TDC) is used to represent wind speed phe-
nomena. Next, a proper TDC model is estimated by means of Phase
Space Reconstruction (PSR). SVR model is trained, validated, and
tuned using a Genetic Algorithm (GA) [22]. Finally, the optimal SVR
model is used for WSF. PSR—SVRc,4 is shown in Fig. 2. Subsection 3.1
presents the details of the TDC model and the PSR process. Sub-
section 3.2 briefly describe the GA and the genetic operators used.

m
+a, +Z of foz
i=1

3)

3.1. Feature selection through chaos theory

Classical univariate autoregressive models establish that any
phenomenon can be expressed as linear combination of its own
past values given that the studied stochastic process is stationary,
weakly dependent, and homoscedastic [30]. However, it has been
documented that wind speed is heteroscedastic, non-stationary,
and highly non-linear [2,5,13,19,35,36]. Furthermore, wind speed
behavior is not only affected by itself, several other atmospheric,
geographical, and physical variables influence its evolution [2,37].
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Fig. 2. The diagram presents the PSR—SVRz4 method. First data is loaded, preprocessed, and normalized; then, the Phase Space Reconstruction method is applied to embed the
univariate treated data into a high-dimensional feature space. Next, an SVR model is trained and tuned through a Genetic Algorithm. Lastly, WSF is performed for the specified

horizon.

Recently, methods based on Chaos Theory (CT) have been pro-
posed for WSF [10,27]. The latter provide a framework to analyze
and describe non-linear phenomena which display a chaotic
behavior. A system can be defined as deterministic chaotic if it is
sensitive to initial conditions, aperiodic, and bounded [26]. Sensi-
tivity to initial conditions can be defined as having at least one
positive Lyapunov exponent [26,38], i.e. close trajectories diverge
faster than exponentially. PSR is a CT method which elaborates
models and theoretical constraints in order to reconstruct a sys-
tem's inaccessible internal state from only one component. The
most used model for the reconstruction of phase space is Time
Delay Coordinates (TDC). According to [39] the TDC parameters can
be obtained by the Mutual Information method, and False Nearest
Neighbors.

The reconstruction constraints, the TDC model, and the methods
to estimate its parameters are detailed in the next subsections.

3.1.1. Takens' theorem, time delay coordinates, and phase space
reconstruction procedure

A univariate time series {x;}} ; per se do not detail the whole
system state, still, if it satisfies the chaotic definition and available
data is long enough, it can be used to approximate the process state
space. In accordance to Takens' Theorem [26,27], this reconstruc-
tion is topologically equivalent if it satisfies the relation de>2m+1,
where d, is the embedding dimension and m is the true process
dimensionality.

If Takens' theorem is met, a R% phase space may be recon-
structed through the use of an autoregressive model called Time
Delay Coordinates. In accordance with Takens', TDC allows to
embed a time series in a higher dimensional feature space, by
mapping the univariate time series into M vector states of the form:

de
Xr = |:Xt7xt77'7---’xt—(d—l)7':| t=1,...,M, (5)

where 7 is a sampling factor, and d. denotes the number of variables

of the reconstructed space.

Therefore, the PSR procedure is defined as finding the appro-
priate values of 7 and d,, in order to reconstruct a topological
equivalent space of the data.

3.1.2. TDC delay factor T via mutual information

A time delay factor 7 is employed to map univariate data into a
higher dimensional state space where each point is Independent
and Identically Distributed (LI.D.) [26,34]. However, if 7 is too small
data points in the new space will be highly correlated and mutually
independence can not be assured. Still, if 7 is too large, data points
independence will be trivial [26]. Moreover, the optimal sampling
frequency increases smoothness in data embedding and the iden-
tification of de.

The most common method used for the estimation of 7 is called
Mutual Information (MI) [26]. This technique is based on Shannon's
entropy which is used to quantify information gain among two
random variables. In this sense, original series {x;}"" is compared
with a 7-delayed version of it {XHT}{V;{, and the information be-
tween these time series is calculated as

N—7r
I(r) = > " P(xt,Xt1)log,
t=1

[ P(Xt, Xt1r) ], (6)

P(x¢)P(Xtvr)

where P(x:x:. ;) is the joint probability of events x; and x;,,, and
P(x;) and P(x;, ;) correspond to the marginal probabilities. Eq. (6) is
then iterated for 1<7;<7Tmqx. Finally, MI determines that the optimal
7 value is the first minimum value of I(7).

3.1.3. TDC embedding dimensions d. via false nearest neighbors
Typically, an optimal PSR d, parameter is estimated by succes-
sively embedding data into higher dimensional state spaces, and
then, checking result consistency [26]. In this regard, False Nearest
Neighbors (FNN) is the most common method used for the esti-
mation of d. [39]. The FNN procedure consists of comparing each
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embedded point against its nearest neighbor for d. and d, 1. The
idea is that if two points are true neighbors in d,, they will continue
to be in de. 1. Moreover, FNN establishes that d is optimal if it
minimizes the number of false neighbors in the reconstructed
space. As in the case of the delay factor, a very small d. will occlude
original data behavior, while a very large d. will destroy any rela-
tionship among data. Therefore, the first FNN minimum is used as
d;.

FNN has two criteria for counting points as false neighbors, if
any of these is not met, points are considered to be false neighbors.
FNN criteria are explained below:

1. Calculate the Euclidian distance for a point X; agd its nearest
neighbor xMN embedded in d,, A; = rxi —xMN ’ . Then, both
vectors are embedded into a de,1 space, and its Euclidian dis-
tance computed. If the normalized difference between A and A,
is above a threshold €, points are considered false neighbors, else
the next criterium requires to be satisfied.

