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A B S T R A C T

Measuring complexity is fast becoming a key instrument to compare different ecosystems at various

scales in ecology. To date there has been little agreement on how to properly describe complexity in

terms of ecology. In this regard, this manuscript assesses the significance of using a set of proposed

measures based on information theory. These measures are as follows: emergence, self-organization,

complexity, homeostasis and autopoiesis. A combination of quantitative and qualitative approaches was

used in the data analysis with the aim to apply these proposed measures. This study systematically

reviews the data previously collected and generated by a model carried out on four aquatic ecosystems

located between the Arctic region and the tropical zone. Thus, this research discusses the case of

exploring a high level of self-organization in terms of movement, distribution, and quality of water

between the northern temperate zone and the tropics. Moreover, it was assessed the significance of the

presence of a complex variable (pH) in the middle of the latitudinal transect. Similarly, this study

explores the relationship between self-organization and limiting nutrients (nitrogen, phosphorus and

silicates). Furthermore, the importance of how a biomass subsystem is affected by seasonal variations is

highlighted in this manuscript. This case study seeks to examine the changing nature of how seasonality

affects the complexity dynamics of photosynthetic taxa (lakes located in northern temperate zone) at

high latitudes, and it also investigates how a high level of self-organization at the tropical zone can lead

to increase the amount of planktonic and benthic fish which determines the dynamics of complexity.

This research also compares the emerging role of how a biomass subsystem has a highest temporal

dynamics compared to he limiting nutrients’ subsystem. In the same way, the results associated to

autopoiesis reflect a moderate degree of autonomy of photosynthetic biomass.

It is also discussed the case of how complexity values change in the middle of the latitudinal gradient

for all components. Finally, a comparison with Tsallis information was carried out in order to determine

that these proposed measures are more suitable due to they are independent of any other parameter.

Thus, this approach considers some elements closely related to information theory which determine and

better describe ecological dynamics.

� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

To date there has been little agreement on what complexity
really is. In this sense, it can be said that complexity has a pervasive
meaning i.e., it can be found in most disciplines and phenomena
with different definitions. In this regard, a complex system is
observed when its components are difficult to separate due to
relevant interactions among their elements (Gershenson, 2013).

Complex systems are fundamental to study ecosystems due to
they are highly interwoven units that may generate significant
information as a result of relevant interactions. This information
can be considered as emergent e.g., symbionts are not able to
survive on their own, they depend directly on their relations with
the environment. It is important to note that if interactions are
neglected, it will not be possible to properly describe the most
important features in ecology. Specifically, it can be said that some
elements are continuously interacting to self-organize themselves
in order to carry out a task i.e., these elements present a global
pattern from local dynamics, as it can be found on fish schools
where there is no central or external control, but interactions
between fish lead to global regularities, so a high degree of
organization is achieved (as opposed to random patterns). While
emergence is related to generate information, self-organization is
associated with order and regularity (Gershenson and Fernández,
2012; Fernández et al., 2014). Balance between change (chaos) and
stability (order) has been proposed as a characteristic of
complexity (Langton, 1990; Kaufmann, 1993). Thus, considering
that chaotic systems generate enough information (emergence),
complexity can be defined as the balance between emergence and
self-organization (López-Ruiz et al., 1995; Fernández and Ger-
shenson, 2014).

Interactions are present in the generation of two additional
properties. Firstly, homeostasis: this term refers to a self-regulation
property where ecosystem and their elements maintain steady
states of operation during internal and external changes (Cannon,
1932). Interactions also enable feedback control loops, which help
ecosystems to regulate themselves in their internal states and
reach a dynamic equilibrium. Secondly, autopoiesis: it is a
particular form of homeostasis and was originally understood as
the self-production and regeneration of living systems. Thus, it can
be said that an autopoietic ecosystem possess the potential to
develop, preserve and produce organization (Varela et al., 1974).
Similarly, autopoiesis has also been related to autonomy (Ruiz-
Mirazo and Moreno, 2004), an essential aspect of living systems.

Recently, there has been renewed interest in complexity in
terms of self-organization, emergence and criticality (Cadenasso
et al., 2006; Boschetti, 2008, 2010). Previous research of
complexity in ecology has been associated with aspects of richness,
abundance and hierarchical structure (Azhar et al., 2013). As a
result, different mathematical approximations for measuring
ecological complexity have been explored (Parrott, 2005; Boschetti
et al., 2008; Proulx and Parrott, 2008). Developing complexity
measures plays a critical role in studying and comparing
ecosystems. Thus, it should be noted that a sounded mathematical
formalism is still an open task (Gershenson, 2008).

There is evidence that information theory is fundamental in
developing measures of complexity (Prokopenko et al., 2009). It is
only since the extensive research of MacArthur in MacArthur
(1955) that the study of ecological communities and information
theory has gained a renewed interest (Piqueira et al., 2009; Anand
et al., 2010; Ulanowicz, 2004, 2011). On the other hand, it should
be mentioned that entropy measures have also been used to
describe the structural topology and dynamical change in time in
ecosystems (Ricotta and Anand, 2006; Parrott, 2010).

A large and growing body of literature has investigated how
complexity can be correlated to other types of information
measures such as: Fisher information (Prokopenko et al., 2011)
and Tsallis information (Tsallis, 2002). Early examples of Fisher
information include a model to explore details of critical
phenomena and order-disorder transitions. Fisher information
has been carried out by (Karunanithi et al., 2008; Mayer et al.,
2006) in aquatic and terrestrial ecology with the aim to detect
transitions between multiple dynamic regimes. In the case of
Tsallis information, it can be considered as a measure of
uncertainty in the relative abundances of species and it describes
species diversity in ecological communities (Zaccarelli et al., 2013).

Recent studies carried out by (Gershenson and Fernández,
2012) and (Fernández et al., 2014) involved a significant analysis
and discussion on measures of emergence, self-organization,
complexity, homeostasis and autopoiesis. However, much uncer-
tainty still exists about the relationship between these type of
measures with ecological systems. Similarly, in another qualitative
study conducted by (Santamara-Bonfil et al., 2016) a set of
different distributions were explored with the aim to study a wide
range of dynamical systems. These criteria were applied to an
aquatic ecosystem (Fernández and Gershenson, 2014) but also to
determine the presence-absence of modelling data related to
mammals (Fernández et al., 2013).

