Future Generation Computer Systems 79 (2018) 155-165

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

Multimodel agent-based simulation environment for @CmssMark
mass-gatherings and pedestrian dynamics

Vladislav Karbovskii**, Daniil Voloshin?, Andrey Karsakov?, Alexey Bezgodov?,
Carlos Gershenson ¢4

2 ITMO University, Saint Petersburg, Russia

b Universidad Nacional Auténoma de México, Mexico

¢ MA Institute of Technology, Cambridge, USA

9 Northeastern University, Boston, USA

HIGHLIGHTS

o A multimodel agent-based simulation environment (PULSE) is presented.

e Model integration techniques suggested: common space and commonly controlled agents.
e Crowd pressure metrics for simulating crushing and asphyxia in crowds are proposed.

e Simulations of evacuation from cinema building to the city streets are carried out.

ARTICLE INFO ABSTRACT

Article history: The increasing interest in complex phenomena, especially in crowd and pedestrian dynamics, has
Received 2 May 2016 conditioned the demand not only for more sophisticated autonomous models but also for mechanisms
Received in r‘?"ised form that would bring these models together. This paper presents a multimodel agent-based simulation
iicseiit:d”;bglc;%]e? 2016 teghr}ique b;sed on the incorporation of multiple moglgles. TV\{O key principle§ are presented to guide
Available online 7 October 2016 this integration: a common abstract space where entities of different models interact, and commonly

controlled agents—abstract actors operating in the common space, which can be handled by different
agent-based models. In order to test the proposed methodology, we run a set of simulations of cinema

f\(/[egrvti(r)rrgzel simulation building evacuation using the general-purpose PULSE simulation environment. In this paper we utilize
Model integration crowd pressure as a metric to estimate the capacity of different emergent conditions to traumatically
Agent-based modeling affect pedestrians in the crowd. The proposed approach is evaluated through a series of experiments
Emergency evacuation simulating the emergency evacuation from a cinema building to the city streets, where building and street
Urgent computing levels are reproduced in heterogeneous models. This approach paves the way for modeling realistic city-

wide evacuations.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction variety of potential threats, such as natural and technological dis-
asters, and acts of violence. This in turn leads to a multitude of sce-
narios, each of which incorporates numerous objects or actors into
either stochastic processes, where a similar set of initial conditions
and parameter values lead to different outputs, or deterministic
processes, where initial conditions and parameter values fully de-
termine the output.

The question is—how can we study and understand such com-
plex phenomena? One way to do this is by describing the core
features of the constituting elements mathematically using com-
puter modeling. Models imitate real systems and processes and can

* Corresponding author. vary from simple projections to instances exposing high levels of

E-mail address: vladislav.k. work@gmail.com (V. Karbovskii). complexity. Modeling is used to fulfill a large variety of tasks; from

Large mass gatherings attract millions of people around
the world annually. Some of these are spontaneous or non-
administered, whereas majority is run by teams of managers who
are in charge of establishing safe and comfortable conditions for
visitors. But in order to do this, emergency planning specialists and
organizers of mass gatherings have to take into account a wide

http://dx.doi.org/10.1016/j.future.2016.10.002
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.10.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.10.002&domain=pdf
mailto:vladislav.k.work@gmail.com
http://dx.doi.org/10.1016/j.future.2016.10.002

156 V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165

emulation of emergency situations and crisis events that are used
to inform decision-making, to evaluating physical capacities of the
premises where events are hosted (used in planning).

A significant number of pedestrian models has treated mod-
eled space as an isolated system that either deals with a prede-
fined number of agents or generates (and terminates) these agents
at its boundaries. These models are convenient to use especially
when simulating the behavior of pedestrians in a confined space
where communication with other spaces can be neglected; this is
true about building-scale models, for instance. But on larger scales,
the use of “sealed” models becomes questionable as these models
consequently need to be expanded and simplified in order to im-
prove their comprehensiveness and to compensate for increasing
computational demands. A potential side-effect is compromising
precision, which is the specific advantage of models narrowly fo-
cused on smaller scales.

In this paper we explore the possibilities of solving this issue
through coupling heterogeneous models without disrupting their
integrity. More specifically, we model the behavior of agents on
two scales with the use of agent-based models interacting in the
proposed agent-based simulation environment - PULSE [1]. We
couple two modeling spaces - city district and the confined area
inside the cinema, to see how interknitted abstractions represent-
ing one phenomenon (district-level evacuation process) can effec-
tively merge. There are several factors that had been taken into
account when designing integration mechanism: (a) differences
in formatting among the models; (b) software-wise differences;
(c) differences in data usage.

The environment described in this paper is composed of meth-
ods and technologies that are capable of aggregating into multi-
model pedestrian simulation systems. This allows the user to easily
design models given characteristics of space and agents’ behavior
and instantly process the input with the help of the analytical unit
provided within the environment. Though the area of application
is not limited to the simulation of crowd motion in mass gather-
ings, corresponding scenarios have been used as test cases on the
early stages of development. In other words, the choice of mod-
els, modeling components and setting used in this paper have been
chosen to demonstrate capabilities of PULSE in evacuation model-
ing. Here we illuminate the features of PULSE through multi-model
simulation of two scales of evacuation: building- and district-level
egress. Toillustrate how these two levels can be merged together in
the actual scenario, we addressed flood-triggered evacuation from
the mass gathering venue in one of the isolated areas of Saint-
Petersburg, Russia—Vasilyevsky Island.