C, = AZA— A D’t+d7A—J’t'+dr| >e. 7)
Vo A 1

2. If the difference between two points embedded on dimension d,
is beyond data standard deviation, these are considered to be
false neighbors

Ay
on > Arol, (8)

where o4 is the standard deviation of time series, and Apy is a
threshold employed to describe model's attractor size.

3.2. Parameter tuning through genetic algorithms

It has been documented that stability and accuracy of SVR highly
depends on its parameter tuning [21,22]. Commonly, SVR is tuned
by a brute force search method called Grid Search (GS). However,
GS suffers of a high computational cost, a priori problem-
knowledge requirements, and it is inefficient for tuning more
than three parameters. Recently, Genetic Algorithms (GA) [40] have
been proposed succesfully for the SVR parameter tuning problem
[21,22].

GA are well-known optimization methods inspired by
Darwinian evolution [40]. Moreover, GA have a good performance
over problems with non-linear fitness landscapes. Typically, a GA is
composed by four genetic operators: a fitness function, a selection
method, a crossover and a mutation operator; our proposed
method employ these four operators. First, SVR parameters which
are the kernel function and its parameters, and the C trade-off
constant (see Table 1) are coded into a hybrid chromosomal

INTEGER GENE REAL GENES

structure like the one proposed in Ref. [22]. Then, a random pop-
ulation is generated and the fitness of each SVR configuration is
calculated. Using Cross Validation, a statistical method for testing
the generalization capabilities of a certain model over a data set,

n ~ .2
altogether with the Mean Squared Error (MSE = M where

y¢ is the observed wind speed and y; is the forecasted wind speed)
the quality of each solution is obtained. In accordance to literature
[22], and the available data, a 10-fold cross validation is used. Next,
the Boltzmann Selection (BS) operator is employed to choose the
surviving solutions of the current population [22]. BS is a selection
operator which is based on the Boltzmann distribution and a linear
cooling schedule. By relating the current GA generation with the
system's temperature, BS allows to employ Simulated Annealing
optimization criteria into GA allowing bad solutions to be accepted
in order to escape from local optimums. Lastly, an n-points cross-
over and a uniform mutation operators are used to form the new
population. This procedure is iterated until a stopping criterion is
satisfied.

Chromosomal structure and the Boltzmann operator are shown
in Figs. 3 and 4, respectively.

4. Experiments

This section presents the description of the experimental setup,
results, and analysis. First, a brief description of the wind facility
and how data is obtained is presented. Next, data pre-processing,
data descriptive statistics, forecasting horizons, configuration of
each tested method, and quality metrics are presented. Finally,
experimental results and analysis are shown.

4.1. Data description

Through the sponsorship of the Global Environment Facility
(GEF), and the United Nations Development Programme (UNDP),
the Electrical Research Institute (IIE) built the Wind Energy Tech-
nology Center (CERTE) in La Ventosa, which is located at the
Isthmus of Tehuantepec, Oaxaca.” Due to México's renewable en-
ergy policies [41,42], CERTE was built as Mexico's first wind energy
small producer, and its main objectives consist in provide a
framework for wind energy research and technological
development.

La Ventosa county is characterized by a wind power density
above 800 Watts per squared meter (800 W/m?), and a mean wind
speed (at 50 m height) greater than 8.5 m per second (50 m/s) [43].
Furthermore, it has been found that La Ventosa wind speed dis-
tribution is explained better by a bimodal probability distribution
than the Weibull distribution [6,7]. In accordance to these features,
and the international standard IEC 61400-1 [44], this site is suitable
for testing Class I and Class II + S (special) wind turbines [45].
Therefore, a special class of wind turbine (KWT300)* was installed
at CERTE's facilities during 2009. This turbine has a height of 40 m
and is appropriate for local electricity suppliers, or where weather
extreme conditions are present (e.g. seismic hazard is high, ty-
phoons, lightning).* CERTE's installed capacity is 300 kW which
corresponds to the energy provided by the KWT300 wind turbine
[45]. This center possess two anemometric measuring towers at 80
and 40 m height. Data from wind speed, wind direction, humidity,

Kernel Function Param. 1 Param. 2

Fig. 3. The proposed GA chromosome structure. SVR parameters are coded into this
structure: first, the kernel type is coded in the integer gene; then, kernel's parameters
are coded into the real genes.

2 http://www.iie.org.mx:8080/SitioGENC/producto02.html, last accessed:
February 16, 2015.

3 http://www.wind-energy-market.com/en/wind-turbines/big-plants/details/
details/bp/kwt300/, last accessed: February 16, 2015.

4 http://www.komaihaltec.co.jp/ENGLISH/PDF/KWT300_Brochure_2.pdf, last

accessed: February 16, 2015.
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Fig. 4. GA Boltzmann Selection is depicted. Initially, a population of solutions is created. Next, fitness of each solution is determined by the objective function. Then, an SVR
configuration is accepted if its quality is better than current best solution. Bad solutions are accepted in order to escape from local optima using Boltzmann distribution.

solar radiation, temperature, atmospheric pressure, and heat radi-
ation is measured and stored in a central computer. The purpose of
this paper is to provide a new model for univariate wind speed
forecasting in wind farms, consequently, only wind speed data from
the sensors at 40 m is employed.