There are a number of large cross-sectional studies which
describe ecological dynamics using Shannon information. Howev-
er, from previous work some questions still remain unanswered
e.g., How to use quantitative indicators of complexity to study the
dynamical properties of ecosystems in different climatic condi-
tions? How to compare the complexity of different ecosystems?
How to explore complexity along a gradient considering various
subsystems and variables? And Finally, What is the main effect in
terms of latitude on the ecological complexity? All these questions
will be attempted to address in the following sections.

This study set out to investigate the suitability of our proposed
measures: complexity, self-organization, emergence, homeostasis
and autopoiesis. These measures will be applied to examine and
compare lakes dynamics in the latitudinal gradient (Arctic region
and the Tropical zone). In this context, this research systematically
reviews the variables related to the physiochemical, nutrient and
biomass subsystems. It is important to note that experimental
data was obtained from the modelling and simulation correspond-
ing to an annual cycle. Moreover, a fair comparison with Tsallis
information will be examined and discussed. Similarly, the
suitability and benefits of measuring complexity in ecological
systems will be assessed. This investigation will enhance our
understanding of indicators considering different subsystems and
variables.

This manuscript is organized as follows: Section 2 shows
the methodology related to simulations and mathematical
aspects of the measures applied. Section 3 describes the results
obtained by measuring complexity. In this section we also analyze
which variables characterize emergence, self-organization and
complexity in lakes located in the latitudinal gradient using
multivariate analysis. Section 4 discusses computational aspects,
ecological interpretations of the proposed measures, spatial
variation of complexity, dynamics and function. We conclude in
Section 5. Additional results related to the ecological description of
the lakes and complexity for each subsystem are presented in
Appendices A and B.

2. Methodology

The aim of this research is to explore the relationship between
our proposed measures and regional lakes. In this context, a major
advantage of selecting lakes as a part of our tests, is that fresh
waters have received lesser attention than terrestrial or marine
ecosystems, even though they contain 20% of the Earth’s vertebrate



Table 1
Physicochemical variables.

Variable Units Acronym

Surface light MJ/m2/day SL

Planktonic Light MJ/m2/day PL

Benthic Light MJ/m2/day BL

Surface Temperature 8C ST

Planktonic Temperature 8C PT

Benthic Temperature 8C BT

Inflow and Outflow m3/s IO

Retention Time Days RT

Evaporation m3/day Ev

Zone Mixing %/day ZM

Inflow Conductivity mS/cm ICd

Planktonic Conductivity mS/cm PCd

Benthic Conductivity mS/cm BCd

Surface Oxygen mg/litre SO

Planktonic Oxygen mg/litre PO

Benthic Oxygen mg/litre BO

Sediment Oxygen mg/litre SdO

Inflow Ph pH Units IpH

Planktonic Ph pH Units PpH

Benthic Ph pH Units BpH

Table 2
Limiting nutrients variables.

Variable (all in mg/m3) Acronym

Inflow silicate IS

Planktonic silicate PS

Benthic silicate BS

Inflow nitrate IN

Planktonic nitrate PN

Benthic nitrate BN

Inflow phosphate IP

Planktonic phosphate PP

Benthic phosphate BP

Inflow carbon dioxide ICD

Planktonic carbon dioxide PCD

Benthic carbon dioxide BCD

Planktonic detritus PDe

Benthic detritus BDe
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species (Rohde, 1998). Furthermore, the study of gradients in
ecology has just been related to diversity (Hawkins, 2001). Thus,
little is known about latitudinal gradients of complexity.

Throughout this manuscript, it will be argued that lakes are
significant examples of complex systems by having a rich variety of
biological and environmental interactions. The spatio-temporal
study of lakes considers different types of interactions between
one or more subsystems, in one or more zones involving two or
more variables. Additionally, ecological interactions that take place
on different lakes, can be related to the patterns of persistence
which corresponds to their latitudinal location. According to
Amoros and Bornette (2002), complexity presented in lakes is a
natural consequence produced by the integration of spatial scales
on longitudinal, lateral and vertical dimensions of the landscape.

2.1. Simulations

Data were collected using The Aquatic Ecosystem Simulator -

‘‘AES’’ (Randerson and Bowker, 2008). This analysis was carried out
using computer simulations based on numerical integration of
27 differential equations. The default timescale of this research
was set to one year. However, outcomes produced by this
simulation were analyzed in terms of days, weeks, months and
in some cases season of the year.

Eq. (1), shows the general form of the equations applied and
integrated by Euler’s method. Units were mg/m3/day.

Rate of Change ¼ Rate of Gain�Rate of Loss (1)

Some examples of specific components are give in Eqs. (2)–(4).

dPhy

dt
¼ GPP�R�NM�SBZ�IZ�EO (2)

where dPhy = Rate of Change of Phytoplankton; GPP = Gross
Primary Production (Nutrient Uptake & Photosynthesis); R = Res-
piration; NM = Natural Mortality; SBZ = Sinking to Benthic Zone;
IZ = Ingestion by Zooplankton, and EO = Efflux to Outflow.

dPN

dt
¼ IFI þ RBZ þ RR&EP�NUP&M�EO (3)

where dPN = Rate of Change of Planktonic Nutrients; IFI = Influx
from Inflow; RBZ = Reflux from Benthic Zone via Mixing; RR & E-

P = Recycling via Respiration & Excretion in Planktonic Zone;
NUP & M = Nutrient Uptake by Periphyton & Macrophytes, and
EO = Efflux to Outflow.

dPD

dt
¼ NMPO þ ITD�SB�IZ&F�EO (4)

where dPD = Rate of Change of Planktonic Detritus; NMPO = Na-
tural Mortality of Planktonic Organism; ITD = Influx of Terrestrial
Detritus; SB = Sinking to Benthic Zone; IZ & F = Ingestion by
Zooplankton & Fish, and EO = Efflux to Outflow.

According to the equations previously stated, a set of
simulations of physicochemical and trophic dynamics for four
freshwater ecosystems were carried out. It is important to note
that these four ecosystems contain functional groups (guilds) of
organisms forming planktonic and benthic food webs.

Data were gathered from multiple sources: (i) The macrophyte
zone, mainly composed of aquatic plants which are rooted or
submerged. (ii) The planktonic zone, corresponding to open
surface waters in which organisms drift passively (phyto and
zooplankton). (iii) The benthic zone, or the lowest level of a body of
water that is related to the substratum including the sediment and
subsurface layers.