4.1.1. Data pre-processing

Wind speed data from CERTE is composed by measures from
January 1 2012 to August 28 2013. Data is measured every 10 min.
First, outliers were removed in accordance to expert criteria: data
outside typical range values were removed, then, wind speed
values <0 were substituted with 0.00001; for missing values data
was interpolated between previous and next tick; registers with
wind speed missing data were removed. Short-term WSF (ranging
from 1 h to several days ahead) is highly important for wind farms
operations like wind turbines control, load and grid balancing,
ramp events forecasting, and unit commitment for day-ahead
markets [1,2,4,10,11,20,29]. Therefore, treated time series data was
transformed from 10 min ticks to 1 h ticks by averaging it. The
resulting 14,437 data points were then split into the training and
testing sets. The training set contains the first 11, 550 (80%)
consecutive data points, from January 12012 to the first 2 h of April
30 2013. The testing set contains the remaining 2887 (20%) data
points from the third hour of April 30 2013 to August 28 2013.
Additionally, when the proposed model of this paper was used,
data was scaled between 0 and 1 to enhance SVR training time
requirements. Data description is detailed in Table 2.

Moreover, CERTE energy production time series is obtained
using wind speed data (i.e. realized) and KWT300 power curve.
Then, the resulting Wind Power (WP) time series is splitted into

training (80%) and testing (20%) sets. Descriptive statistics are
shown in Table 2.

In order to assess estability of the tested methods, we splitted
the whole data in three consecutive subsamples time series. Dates
and typical descriptive statistics for WS subsamples are described
in Table 3. In the mentioned table, SS stands for SubSample. Also, in
the case of SS, logarithmic returns where calculated to show vari-
ance in WS as time goes by. Logarithm returns are commonly used
as a proxy of the rate of change in financial time series analysis [22];
itis defined as r(t)=[x(t)/x(t—1)]. Full, subsampled, and logarithmic
returns time series are depicted in Fig. 5. As can be observed in this
figure, SS1 testing data has the largest rate of changes from all SS.
Although, as measured by the standard deviation (and shown in
Table 3), SS2 has the largest ¢2. This discrepancy is related to the
definition of the standard deviation, which highly penalize larger
deviations from the mean. SS3 has a smaller ¢%, however, as is
shown in Fig. 5 bullet point G, there are more changes of smaller
size.

The training of the proposed model was performed through a
10-fold cross validation procedure [22]. For every WS time series
case, testing was performed consecutively using the remaining 20%
of data points.

4.1.2. Data descriptive statistics

Previously to the introduction of traditional and non-linear
descriptive statistics (and their results), it is worth noting that the
following analysis is carried only in WS time series. The reason
behind this is that we are interested in modelling wind speed
process rather than forecast wind power. Therefore, we focus on
wind speed probability distribution, chaotic behavior, and

Table 2
Wind speed and Wind Power data descriptive statistics.
WS train data WS test data WP train data WP test data

Sample Size 11,550 2887 11,550 2887
Sample Date Ranges 01/01/12—04/30/13 04/30/13—-08/28/13 01/01/12—-04/30/13 04/30/13—08/28/13
Max-Min Values 28.80—0 18.835-0 300-0 300-0
Mean 8.29 6.28 123.46 75.17
Standard Deviation 4.79 344 115.32 89.84
Skewness 0.55 0.40 0.34 1.02
Kurtosis -0.16 -0.45 -1.49 -0.24
J-B Test 595.25 103.78 - -
Lyapunov Exponent 0.04 —-0.03 - -
Emergence 0.82 0.85 — —
Self-Organization 0.17 0.14 - —

Complexity 0.58 0.49
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Table 3
Wind speed data descriptive statistics for each subsample.

SS 1,Train data SS 1, test data

SS 2,Train data

SS 2, test data SS 3,Train data SS 3, test data

Size 3850 962 3850 962 3851 963
Date Ranges 01/01/12—06/09/12  06/09/12—07/19/12  07/09/12—12/12/12  12/12/12—02/08/13  02/08/13—07/19/13  07/19/13—08/28/2013
Max-Min Values  26.8—0 17.8-0 25.76—0 24-0 23-0 15.2-0.1

Mean 825 58 8 11 7.20 743

Stand. Dev. 466 3.72 42 58 4.69 332

Skewness 0.52 0.62 0.4 ~0.05 0.94 ~0.69

Kurtosis ~0.25 —0.45 04 -0.9 035 ~0.871

components interaction analysis.

First, Maximum and Minimum values, Mean, and Standard De-
viation are obtained. Next, Skewness is used to determine how
symmetric is the data probability distribution, Kurtosis measures
peakedness and extreme values frequency of the distribution.
Additionally, the Jarque-Bera (J-B) test [46] a statistical test which
proposes as its null hypothesis that sample's probability distribu-
tion is Gaussian, is evaluated.

One of the main PSR requirements is provided data must come
from the observation of a chaotic process. In order to support PSR
usage, we applied a statistical test called Neural Networks (NN)
Chaos Test, which is a nonparametric statistical framework based on
artificial NN for chaotic testing [47]. It is well-documented [26] that
positive Lyapunov exponents typically characterize a chaotic pro-
cess. Consequently, NN Chaos Test evaluates as its null hypothesis
that data do not proceed from a chaotic process by approximating
Lyapunov exponents values through a neural network model.

Recently, it has been suggested that weather non-predictable
behavior is more related to the interaction of atmospheric vari-
ables rather than to deterministic chaos [48]. In this sense, the
information-based framework proposed in Ref. [49], is useful to
characterize a system according to the interactions of its compo-
nents. Specifically Emergence (E), Self-Organization (SO), and
Complexity (C) are measured from data. These measures are based
on Shannon's information. Their value ranges between O<E, SO,
C<1. Emergence is used to measure how much new information
arises from the evolution of the system; a high E implies a system
with high variance, where an E~O implies a static system. Self-
Organization is used to measure the organization of the system,
where a high SO implies a highly organized system, and low SO is
correlated to a disordered system with high entropy. Lastly,
Complexity presents an overall measure of the system's balance
between chaos and order. Further, it has been stated that a system
with high complexity is characterized by complex patterns which
are prone to be identified; where a system with low complexity can
be a) fully deterministic, in which case a simple model is enough to
describe its behavior, or b) completely random, in which case
identify any pattern is a futile task. Using E, S, and C, we charac-
terize the data in terms of system information novelty, organiza-
tion, and the overall complexity of the interactions of WS
components.