Within the zones explained earlier, it has been considered three
subsystems: physicochemical, limiting nutrients and biomass. The
physicochemical subsystem includes physical variables such as:
light and temperature but also hydrological variables of inflow and
outflow such as: retention time and zone mixing. It should be
noted that chemical variables are also included: dissolved oxygen,
conductivity and hydrogen potential pH (see Table 1). In the
limiting nutrient subsystem case, this includes essential compo-
nents for photosynthesis e.g., nitrates, phosphates and carbon
dioxide. In general, this subsystem is associated with the
biogeochemical cycles of nitrogen, phosphorus and carbon. It
should be mentioned that silicates and detritus are also
incorporated in this subsystem (see Table 2). Finally, The biomass
subsystem is composed of photoautotrophic biomass (Diatoms,
Cyanobacteria, Green Algae, Macrophytes) which is the basis for
trophic web establishment but also consist of first and second-
grade consumers: zooplankton and fish (see Table 3).

In order to avoid variations in our simulations it has been
chosen a deterministic and closed model. In this regard, four
different lakes corresponding to the following areas were taken
into account: Arctic region (Ar), North Highland (NH), North
Lowland (NL) and Tropical zone (T). The criteria for selecting these
lakes were as follows: firstly, location of each one in a latitudinal
gradient from the Polar to the Tropical zone (Ar-T), and secondly,
light and temperature conditions. A full description of the four
lakes studied can be found in Appendix A.

To make possible the measuring of emergence, self-organiza-
tion, complexity, homeostasis and autopoiesis, data from simula-
tions was normalized to base 10 in order to obtain a finite alphabet



Table 3
Biomass variables.

Variable (all in mg/m3) Acronym

Inflow silicate IS

Planktonic silicate PS

Benthic silicate BS

Inflow nitrate IN

Planktonic nitrate PN

Benthic nitrate BN

Inflow phosphate IP

Planktonic phosphate PP

Benthic phosphate BP

Inflow carbon dioxide ICD

Planktonic carbon dioxide PCD

Benthic carbon dioxide BCD

Planktonic detritus PDe

Benthic detritus BDe
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(values between 0 and 9). Thus, the following equation was applied
to all points x of all variables X:

f ðxÞ ¼ b b� x�minX

maxX�minX
c ; (5)

where bxc is the floor function of x and b is the base (10 in this case).

2.2. Measures

The proposed measures applied in this research have been
recently developed and compared to other approaches e.g.,
Gershenson and Fernández (2012) and Fernández and Gershenson
(2014). In the following lines our proposed set of measures:
Emergence, Self-organization, Homeostasis and Autopoiesis will
be defined. The term emergence (E) refers to a set of novel
properties related to a specific phenomenon. In other words, it can
be said that emergence occurs in an event when this phenomenon
produces information. Therefore, it is possible to measure
emergence in terms of Shannon’s information I; E = I.

The term self-organization (S) has been used to refer situations
in which there is an increase in order i.e., a reduction of entropy
(Gershenson and Heylighen, 2003). Thus, it is possible to find the
case where emergence implies an increase of information which is
analogous to entropy and disorder: S should be anti-correlated
with E (S = 1 � I = 1 � E).

Alternatively, according to Langton (1990), Kaufmann (1993), it
has been argued that life and computation require a balance
between change and regularity in order to achieve adaptation. This
balance has been defined as complexity itself by following a study
carried out by López-Ruiz et al. (1995), where change is described
by emergence, whereas order and robustness are defined by self-
organization (Fernández and Gershenson, 2014; Gershenson and
Fernández, 2012). Hence, the present study proposes: C = 4 � E � S,
where the constant 4 is added to normalize the measure to [0, 1].
Table 4
Categories for classifying E, S, and C.
This research considers to E, S, C as statistical measures, these
measures are not able to distinguish a temporal order of values
only their statistical distributions. However, they can be effective
to distinguish between different dynamical regimes (ordered,
complex and chaotic). In order to increase the reliability of these
measures the range of measuring has been split into five categories
as shown in Table 4. These categories are ordered by range, color
and a word classification (adjectives). This classification was
inspired by water pollution indexes that belongs to the Colombian
classes (Fernández and Solano, 2003; Ramı́rez et al., 2003;
Fernández et al., 2004).

Another important measure is homeostasis (H), which refers to
a change in the system according to its own variables over time. In
this context, this analysis was based on the conceptual framework
proposed by the Hamming distance (Hamming, 1950); the
Hamming distance d measures the percentage of different symbols
in two strings X and X0. Then, 1 � d indicates how similar two
strings are. Thus, homeostasis is finally found when there is a clear
similarity between a pair of strings. In order to assess homeostasis
it is necessary to compute the average of those similarities. It
should be noted that H compares all variables of a system between
two-time slices, while E, S, C consider the probability distributions
of each variable i.e., they are orthogonal cases to H.

Finally, our last proposed measure is autopoiesis (A), in this
study we have considered that an adaptive system requires a high
level of C to be able to cope with changes in its environment
(Langton, 1990; Kaufmann, 1993). Specifically, to compute A it is
necessary to compare the trajectory of the variables of a system X

against the trajectory of the variables in the system’s environment
Y. In this case, complexity of X (CX) should be at least as higher as
the complexity of Y (CY) due to this system requires the
maintenance of its integrity depending on the dynamics of the
environment. Consequently, A = CX/CY. X and Y may differ
depending on the scale at which the system is studied. For
instances, at a lower scale, X can be a single variable and Y all other
variables which are related to X, whereas at a higher scale X can be
a system composed of a considerable amount of variables.

2.3. Measuring Tsallis information

Tsallis entropy (Sq) is considered as a generalized form of the
standard Boltzmann–Gibbs entropy (see Eq. (6)). A major
advantage of Tsallis entropy is that it can be used to determine
whether there is a strong correlation between different micro-
states in a system.

Sq ¼
K

q�1
ð1�

X
pq

i Þ (6)

In Eq. (6) pi, is a discrete set of probabilities and q stands for a
real number called entropic-index that measures how much
correlated are the microstates. In this case, when q approaches to 1,
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Sq is reduced to a Boltzmann–Gibbs entropy. In ecology, Sq is
particularly useful to measure diversity. With regard to K, this
variable refers to a positive constant that can be adapted for
multiple scales of computation. Usually, the base is assumed to be
binary meaning that K = 1. However, in this research we have set
the base (b) to ten and K can be obtained using Eq. (7).