The results for the applied statistics for training and testing data
are shown in Table 2. In accordance to these, the distribution's
skewness for both data sets (training and testing) is approximately
symmetric. Moreover, Kurtosis statistics show that samples distri-
bution is highly concentrated around the mean and extreme values
occur less often than in a Gaussian distribution. On the other hand,
the J-B test corroborates the findings of Kurtosis, by rejecting
normality of data probability distribution with a significance level
of 0.001%. NN Chaos Test does not reject the null hypothesis with a
p-value of 0.9837 on the training data, while for the testing data it is
rejected with a p-value of 0.0049. Nevertheless, it is well known
that chaos theory methods are clearly influenced by small data sets

[26]. Evenmore, this test found that for the whole data set the null
hypothesis is not rejected with a contundent p-value of 0.999 and a
Lyapunov exponent of 0.0859.

Information-based measures for training and testing wind
speed data showed consistent results for E, SO, and C. Evenmore,
results for the whole data set were high similar to those of the
training set. Therefore, the analysis is made upon the whole set
results. According to these the system is highly variable (Emergence
of 0.825), a necessary condition for exhibiting chaos. Also, the
system has a low level of self-organization (0.175), this reflects a
process of low regularity. Although the values for E are high while
low for SO, according to [49] the complexity values calculated for
the data reveal that the data have fair complexity (C of 0.577). This
type of system present identifiable patterns, nevertheless, they are
occluded because of the high emergence of new states. This in-
dicates that predicting wind speed patterns is non-trivial because
of a high information novelty.

Provided the former statistical and information-based analysis,
data is considered to come from a process at the edge of chaos. The
corresponding J-B test value, Lyapunov exponents, E, SO, and C are
shown in Table 2.

4.1.3. Forecasting horizon

Wind power production requires wind speed to be forecasted in
order to manage electric production and distribution. Evenmore,
due to physical thresholds, wind turbines only operate under
certain wind speed range. Therefore, future wind speed predictions
are required to maximize efficiency and minimize production/
maintenance costs. Typically, short-term wind speed forecasting is
required to be predicted from 1 h to 24 h ahead.

Therefore, our experimental setup considered the aforemen-
tioned short-term predictive range: from one step ahead (h=1) to
one day ahead (h=24).

4.2. Experimental parameter settings

Classical univariate models and the proposed PSR—SVR¢4 model
require some parameters to be defined beforehand. Each setup for
the tested methods is presented below.

4.2.1. Classical and TDC model orders

Classical models and PSR—SVR¢, require the identification of the
dependent variables of the autoregressive models. For the classical
models, AR and MA orders were obtained through Akaike's Infor-
mation Criteria (AIC) [30]. In the case of the TDC model, time delay 7
and the embedding dimension d, were obtained by the PSR method
[24]. Data integration (I) order was obtained by differencing the
time series, and then used by the ARIMA method. We compared our
method with and without the latter transformation. We denote
with the greek letter « the instance which does not employ the
integration transformation, and with § the instance of the
PSR—SVR4 which uses it.

A final note about subsampled data, and its repercutions on the
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Table 4
Order configuration for classical and the proposed methods.
Order Classical Model TDC Model
AR MA I T de
AR 2 — — — —
ARMA 1 27 — — —
ARIMA 30 5 1 — —
PSR—SVR¢pa — — — 19 6
PSR—SVRcp6 - — 1 19 6
Table 5
PSR—SVR¢4 training parameters.
Parameter Method Value
MI: Max 7 PSR 50
FNN: Max d, PSR 50
FNN: ¢ PSR 10
FNN: A7y PSR 25
Fitness Function GA 10 Fold Cross Validation
Selection Operator GA Boltzmann Selection
Crossover Operator GA n-points
Mutation Operator GA Uniform
Crossover/Mutation Rate GA 0.8/0.2
Insensitive e tube size SVR 0.1
Kpoly: polynomial degree d SVR 2—4
Kgauss: rescaling factor y SVR 0.0001-10
Error trade-off constant C SVR 0.0001-10

optimal orders of ARIMA and PSR—SVR¢ca« models, should be made.
For the former, the model detailed in Table 4 is not stationary,
hence, AR and MA orders were once again calculated. For the latter,
we recalculated the TDC model with subsampled data. The result-
ing TDC models, slightly varied for all subsamples (i.e. SS1,
7=13,de=6; SS2, 7=17,d.=6); SS3, 7). However, it is well known
that non-linear methods (e.g. MI [50], FNN [39]) performance im-
proves with the availability of larger time series. Therefore, we
conclude these were projections of the true TDC, and employed the
one detailed on Table 4.

Table 4 shows the AR, MA, I, 7, and d. orders identified for the
models.

4.2.2. PSR—SVR¢y configuration

The novel methodology proposed in this work for wind speed
forecasting is composed by several methods: Phase Space Recon-
struction, a Hybrid GA, and SVR. Each one of these has several pa-
rameters that need to be set beforehand. Table 5 shows the
parameter's name, the method in which is employed, and the value
or range of values defined for training the forecasting model.

4.3. Quality metrics

Performance evaluation of persistence, autoregressive and our
proposed methods was done in terms of WSF and WPF. In doing so,
we provide a completer overview of the performance of the eval-
uated methods, and their utility for wind farms. First, the metrics
employed for WSF are described. Then, WPF performance metrics
are introduced. Finally, an improvement index for comparing re-
sults provided by WSF and WPF quality metrics is detailed.

4.3.1. WSF quality metrics

Performance of WSF methods can be measured in terms of ac-
curacy, which is related to the exactness of the predicted wind
speed respect to the realized. On the other hand, directional-based
measures describe forecaster's phase errors (wind speed magni-
tude is forecasted correctly but with a time delay), and are useful

for economic interpretations like utilities integration costs or wind
generator ramp policies [29,51—-54].

In order to compare quality of the proposed method against the
persistence model and classical methods, several metrics for
different forecasting features are employed. For methods accuracy
performance, the Mean Absolute Error (MAE) [2], Mean Bias Error
[10,53,55,56], Root Mean Squared Error (RMSE) [1,2], and Mean
Absolute Scaled Error (MASE) [57—59] were employed. For
methods directional performance, the Directional Accuracy (DA)
was employed [52,60,61]. These metrics are depicted by Egs.
(9)—(13), where x; stands for the observed wind speed and X; for the
estimated wind speed, respectively.

1 ¢ _
MAE:N;xi—xi. (9)
1 ¢ _
MBE = & ;(xi — %) (10)
(11)
N .7/\.
MASE:lZ [Xi — Xi . (12)
N i1 \_1_s~N .
N=T2im2|Xi — Xi1
. 100
DA(%) :Tzai’
i=1
Erry = sign(xi,1 — X;
1 8N (X1 i) (13)

Erry = sign(Xi.1 — X;)
1 Errp =Err,

where a; = )
0 Otherwise

MAE and RMSE are classical accuracy-based measures for
qualifying the performance of wind speed forecasters. RMSE as-
sumes that the errors are unbiased and follow a normal distribu-
tion, while MAE is suitable to describe uniformly distributed errors.
However, they have several drawbacks like heavier penalties on
positive errors than on negative errors [59]. Another accuracy-
based metric closely related to MAE is the MBE [29,55]. This mea-
sure is used to evaluate the average bias of forecasting models (i.e.
over- or under-estimation). Typically, commercial consumers of
wind energy methods prefer under-estimated models for WSF [53].
However, MBE should be used altogether with other performance
measures (e.g. MAE) due its inconsistent penalization to error
magnitude [55]. Further, MAE, RMSE, and MBE are scale-dependent
measures not suited for comparing time series with different scales
[57,62]. Recently, the Mean Absolute Scaled Error (MASE) have been
proposed for the evaluation of wind speed and wind power fore-
casters [58,59]. It has been stated that MASE performance is inde-
pendent to data scaling, and it can be used to compare different
forecasters across multiple time series [57,59]. MASE scale-
independence is achieved by scaling the in-sample MAE of a fore-
caster respect to average error of a one-step naive method [57]. In
the 1-h ahead WSF context, MASE provides a direct comparison of
the error of a forecasting method respect to the average error of the
PM. If MASE>1, the performance of the forecasting method is worse
than the average of PM. Otherwise, the tested forecasting method is
more accurate than PM [57]. Although robuster, MASE has not been
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extensively used in wind energy literature [63].

Niether MASE, nor MAE, MBE nor RMSE account for phase errors
of the forecasting method by itself [53]. It has been stated that
directional accuracy must be considered in WSF for utilities, and
grid integration purposes [52]. Further, directional errors of WSF
are directly transferred to the power prediction, and affect wind
genetor ramping policies [12,53,54].

Therefore, a good forecasting method must ensure low MAE,
MBE, RMSE, and MASE, while achieving high DA values.

4.3.2. WPF quality metrics

Once wind speed is forecasted, wind power time series is
computed using KWT300 power curve. Employing the wind power
data, the error for the forecasting horizon h at the time step t is
defined as

e(t+ h|t) =

P(t+h) — (t + hjt),

Pinst

where P(t) and ﬁ(t) stands for the realized and forecasted wind
power produced. Pj,s: corresponds to CERTE's installed capacity (i.e.
300 kW).

Rather than employing the WSF qualitative metrics, we
employed the NMAE, NMBE, and NRMSE [29,64] to evaluate the
forecasting abilities of benchmark and the proposed methods in
terms of WP. It has been documented that these metrics are
robuster, are directly related to the facility produced energy, and
provide results independent to wind farm size [64]. Moreover, they
yield further insight in the economicimpact of the models errors as
a function of the site installed capacity [29]. These metrics are
described by Eqgs. (14)—(16).

N
NMAE:%Z e(t + h|t)|. (14)
i=1
1 N
NMBE = ;e(t+h|t) (15)
N
NRMSE = N; (e(t + h|t))? (16)

4.3.3. Methods comparison

As a mean to quantify the improvement of a specific method
against the reference method (i.e. PM/D2D method), we employed
the Improvement (Impr) metric proposed by Ref. [29]. This metric is
defined as follows

(17)

E —E
Imprref‘EC = 100x <M(h)c(h)> 7

Ecref

where ref stands for the reference method (e.g. Persistence), ECrer
and EC stands for the Evaluated Criterion result (e.g. MAE, RMSE,
and so on) for the reference and compared methods, respectively. It
is worth mentioning that, when DA is employed, ECyef becomes the
subtrahend instead of the minuend, in the dividend part or Eq. (17).