K ¼ 1

Log2ðbÞ
(7)

3. Results

Results are described in the following subsections. Firstly,
details about physicochemical, limiting nutrients and biomass
complexity are assessed and discussed. Graphical results for each
variable belonging to a different subsystem and lake are
summarised in Appendix B. The autopoiesis results of the
phytoplanktonic subsystem are shown in the second subsection.
A comparative analysis in terms of homeostasis is set out in the
third part. Finally, the fourth part provides a set of similarities
between our proposed complexity measure and Tsallis informa-
tion.

3.1. Subsystem complexity of lakes

This section will examine complexity variations in three
different subsystems corresponding to four lakes. Preliminary
results of the physicochemical variables are shown in Appendix B.

In order to identify the characterization and variables of the
lakes in terms of complexity, they were adapted to two
multivariate techniques with an hybrid approach: principal
component analysis (PCA) and hierarchical clustering (HCPC) (Le
and Worch, 2015). PCA was used to examine the interrelations
among E, S, and C of the four lakes to identify the underlying
structure of these factors. HCPC was carried out on PCA for
identifying groups of similar variables of each subsystem. The
results obtained from the preliminary analysis of PCA were
12 combinations between the type of lakes (Ar, NH, NL, T) and
these properties: E, S, C. These combinations are listed as follows:
(1) emergence of lakes ArE, NHE, NLE and TE; (2) self-organization
ArS, NHS, NLS and TS and finally, (3) complexity ArC, NHC, NLC and
TC. Thus, these combinations were considered as factors in PCA.
Fig. 1. Multivariate analysis of the physiocochemical subsystem. (a) Hierarchical class

analysis ordination of the four lakes according to E,S,C properties.
Specifically, with the aim to establish a criterion in terms of a
normal distribution, it was carried out a v-test on the variables and
properties related to the lakes. Similarly, a p-value was computed
to establish the significance of a given deviation among variables.
Based on a v-test value, it was possible to test the following null
hypothesis (H0): the variables grouped in a particular cluster does not

characterize a particular property in a lake. In this case, the v-test
was considered informative when the average of a property for a
particular lake was equal to the general average. Thus, lakes were
sorted in a descending order (p-values < 0.05) (Le and Worch,
2015).

3.1.1. Complexity in the physicochemical subsystem

The results obtained from the multivariate analysis are set out
in Fig. 1. Additionally, a statistical analysis based on clusters was
reported in Table 5.

To distinguish between these physicochemical variables it has
been proposed five clusters (see Fig. 1a). Cluster one contains SL, PL

and BL. this cluster describes the light measured on surface,
planktonic and benthonic depths.

The most interesting aspect of this graph is that the light was
the most emergent variable for NH and Ar. Similarly, in Fig. 1b, it
can be seen that NHE and ArE are on the left side, close to the X axis.
As previously stated, a closer inspection of the Table 5 shows
that the characterization of light was the most emergent variable
in the highest latitudes. From this data, it can be seen that the
mean values related to PL, SL and BL in NH were 0.94, classified
in category one. On the other hand, the overall average for
the emergence of the same variables was 0.602, classified in
class three.

Cluster two was effectively associated in all the layers of lakes
to variables related to oxygen and temperature. These variables are
as follows: SO2,PO2,BO2, ST, PT and BT. It is important to note that
two more variables were added in this cluster; the first one was
evaporation (Ev) and the second one was benthic pH (BpH).

With regard to cluster three, it is possible to find two additional
forms of hydrogen potential: pH in inflow (IpH) and pH in
planktonic zone (PpH). Interestingly, there were other different
variables such as: time retention (TR), inflow and outflow (IO); and
finally conductivity in the planktonic zone (PCd), it can be seen that
PCd seems to be closed to other types of conductivity variables
such as inflow (ICd) and benthic zone (BCd) which were arranged in
cluster five.
ification analysis of physicochemical variables (clusters). (b) Principal component



Table 5
Statistical description of lakes and properties in the physicochemical subsystem. The sign

in v-test corresponds to the direct or inverse relationship. Acronym NA: Non Applicable.

NS: Non Significance. *: significance **: very high significance ***: extremely high

significance.
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In the case of cluster four, it was found oxygen in sediment
(SdO2) and zone mixing (ZM). These two elements are the building
blocks to determine self-organization in the Tropical zone. Further
statistical tests revealed that their mean values were the highest in
comparison with the overall mean (0.632). Finally, regarding
cluster five, conductivity in inflow and benthos were the two
variables observed. These variables were considered the most self-
organized in the gradient due to their mean values 1 compared to
the overall average of 0.538.

These results confirm the association between environmental
conditions (light, temperature and oxygen) with emergence which
in the latitudinal gradient Ar-T case shows a decreasing behavior.
In addition, the current study found a type of regularity between
NL and T but a lost of regularity on the conductivity (Ar-NL). What is
interesting about the preliminary results is that the mix of water
between lakes’ layers and the oxygen in sediment permits to gain
order in terms of the gradient. Finally, it can be seen that pH was
the most complex variable in the middle of the latitudinal transect.

3.1.2. Complexity in the limiting nutrients subsystem

With respect to the limiting nutrients subsystem, the prelimi-
nary results were sorted into seven clusters (see Fig. 2b). These
Fig. 2. Multivariate analysis of the limiting nutrients subsystem. (a) Hierarchical classi

analysis ordination of the four lakes according to E, S, C.
results further support the idea that there is significant level of
disaggregation. This suggests a high dispersion of E, S, C. In this
regard, cluster one showed a high density of phosphorous (IP) and
nitrogen (IN) in inflow. On the other hand, cluster two revealed
groups formed by nitrogen in planktonic (PN) and benthic layers
(BN). Phosphorous and silicates: (PP, BP, PS and BS) were found in
cluster three. In cluster four was observed the presence of carbon
dioxide (ICD) and silicates in inflow (IS). Specifically, cluster five
showed planktonic detritus (Pde and benthic detritus (Bde). Finally,
a couple of variables related with carbon dioxide in planktonic and
outflow sections of the lakes (BCD and PCD) were observed in
cluster six and seven.

Further analysis showed that the planktonic and benthic
dynamics were well defined for variables that revealed some
level of self-organization such as: nitrogen, phosphorous and
silicates. Fig. 2b provides an overview of how complexity in Ar, NL

and T was related to a high level of emergence.
Table 6 presents a significant positive correlation between

clusters, lakes and properties. Moreover, it should be noted that
those clusters with a negative sign indicate that the correlation is
inverse (clusters 1, 2 and 7). Similarly, a NULL value implies a no
satisfactory variable for this case.
fication analysis of limiting nutrients variables (clusters). (b) Principal component



Table 6
Statistical description of lakes and properties in the limiting nutrient subsystem. The sign

in v-test corresponding to the direct or inverse correlation. Acronym NA: Non Aplicable.

NULL: Non variables or values associated. NS: Non Significance. *: significance **: very

high significance ***: extremely high significance.

Fig. 3. Multivariate analysis of the limiting nutrients subsystem. (a) Hierarchical classification analysis of limiting nutrients variables (clusters). (b) Principal component

analysis ordination of the four lakes according to the E, S, C properties.
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3.1.3. Complexity in the biomass subsystem

Fig. 3 shows four clusters related to the biomass subsystem. In
this particular case, planktonic (PlF) and piscivorous (PiF) fishes
were found as the most complex species according to their
proportion of emergence (see Table 7).

Further analysis showed that NL dynamics was significantly
associated to the highest regularity (self-organization) of
benthic detritivores (BDt), fish (BF) and planktonic chlorophyll
(PCh). Variables such as: Benthic herbivorous (BH), planktonic
zooplankton (PZ), herbivorous zooplankton (HZ), macrophytes
in surface (SurM) and macrophytes submerged (SubM) were all
well described by self-organization in cluster three. On the
other hand, cluster four revealed the existence of benthic
cyanobacteria, planktonic cyanobacteria, diatoms and benthic
green algae.

The current study found that the influence of the seasonality
and duration can lead to a change in the complexity of the
photosynthetic taxa at the highest latitudes. These preliminary
results suggest that the main factors that affect these dynamics are
related to long periods of exposure to light and dark i.e., from
summer to winter and vice-versa. Similarly, a regularity in
detritivores located in middle latitudes with low altitude (NH)
may be associated with seasonality.
3.1.4. Complexity in the latitudinal gradient from the arctic to the

tropics (Ar-T)

Fig. 4 compares the summary statistics for the C averages of all
variables in the Ar-T (annual cycle). These findings suggest that NL

could be associated to a phase transition for C values. Turning now
to the experimental evidence, the graph shows that there has been
a marked drop in the physicochemical subsystem caused by the
increasing level of E = 0.75. In this context, the graph reveals that
the category of C gradually increase due to the rise of S (regularity
in variables).

In terms of the limiting nutrients subsystem, complexity
showed a gradual fall; then after it depicts an increase behavior
heading to the high category in NL and T. It is important to note that
a transition phase presented in NL is caused by E values (�0.62 high
category). With respect to biomass, a change in NL stems from C

values that reach a higher category in the Ar-T transect (0.74).
Turning now to Ar biomass and NH biomass, their C values were
arranged in the low category.

3.2. Autopoiesis (A)

The term A from autopoiesis has come to be used to refer to the
biological autonomy, which identifies living agents with a certain



Table 7
Statistical description of lakes and properties in the limiting nutrient subsystem. The

sign in v-test corresponding to the direct or inverse correlation. Acronym NA: Non

Applicable. NS: Non Significance. *: significance **: very high significance ***:

extremely high significance.

Fig. 4. Average complexity and its dispersion in the latitudinal gradient from the Arctic to the Tropic for: a biomass subsystem (red line), a limiting nutrients subsystem (green

line) and a physicochemical subsystem (blue line).
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way of organization (Maturana, 1980). However, in some contexts
autopoiesis also reflects the autonomy of the system (Luisi, 2003;
Froese et al., 2007). In this view, autopoiesisis is defined as the ratio
of complexity of a system (CX) and its environment (CY) i.e., A = CX/
CY. In this context, A can describe the independence relative of a
particular element of the system.

The results of this study indicate that values related to A range
as follows: 0 � A <1. Thus, when a particular element presents a
significant value of C, this can lead to present more autonomy
A > 1. Otherwise, those elements with a lower value of C can result
in less autonomy 0 � A < 1. Additionally, there are different ways
of assessing A. One of them is by estimating the A of each variable
and the second one through the selection of some species. The next
two sections describe results for both cases.

3.2.1. Autopoiesis (A) for variables

Appendix B compares the results obtained from the preliminary
analysis of A. In summary, these results revealed that those
variables arranged into categories one or two report a higher
A. Therefore, autonomy may cause that variables with high or very
high A show different states than others (variety). In this regard,
these variables present a considerable amount of adaptability,
and therefore, they are able to cope with environmental change
(Gershenson, 2015).
3.2.2. Autopoiesis for biomass autonomy

Another way of estimating A in ecosystems is through the
comparison of living agents against variables of different
components (matter-energy flux). Specifically, the academic
literature on photosynthetic organisms has revealed that
these type of agents depend on solar radiation and nutrient
availability. Hence, under these conditions it is possible to select
variables that may affect organisms directly. Basically, this
analysis is adopted to obtain further in-depth information on A,
which can be interpreted as the autonomy of biomass in its
physical and chemical environment. This method is particularly
useful in studying how organisms respond to environmental
changes. Table 8 provides those variables that were selected to be
evaluated A.

It can be seen from the data in Table 9 that those cells colored in
red correspond to the range 0 � A < 1, these values confirm that
complexity in the planktonic and benthic zones is higher in
comparison to the phytoplanktonic biomass i.e., A < 1. It is
apparent from this table that a lower environmental tolerance
in T can result in a increasing radiation process, which generates
more diversity in species. The rest of the values (Ar, NH and NL)
suggest that the populations of photosynthetic biomass are able to
balance environmental changes. Basically, the rest of the values
may be less affected by physicochemical variations.



Table 8
Variables that were selected to be evaluated for autopoiesis of phytoplanktonic and phytobenthonic biomass.

Subsystem/Zone Planktonic Benthic

Physiochemical Light, Temperature, Conductivity, Oxygen, pH Light, Temperature, Conductivity, Oxygen, Sediment Oxygen, pH

Limiting Nutrients Silicates, Nitrates, Phosphates, Carbon Dioxide Silicates, Nitrates, Phosphates, Carbon Dioxide

Biomass Diatoms, Cyanobacteria, Green Algae, Chlorophyta. Diatoms, Cyanobacteria, Green Algae

Table 9
Lakes type A for phytoplanktonic and phytobenthic biomass: A(B�Phy) and

A(B�LN). Values were computed for planktonic and benthic zones. Cells colored in

blue A > 1 denote more autonomy of biomass and cells colored in red

0 < A < 1 indicate that the environment controls dynamics of biomass.