4.4. Results

In order to analyze PSR—SVRg4 forecasting capacities, it is
compared against the persistence model and classical time series
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methods. Results are analyzed in terms of WSF and WPF for
consecutive 24 h ahead (i.e. day ahead). Evenmore, data integration
applied by ARIMA to ensure stationarity in data is also studied
within our proposed methodology.

WSF results are produced for the full time series setup. These
results are analyzed in regards to the bias, precision, and variance of
forecasting methods as measured by WSF quality metrics. Further,
these results are employed to assess the sensitivity of WSF metrics
respect to the scaling preprocess required by PSR—SVRga.
Improvement of the models are then shown. Improvements are
analyzed and displayed for MAE and RMSE in terms of the unscaled
predictions. For MASE and DA, improvements for scaled and
unscaled forecasts are shown. Moreover, for reasons that will
become clear later, comparison of WSF improvements are only
made for ARIMA and PSR—SVR¢ga« results. Next, a final note about
the effects of the stationary transformation applied to the proposed
method is made.

WPF results are produced for the full time series and sub-
samples setup. For the former, results for WPF quality measures are
employed to evaluate the proposed and studied methods. For the
latter, results are used to assess generalization capabilities of pro-
posed and classical forecasting methods conserning to the available
training data. WPF improvements are displayed for ARIMA and
PSR—SVRgaa models.

All experimentation was developed using Matlab 2009a. The
hybrid GA was manually coded, while LibSVM was used as SVR li-
brary [65]. CRP Toolbox for Matlab was employed for the estimation
of the TDC model (i.e. 7, d.) [66]. Lastly, Matlab 2009a System
Identification Toolbox was employed for AR-based methods.

4.4.1. WSF analysis

PM/D2D, AR-like methods, and the proposed PSR—SVR¢4 were
employed for WSF for consecutive 24 h ahead. Results in terms of
MAE, and RMSE are shown in Fig. 6; for MASE, and DA, Fig. 7 dis-
plays the results; Fig. 8 presents results for MBE. Figs. 6 and 7
presents unscaled data in its top part, whereas unscaled is shown
in bottom. Fig. 8 presents scaled results on the left side, whereas
unscaled are displayed on the right. For each figure, X axis corre-
sponds to the forecasting horizon, while Yaxis shows units in which
each metric describe the incurred errors (i.e. MAE (m/s), MBE (m/s),
RMSE (m/s), MASE (%), and DA (%)). Improvements comparison in
terms of MAE, RMSE, MASE, and DA are shown in Fig. 9.

4.4.1.1. Scaled Vs un-scaled results. As can be observed in Figs. 68,
MAE, MBE and RMSE are not adequate for comparing results with
different scales. For all of these measures, the estimated error is
approximately zero for the whole range of forecasting horizons. In
the case of unscaled results, MAE and RMSE are closely simmilar to
those reported by MASE. These measures are considered for the
improvement comparison of models. It is also worth noting the
inconsistent penalization of incurred errors as measured by MBE
for both, scaled (i.e. error penalization is notably biased by data
scaling) and unscaled (e.g. for the 20 h ahead MBE error is as large
as 50 m/s, which clearly contrast with MAE, RMSE, and MASE re-
sults) forecasts. In consequence, MBE results are discarded for the
rest of this WSF analysis.

On the other hand, MASE and DA results (Fig. 9) show consis-
tency for scaled and unscaled results. The largest difference be-
tween PSR—SVRcaa MASE results is of 0.08%, whereas for
PSR—SVR4B is of 0.68% for 20 h ahead. In the case of DA, differences
are imperceptible. Additionally, it is interesting how DA of PM
quickly (i.e. logarithmic rate) increases for increasing forecasting
horizons. These empirical results show that directional changes (i.e.
increase or decrease in wind speed), have a higher correlation for
longer forecasting horizons in contrast with shorter.
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Therefore, due the high regularity of MASE and DA measure-
ments, scaled results for these metrics are also considered in the
improvement comparison.

4.4.1.2. Improvement comparison of models. Improvement results
for MAE, RMSE, MASE and DA are presented in Fig. 9. For read-
ability, DA results for 1 h ahead are dismissed (i.e. improvement is
near four orders of magnitude). From visual inspection at Fig. 9 it is
clear that, in average, AR, ARMA and PSR—SVR¢4( do perform worse
than PM, whereas ARIMA and PSR—SVR¢aa perform better in terms
of WSF. Hence, comparisons over the reference model are con-
strained to ARIMA, and PSR—SVR¢a« results.

In general, MAE, RMSE, and MASE improvements over PM for
1—4 h ahead are greater for ARIMA than the proposed method. For
5—22 h ahead, PSR—SVRga« achieves greater improvements than
ARIMA over the reference method. For 23 h and day ahead hori-
zons, ARIMA is better. Particularly, for 12 h and day ahead horizons,
PSR—SVRgax performed worse than the reference method. Decrease
in improvement for the former case, given the average performance
of previous and next forecast horizons, is a consequence of pre-
mature convergence in the stochastic optimization of SVR param-
eters. Some specific findings for these WSF quality metrics are
described next:

e As measured by MAE improvements, ARIMA is more accurate
than PSR—SVRga« for the first and last forecast horizons. How-
ever, as measured by RMSE, the proposed method variance is
lesser than ARIMA.

e In the case of MASE, improvements for scaled PSR—SVRcax
forecasts are higher than those obtained by the unscaled results,
been the largest difference 3.5%.

In general for DA, higher improvements are gained for the first
4 h ahead. For the next 20 forecast horizons, improvement decays
from 33% to —1% in the case of ARIMA, and —6% in the case
PSR—SVRgaa.