Table 10
Homeostasis averages (H) for lakes.

Lake Biomass �s Physicochemical �s Limiting Nutrients �s

Ar 0.980 � 0.044 0.959 � 0.064 0.957 � 0.065

NL 0.976 � 0.0543 0.943 � 0.092 0.915 � 0.107

NH 0.917 � 0.106 0.957 � 0.075 0.945 � 0.081

T 0.958 � 0.115 0.965 � 0.058 0.948 � 0.073

Global 0.958 � 0.036 0.956 � 0.015 0.941 � 0.018
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According to Table 9 those cells colored in blue correspond to
values where A > 1, revealing a high value of C in the
phytoplanktonic biomass rather than in the environment. In
addition, preliminary results show that photosynthetic organisms
had more autonomy in benthic zones than in planktonic ones. In
this context, a very high level on variety can lead to a very high
level of complexity reflecting more independence and adaptability,
which confers more autonomy of the taxa.

3.3. Homeostasis

In this section, it will be explained how homeostasis h between
states is calculated by comparing daily values of all variables. In
this regard, h can be defined as a temporal variation of states. This
situation is more evident in the physicochemical subsystem of
lakes where their responses are proportional to the seasonal
changes (temperature and light). These results agree with recent
studies indicating the importance of the temporal timescale i.e., h

can vary considerably when states are compared every minute,
daily or monthly (see Appendix B).

Table 10 compares the summary statistics for h. These
results indicate that values of h were all sorted in the very high
category owing to most of the lakes in consideration kept a
quiet behavior for long periods of time. Moreover, It was observed
that the biomass and physicochemical subsystems were slightly
more stable in a year period than the limiting nutrients
subsystem. In summary, Ar and T biomass were more regular
than NH and NL.

3.4. Comparison of Tsallis information and C

Figs. 5 and 6 provide the results obtained from the preliminary
analysis of self-organization patterns and emergence patterns.
Contrary to expectations, this study did not find a significant
correlation with C. however, a further analysis showed that when
q = 2 correlations with C appears.

Previous studies observed that when C is compared to Fisher
information, both measures are able to reach a maximal level
between order and chaos in Boolean networks (Fernández et al.,
2014). Additionally, C is expected to remain steady while Fisher
information presents higher steepness. It should be noted that in
order to compute C for any time step can result in a straightforward
task whereas Fisher information requires a significant amount of
time steps. With the aim to provide a proper assessment regarding
C, it could be done via a continuous version of C recently developed
by Santamara-Bonfil et al. (2016).

4. Discussion

4.1. Computational aspects of the ecological complexity

Recently, Biologists have shown an increased interest in S and E

owing to these notions are very rooted to previous studies carried



Fig. 5. E, S, C for the physicochemical subsystem (Tropical lake) are compared according to Tsallis information.

Fig. 6. E, S, C for the biomass subsystem (Artic lake) are compared according to Tsallis information.
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out by Darwin and Mendel. In contrast, computer scientists
describe complexity in terms of complex systems (the Kolmo-
gorov–Chaitin Complexity), where complexity of an object is the
length of the minimal Universal Turing Machine (UTM) program
needed to reproduce it.

In general, this research analyses the impact of emergent
patterns in terms of their behavior (order or chaos) (Gershenson
and Fernández, 2012). Thus, it should be mentioned that chaotic
patterns show a higher E than static patterns (ordered dynamics).
In the case of ordered dynamics, they present the highest S which
means the lowest entropy. Hence, living systems tend to reduce
thermodynamic entropy to maintain themselves (Von Bertalanffy,
1968).

Integration of S and E into C is essential to reach a balance
between regularity and variability, two necessary conditions to
express adaptability. Thus, emergence is largest in chaotic systems
(E = 1, S = 0), self-organization is largest in static (ordered) systems
(S = 1, E = 0) and complexity is largest when E and S are in balance.

Further analysis showed that our complexity measure was able
to cope with the complex dynamics of ecosystems. This resilience
can be described in terms of the balance between regularity and
variability of (micro)states. Consequently, C stands for the average
dynamics and the different dynamic regimes that emerge from the
interactions of the micro-states of the elements. It should be
highlighted that our proposed measures may be useful to
distinguish between random and non-random ecological process-
es. The former is related to a very high emergence (entropy) that
involves many changes and patterns rupture. The second implies
very high self-organization (very low entropy); it prevents
complex patterns to emerge. For further details, this randomness
can be examined in the probability distribution for any process or
variable at different scales.

4.2. The ecological meaning and the proposed measures

The study used qualitative analysis in order to gain insights
related to ecosystems at two scales: macroscopic and microscopic.
With regard to microstates, it has been provided a degree of order
or change to the ecosystems. Persistence of these microstates
implies a higher regularity in the system (self-organization). Thus,
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a microstates analysis confirms that in order to compute
emergence it is necessary to obtain the probability values. Fig. 7
provides 365 values obtained for each variable of the physico-
chemical systems located in Ar. What is interesting about the figure
is that those variables with an intermediate distributions, such as:
IO, RT, BO2, Sd02, IpH, PpH, BpH reported a slight level of emergence
and self-organization. On the other hand, variables with a higher
heterogeneous distribution such as: SL, PL, BL, ST, PT, BT, Ev, PCd,

Bcd, SO2, PO2, showed a significant level of emergence and a low
level of self-organization. Finally, variables with a full heteroge-
neous distribution, such as: ZM and ICd, set out the highest level in
emergence.

Interestingly, a higher self-organization of the tropical biomass
was observed due to a low variation of microstates. However, it is
possible to find a ‘‘steady state’’ of T when external perturbations
are taken into consideration. It is important to note that in Ar and
temperate lakes (NH, NL) seasonality may cause variations of
biomass and physicochemical subsystems (irregular behavior).
Therefore, there is a chance that during a year a single variable can
provides more than one microstate.

A change of complexity has been positively correlated to the
ecological process of succession. This process can lead to the
replacement of species and permits the development of commu-
nities over time. In this regard, a high number of interspecific and
intraspecific interactions is achieved generating more diversity. In
this context, diversity in terms of species can be defined by the
number of possible arrangements of N individuals distributed in
certain Sp species. Hence, ecosystems with more species and
similar densities among them (homogeneity) show more diversity;
more variety of species the more information (more emergence).
Fig. 7. Microstates for physicochemical var

Fig. 8. Emergence and complexity vs. the incremental number of species fro
The current study found that the Shannon–Wiener index (H0)
shows a positive correlation between E and diversity. Meanwhile a
comparative analysis between H0 vs. C showed a concave shaped
curve, where C was set for 500 species due to the large proportion
of absent species (see Fig. 8).

The findings mentioned earlier are consistent with data
obtained in Ar, where there was a positive correlation between
diversity and emergence (see Fig. 9). This emergence presents a
linear trend (see Fig. 9a), meanwhile the correlation between
complexity and diversity seems to be logarithmic (see Fig. 9b).

4.3. Spatial variation of complexity among lakes

Regarding the physicochemical results, it can be estimated
Ar � NH; this situation can be related to the long periods of light
and dark at highest latitudes. In contrast, physicochemical
dynamics in an Arctic lake showed more regularity (self-
organized) than in a North Lowland lake. Another important
finding was that from the North Pole self-organization decreases
whereas in the subtropical zone increases.

Preliminary results suggest that there is a differential trend of
C. However, no significant global pattern was observed in C. In
terms related to NL, it can be seen that seasonal scales have a
significant effect on the complexity dynamics. In addition, NL

showed the most emergent behavior in all components, which
were computed monthly. Meanwhile, the scale of variations at Ar

and NH were estimated daily and weekly. Similarly, at T the scale of
change was computed monthly.

From these proposed measures, it can be seen that a very high S

and a low C in T can lead to a low A in the biomass component.
iables distributed into ten categories.

m 1 to 1000. Lines correspond to the categories one to five for E and C.



Fig. 9. Emergence and complexity computed with Shannon–Wiener index (H0). (a) E vs. H’. (b) C vs. H’. Points corresponding to categories one to five for E and C and coincides

with the very low to very high qualifications.
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Besides, a very high uniformity in T may cause a stable behavior at
annual scales, it can be also suggested that tropical species are less
resistant to environmental changes. In summary, these results
show that our proposed measures contribute to the ecological
interpretation of complexity through the characterization of
different ecological configurations.

4.4. Complexity measures based on ecological complexity

Structural complexity can be described through a particular
scale and interaction between elements. In this regard, an
ecological structure can be determined in different scales such
as: individuals (components) and population (system) (Clauset,
2014). In order to identify structural complexity, it is necessary on
one hand, to provide a network approach where nodes are defined
as species and links refer to a some sort of relationship (resource
transference). On the other hand, structural complexity can be
calculated through topological indicators e.g., node-degree distri-
bution, clustering coefficient and average path length (Madrid
et al., 2016).

In the case of dynamical complexity, it can be computed from
the trajectories of the states. On the question of functional
complexity, it can be analysed from the roles carried out by species.
Thus, key ecological functions are as follows: primary consumer,
secondary consumer, tertiary consumer, carrion feeder, cannibal-
istic, and coprophagous.

As mentioned earlier, our study defines complexity as a balance
between self-organization (order) and emergence (chaos). There-
fore, here it is necessary to characterize a structural, dynamical and
functional complexity in ecosystems. These proposed measures
were designed with the aim to evaluate and analyse dynamical
complexity of lakes.

To develop a full picture of dynamical complexity in ecosys-
tems, autopoiesis (A) was introduced, in order to analyse the
adaptability of functional groups when facing changes in the
environment. Finally, homeostasis (H) reports about the similarity
of the states that involve a system during environmental changes.

5. Conclusions

This manuscript has argued that it is possible to describe
ecological complexity in terms of information theory. Similarly,
this study has shown that there is a reduced emergence and
self-organization gain in the lakes located from the Arctic region to
the Tropical zone. The previous results indicate that temporal
variables such as: light, temperature and oxygen, present a
significant influence on the limiting nutrients and biomass
components. Thus, light and temperature may cause different
ranges of seasonality in the gradient and may affect the availability
of nutrients.

This research has identified variations in terms of daily and
weekly scales for the response of the nutrients in the Arctic
and temperate lakes, whereas in the tropical zone has identified
that the scale of change can be measured monthly. Moreover,
This study has found that generally the rhythms of biomass
complexity caused by seasonality present variations related to the
phytoplankton taxa and a regularity related to the macrophytes.
The results of this study suggest that those variables with a
homogeneous distribution of their states show higher values of
self-organization, while variables with heterogeneous distribution
show greater emergence.

E, S, C, H, A can be seen as ecological indicators at different scales
due to they are able to provide a comparative analysis among
ecosystems. In the case of C, it can contribute to the interpretation
of a different sort of ecological complexity such as: structural,
dynamical and functional.

Preliminary results presented in this manuscript are promising
for the study of complexity of ecological systems. However,
specific points should be explored e.g., (i) The relationship among
the diversity of the species with its complexity in the different
ecological succession states. (ii) Can these proposed measures be
used to guide the self-organization of ecosystems? (iii) Can our
proposed measures be used to promote complexity of ecological
systems?. In addition, a further study could assess questions about
the structural and dynamical complexity for instances: (iv) What
does local-level structure look like? and (v) What does large-scale
structure look like?.
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Appendix A. Case studied

Lakes are not uniformly distributed on Earth’s surface. In
consequence, their structure and function can vary at different
latitudes. The latitudinal gradient from the Arctic to the Tropic of
Cancer affects taxa composition and physicochemical dynamics in
an annual cycle. The following description depicts the spatial and
environmental factors of the four lakes considered for measuring
complexity.

A.1. Arctic lake (Ar)

Arctic lakes are located close to the Arctic Polar Circle. Their
mean surface temperature (ST) is around 3 8C. Their maximum is
about 9 8C, and their minimum is 0 8C.

In general, Arctic ecosystems are sorted as oligotrophic
due to their low primary production, represented in chlorophyll
values of 0.8–2.1 mg/m3. The lake’s water column or limnetic zone
is well-mixed; this means, there is no stratification (layers with
different temperatures). During winter (October to March), the
surface of the lake is covered by ice. During summer (April to
September), ice melts and water flows and evaporation (Ev)
increases. Consequently, the winter and summer in the Arctic
region cause a typical hydrological behavior in the lakes. This
hydrological behavior influences the physicochemical component
of the lakes.