4.4.1.3. Data integration for PSR—SVRga. As is shown in Figs. 6—8,
data integration reduces the performance of the proposed method.
For shorther forecast horizons PSR—SVRga$ accuracy is as good as
the reference method, whereas PSR—SVR¢a« is better than PM. As
the forecast horizon increases, the performance is worsen for the
former against the latter. Day ahead results are the only case where
PSR—SVRg4B is better than PSR—SVRgaa. Although, given the vari-
ance as measured by RMSE, is higher for the former than the latter,
there is no reason to think PSR—SVRg46 will forecast better the day
ahead.

4.4.2. WPF analysis

Results for 1 h to 24 h WPF in terms of NMAE, NMBE, and
NRMSE are shown in Fig. 10. Each plot in figure (from left to right)
corresponds to one of the WPF quality metrics as described in
section 4.3.2. In this figure, X axis corresponds to the forecasting
horizon, while Y axis shows error percentage in terms of CERTE's
installed capacity (i.e. Pipst). Improvement comparison for NMAE
and NRMSE are presented in Fig. 11.

Further, model WPF capabilities are analyzed in terms of
generalization and error distribution. For the first, sensibility to
training data is assessed by splitting in three subsamples the whole
WS time series as described in section 4.1.1. The corresponding
subsample results in terms of NMAE, NMBE, and NRMSE, are pre-
sented in Fig. 12; X axis displays the forecasting horizon, while Y
axis shows error percentage in terms of CERTE's installed capacity
(i.e. Pipst). For the second, error distribution histograms as suggested
by Refs. [29,64] are employed. Error distributions for 1, 5 and 24 h
ahead are obtained. Bins represents 10% of the site installed ca-
pacity (i.e. 30 kW); X axis displays the forecasting horizon, while Y
axis shows the frequency of errors per bin.

4.4.2.1. WPF results description. In accordance to literature, NMAE
errors are directly associated to the produced energy. The evidence
presented in Fig. 10 shows that, ARIMA is the most accurate model
forecasting WP using WS forecasts. In terms of NMAE, PSR—SVRga«
in general, performs better than the reference method. Although,
for 12 and 24 h ahead performance is inferior. It is interesting that,
for WPF quality metrics results for the 12 h ahead for PSR—SVRga«x
show consistency in regards to the neighborhood of horizons re-
sults. Nonetheless, excluding day ahead results, NMAE average er-
ror for ARIMA (14.05%) and PSR—SVRgax (14.6%) are very close.

As stated by Ref. [64], NMBE is related to the bias of the models.
As shown by Fig. 10, in general AR model is the most biased model,
with a systematically understimation of the WP process. On the
other hand, PSR—SVR;4f obtains an overestimation of WP process
with an average NMBE of 0.04%. Nevertheless, in accordance [29],
none of the methods incur in systematic errors.

NMRSE describes the variance of the tested methods. As can be
observed in Fig. 10, in average PSR—SVRga« displays the lowest
NRMSE for the 24 h ahead with an error of 3.8% of the Pj,s. On the
other hand, PSR—SVR¢4f variance is only as good as the reference
method for the first 5 h ahead; after, its performance decay with a
maximum for the 21 horizon of 6% of the. Pj.

4.4.2.2. Improvement comparison of models. Improvement results
for NMAE, and NRMSE are presented in Fig. 11. From visual in-
spection at 10 it is clear that, in average, AR, ARMA and PSR—SVRg40
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do perform worse than PM, whereas ARIMA and PSR—SVRga«
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perform better in terms of WPF. Hence, comparisons over the
reference model are constrained to ARIMA, and PSR—SVRgax
results.

In general, NMAE improvements over the reference method are
greater for ARIMA rather than PSR—SVRga«. In particular, ARIMA
gain is greater for 12 (9.2%) and 24 (13.8%) hours ahead. In terms of
NRMSE improvements over PM for 1—4 h ahead are greater for
ARIMA than the proposed method. Although, the maximum
improvement difference between ARIMA and the proposed
method, is 1.6% for the 1 h horizon. For 5—23 h ahead, PSR—SVRgax
achieves greater improvements than ARIMA over the reference
method with an average of 9.5%. Again, for 12 h and day ahead
horizons, PSR—SVRgaa performed worse than the reference
method. It is worth noting that, both are multiples of 12. This
suggests that, the approximated TDC model used for SVR does not
fully capture the conditional probability of these forecasting
horizons.
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to smaller scale WS processes, occluding the big picture. In order to
assess the impact of available data in the generalization of PM, AR-
like, and PSR—SVR¢c4 methods, CERTE data was splitted in 3 sub-
samples. Fig. 12 presents the results. Columns correspond to WPF
quality metrics (NMAE, NMBE, and NRSME, respectively), whereas
Rows correspond to subsampled data (1—3, respectively). From an
exploratory data analysis view, the next conclusions are obtained:
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e Performance of AR, and ARMA methods across all metrics for all
SS remains constant. In terms of NMAE, and NRSME, these
methods performed better for longer horizons (i.e. 18) than PM/
D2D for SS1 and 3. It can be observed, for NMBE of all SS that, AR
and ARMA models underestimate the true process of WP.

e Performance of reference models is high for all measures in all
SS cases. Particularly, for the SS2 case, it achieves marginally
worse results for NMAE than the best method; in terms of
NRMSE, it has the best performance in average.

e ARIMA achieved a better performance over PM/D2D methods in
all SS for NMAE. In terms of NMBE, it tends to obtain slightly
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e The achieved performance of PSR—SVR¢aa in terms of NMAE is
better for SS3, followed by SS1, and SS2, respectively. In terms of
NMBE, it tends to slightly underestimate the process for SS2 and
SS3. For NRMSE, it achieves the best performance in SS1 and
SS3.

e Performance of PSR—SVR¢a( in terms of NMAE is (surprisingly!)
better than PSR—SVRga« for SS2. It seems that, for time series
with larger but infrequent changes, ergodic transformation is
benefical for the proposed method. However, this trans-
formation leads to overestimated functions of the WP process,
as is shown by NMBE results for all SS. For NRMSE, variance of
the model increases for longer forecasting horizons.

e AR-like methods and reference models are better modelers of
highly persistence processes using lesser data in respect to
PSR—SVRga methods. Although, there is a clear impact in the
performance of the proposed method for smaller training
sample, in the case where more changes (of smaller magnitude)
are present, PSR—SVRgaa outperforms other methods.
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Fig. 13. Analysis of Error Distribution. From left to right, error distributions obtained by the PSR—SVRga« for 1, 5 and 24 h ahead are shown.
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4.4.2.4. Analysis of error distribution. Finally, Fig. 13 presents error
distributions for one, five and 24 h ahead predictions of the full
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time series setup. These histograms correspond to error distribu-
tion for the PSR—SVRgaa method. Comparing the three histograms,
it is notorious that the error distributions is more symetric for one
and 5-h ahead, than day ahead forecasts. In the three cases, dis-
tribution is centered around 0, however, for the day ahead horizon
histogram is highly skewed over possitive errors. Further, the error
distribution of one and 5-h ahead, are more leptokurtic than for
24 h. Conclusions derived for these histograms are detailed below:

e Robustness
— For 1 h ahead, errors are less than 10% of Pj,s: 76% of the times,
— For 5 h ahead, errors are less than 10% of P;,s: 63% of the times,
— For the day ahead, errors are less than 10% of P 45% of the
times.
e Large Errors
— For 1 h ahead, errors are more than 20% of Pj,s; only 9% of the
times,
— For 5 h ahead, errors are more than 20% of Pj,s: only 20% of the
times,
— For the day ahead, errors are more than 20% of Pj,s: only 40%
of the times.

5. Conclusions

Wind speed forecasting is a key component for wind energy
production. Nevertheless, WSF is a hard task due its intermittence,
high variability and non-linearity. In this work, a new methodology
for WSF called PSR—SVRga is presented. PSR—SVR¢4 is a methodol-
ogy for univariate time series forecasting. Employing a chaos theory
model called TDC, WS data is embedded into a reconstructed phase
space where regression by SVR is performed. Then, a proper SVR
model is selected by means of a GA; the genetic operator called
Boltzmann selection is used to avoid premature GA convergence.
Previous to experimentation, a statistical analysis over CERTE's
wind data was performed. Results from this analysis showed that
wind speed for studied location has a non-Gaussian distribution.
Also, the analysis showed that data have positive Lyapunov expo-
nents, a characteristic feature of chaotic processes. Furthermore,
the information-based metrics which analyze the complexity of the
system revealed that the system behavior can be cataloged as being
on the chaotic side but close to the edge of chaos. Therefore, these
evidences support the use of TDC model and PSR in the proposed
method.

The mettle of PSR—SVR¢4 was tested against PM/D2D, AR, ARMA,
and ARIMA for a range of 24 h ahead in terms of WSF and WPF. For
WSF results, PSR—SVR¢4 is more accurate than PM/D2D, AR, and
ARMA, for almost all horizons. Although, PSR—SVR¢a« performance
for the day ahead horizon is an open opportunity for further im-
provements. Moreover, ARIMA is more accurate for the first 5 h
ahead, whereas for the subsequent 16 h, PSR—SVRg4 is better. In
terms of phase errors, improvements in directional changes are
only gained for the first hours ahead over the refence method, been
marginal the gain for larger horizons. In this sense, wind speed
ramp events are an opportunity area for the proposed method. For
WPF results, the same performance between PSR—SVRg4 and AR,
ARMA, and reference methods is obtained. Improvements over PM/
D2D in terms of accuracy, are larger for ARIMA than the proposed
method. On constrast, improvements over the reference methods
in terms of variance are larger for PSR—SVRga. In this sense, the
proposed method would be useful for the mitigation of large fluc-
tuations in wind power production.

The present study only uses a univariate time series. Still, other
variables like wind direction, humidity, solar radiation, and so on,
are available. Moreover, only a model of PSR—SVRg4 is employed to
forecast multiple steps ahead. Regarding this, an ensemble of SVR

models for each individual horizon could improve the prediction
accuracy. The incorporation of these variants into the model may
improve accuracy in terms of WSF and WPF. Additionally, further
comparisons against other reference and NWP methods are
required. Bringing comparisons with NWP to the table, should
provide further insight about the relation between the physical
model, and the TDC model found by the PSR procedure. Therefore,
future work will be delved in these opportunity areas.
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Nomenclature

AIC Akaike's Information Criteria

AR autoregressive models

ARIMA autoregressive integrated moving average models
ARMA autoregressive moving average models

B—] Box—Jenkins ARIMA methodology

D2D day-to-day persistence method

DA directional accuracy

FNN false nearest neighbors

FS feature selection

GA genetic algorithms

GS grid search method

LLD. independent and identically distributed random variables
Impr forecasting improvement

MAE mean absolute error, also called mean absolute deviation

MASE  mean absolute scaled error
MBE mean bias error

MI mutual information

NN neural networks

OLS ordinary least squares
Pinst  power installed

PM persistence method

PSR phase space reconstruction
PT parameter tuning

RMSE  root mean squared error
SV support vectors

SVM support vector machines
SVR support vector regression
TDC time delay coordinates

WPF wind power forecasting
WSF wind speed forecasting
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