Limiting nutrients in the form of nitrates, silicates and carbon
dioxide are between 90 and 100%. They are available for
phytoplankton all year round. Phytoplankton and periphyton
biomass are dominated by planktonic and periphytic diatoms
(38.6% and 45% respectively). Zooplankton, 91.7% is dominated by
herbivorous organisms. At the Benthic Zone, detritivores inverte-
brates dominates with a 86.8% of the total abundance. Benthic fish
are dominated by piscivorous with 85.8%.

A.2. North Highland lake (NH)

NH corresponds to a mesotrophic ecosystem in a cool north-
temperate climate (Mean = m =5.3 8C). Levels of chlorophyll are
between 2.2 and 6.2 mg/m3. The surface is covered with ice in
winter (end of November, December, January and early February).
Ice covering forms a barrier to the wind which minimizes loss of
water evaporation, while the bottom of the lake remains unfrozen.
The water column is not thermo-stratified and is permanently well
mixed with levels of 50% in summer and 90% in winter. The
maximum flows are in spring and autumn (9.6 m3/s) with
minimum flow in summer (0.6 m3/s). Ev is reduced because of
cold water and low vapour–pressure gradients (m = 9262 m3/d).
Retention Time (RT) is maximum in summer with 100 days.
Oxygen concentration is up to 10 mg/lt on the surface, planktonic
and benthic zones. pH mean values are around 7 to 7.3 units, but
varies between 6.7 to 7.8 units from the surface to the bottom.

The association among variables is more seasonal in NH than in
North Lowland lakes (NL). In NH, summer is related with high RT

and with a higher pH. Winter is related with higher levels of oxygen
in inflow and outflow. Moreover, there is a strong correlation of
benthic and sediment oxygen (BO2, SdO2).

Limiting nutrients such as nitrates, silicates, and carbon dioxide
are around 95% available for phytoplankton. Phosphates show less
availability, around 80% all year. Biomass composition is dominat-
ed by planktonic (46.7%) and benthic (41%) diatoms (PD,BD).
Zooplankton composition is almost entirely herbivorous zooplank-
ton (HZ 91.4%). Carnivorous zooplankton (CZ) reaches a 8.6%. In the
group of benthic invertebrates, detritivores dominates with 87.5%.
The fish community is dominated again by benthic fish (BF), but in
a higher proportion (88.9%).

A.3. North Lowland lake (NL)

NL is an eutrophic lake, located in a warm north-temperate
climate (average of 14 8C). Primary production expressed in mg/m3

of chlorophyll is around 6.3–19.2.
There are four seasons in a year: winter, spring, summer and

autumn. In summer, the flow variations between inflow and
outflow fall to 3.5 from 25.2 m3/s. Retention time (RT) increases to
100 days. The lack of the wind and high temperatures (24 8C),
causes a thermal stratification of the water column. Stratification is
expressed in the formation of two layers with different density due
to a temperature difference. At the border of these layers,
temperature changes dramatically (24 8C in the surface, 20.6 8C
in the planktonic layer, 17.3 8C in the benthic layer). Water above
and below layers do not mix. The water is warmer near the surface
while it is colder, and it has more density near the bottom.

In winter, there is no ice covering the surface. Otherwise, in
summer (when the flow is minimum), in spring, and autumn, the
water column overturns (RT of 14 days and Zone Mixing-ZM of
100%). This causes an increment in conductivity. In summer,
depletions of oxygen at the three layers are more drastic than
Arctic lakes (below 8.7 mg/lt). Oxygen is directly correlated with
ZM, inflow, and outflow, and inversely associated with pH and RT.

All limiting nutrients are available for phytoplankton in all
seasons (above 90%). The phytoplankton and periphyton biomass
composition are dominated by planktonic (47%) and benthic
(34.3%) diatoms. This way, 100% of zooplankton composition is
herbivorous zooplankton. The fish community is dominated by
benthic fish (67.6%).

A.4. Tropical lake (T)

T is a hypereutrophic ecosystem (Chlorophyll >19.2 mg/lt)
located in a moist tropical climate, at the North of the Equator, near
the Tropic of Cancer. Their mean temperature is 25 8C at the
surface. Tropical lakes have a wet season and a dry season. A higher
radiance of the sun rays leads to higher temperatures and smaller
thermal differences between water layers. For that reason, the
water column is permanently warm and stratified. Stratification is
due to the heat exchange, but is less permanent than stratification
in lakes at the higher latitudes, because the wind can have a
substantial incidence in the mixing of the water column. Thus,
intra-seasonal variations have a stronger effect on the thickness of
the mixed layer than other morphometrically similar temperate
lakes (Randerson and Bowker, 2008). The maximum flow of water
is in the wet season, and the minimum flow is in the dry season.
Episodes of heat and mixing affect the nutrient cycling and
plankton dynamics. It is important to highlight that primary
production in tropical lakes is about twice that of higher latitudes.
Also, nitrogen is the most limiting nutrient.

Equitability among species inside phyto and periphyton
communities is higher; around 33% for diatoms, green algae,
and cyanobacteria. Zooplankton populations are dominated by
herbivorous (90%). Benthos, by detritivores invertebrates (84.4%)
and fish (87%).
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Appendix B. Complexity for each component
Fig. 10. Complexity in the physicochemical subsystem for an Arctic lake.
Fig. 11. Complexity in the physicochemical subsystem for a North Highland lake.



Fig. 12. Complexity in the physicochemical subsystem for a North Lowland lake.

Fig. 13. Complexity in the physicochemical subsystem for a Tropical lake.
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Fig. 14. Complexity in the limiting nutrients subsystem for an Arctic lake.

Fig. 15. Complexity in the limiting nutrients subsystem for a North Highland lake.
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Fig. 16. Complexity in the limiting nutrients subsystem for a North Lowland lake.

Fig. 17. Complexity in the limiting nutrients subsystem for a Tropical lake.
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Fig. 18. Complexity in the biomass subsystem for an Arctic lake.

Fig. 19. Complexity in the biomass subsystem for a North Highland lake.

N. Fernández et al. / Ecological Complexity 31 (2017) 1–2018



Fig. 20. Complexity in the biomass subsystem for a North Lowland lake.

Fig. 21. Complexity in the biomass subsystem for a Tropical lake.
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