Majority of injuries that participants sustain during mass
gathering and evacuation disasters is related to crushing and
asphyxiation. With this in mind, we introduce a feature that
allows calculating the pressure that emerges between agents and
obstacles in dense congregations. Most pedestrian models operate
with density and flow characteristics that have empirically been
proven to be less reliable than crowd pressure at indicating trauma
in crowds [2].

The paper is structured as follows: Section 2 presents back-
ground information and related work on coupling models in com-
putational science. An outline of the proposed methodology is
presented in Section 3. Section 4 highlights two levels of models
used in the case study. Section 5 is dedicated to listing the exper-
imental setting for the empirical study. Finally, we discuss our re-
sults together with the conclusion and prospective improvements
of the described methodology.

2. Related work

Though the use of multimodel agent-based simulations is not
limited to the domains of computational social science, evacuation

behavior simulation, urban planning, and pedestrian modeling, the
present paper is focused primarily on the models, frameworks and
environments that address the issues topical for these spheres of
scientific investigation. Analytical survey of existing approaches,
typical issues, and theoretical basics of the multi-level simulation
are discussed by Morvan [3], Gil-Quijano et al. [4], and Gilbert and
Troitzsch [5]. Multi-model, as well as multiscale and multilevel
simulations, have received significant interest from researchers
in different fields [4]. However, the terms multi-model or multi-
level simulation seem ambiguous. It is due to the fact that
comprehensive conceptual papers remain few and they leave the
choice of terminology to the discretion of the researcher. Existing
approaches in multi-model modeling lack ready-to-use solutions
and languages, while tending towards context- or domain- specific
systems [6]. In particular, as [7] claims, currently-utilized models
do not exhibit simultaneous representation of agents, and even
interactions between agents are not properly articulated—these
are points which we partially address in this paper.

The most widely-accepted approach in emergency evacuation
research simulations is the coupling of human behavior-related
models with the ones that represent the physical properties of
the hazard. For instance, Jalali et al. [8] propose a reflective mid-
dleware, or a meta-model, that links and synchronizes existing
heterogeneous models through loose coupling, which helps over-
come the limitations of existing approaches to model integra-
tion (represented by the standards that allow the coupling of the
freshly-developed simulators). As a result, a multi-level emergency
simulator that is capable of reproducing the interaction of factors,
such as spread of fire and its by-products, evacuation behavior, and
dynamics of communication systems, is obtained. Camus et al. [9]
also propose to integrate models into common systems through
the use of a meta-model. However, the domain for this implemen-
tation is specific—reproduce behavior of evacuees in the case of
a tsunami-triggered evacuation. It is also worth mentioning that
the absence of post-productive integration of models is widely dis-
cussed in the domain of multi-level and multi-model simulations
since the previously-presented approaches are built around highly
abstract languages like MIMOSE and SmallTalk [10], and do not
provide this capability, which might strongly affect the effective-
ness of the developmental process in a negative way. Korhonen
etal.[11]look into a problem analogous to the one described in [8],
yet they consider only two components to be integrated into the
simulator—the already-existing fire dynamics simulator extended
with the evacuation behavior module. In [12], authors go even
further in their attempt to specify the approach for integrating
models that represent physical space of a tall building, fire hazard
dynamics, and the complex evacuation behavior of intelligent
agents, and propose an augmented reality-based solution that al-
lows the processing of real-world sensor data. It may be claimed
that the ambition of creating multi-level models for single-hazard
or single-case coexists with attempts to produce complex inter-
active “serious game” architectures and training environments
that consider a large variety of scenarios, levels, and scales aimed
to meet the demands formulated by military and civic authori-
ties [13].

To position this paper in the multi-level and multimodel dis-
course, a comparison with conceptual elaborations of the approach
in the field is presented. For instance, in the work of Gilbert and
Troitzsch [5], the authors characterize multi-level models as be-
ing able to reproduce more than two levels of abstraction, with
each of them inhabited by complex, but not necessarily numer-
ous, communicating agents. The model described here may be
considered complying partially with this description since the
number of simulated agents is significant and the communication
between the agents of different levels might be described as repli-
cation of agents leaving one level of the model to another one. As

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165 157

a | -

Morvan claims in his extensive research on current approaches to
multi-level simulations [3], there are three predominating prob-
lems that multi-level simulation seeks to address: (a) modeling
cross-level interactions, (b) heterogeneous models coupling, and
(c) contextual adaptation of different levels of detail in order to
optimize computational resources. Nevertheless, the question of
defining multi-level modeling and conceptualizing the corre-
sponding approaches is still open. Gil-Quijano et al. [4] claim that
many multi-level models are in fact focused on the reproduction of
a predefined single level, whereas other perspectives emerge in the
observers’ view, which may be as well interpreted as a criterion.
Gil-Quijano et al. also claim that the “emergentist” approach is not
reasonable on a large scale. Contrary to this statement, however,
it is assumed in this paper that there are cases that require and
allow detailed simulations of different levels that consider agents
as the primary simulated entities, as opposed to flows and aggre-
gated groups. With regard to weak and strong integrations that are
outlined in [3], we propose a hybrid option—an environment that
brings together models that share agents, which is a requirement
for strong integration. At the same time allowing a single type of
environmental objects or connectors between models, which does
not allow it to fully ascribe to either forms of integration.

3. Methodology

The PULSE environment is divided into three systems namely:
agents’ behavior module, model integration, and analytical unit. Each
of the systems is flexible enough to incorporate a number of
subsystems—both native (developed in PULSE directly by its agent-
based framework) and external (already-existing models, with
or with no available source code). Apart from various domain-
specific models and analytical tools, the environment also supports
assimilation of data from various sources, such as fractional video
feed data and mobile device tracking information. All of the
elements that can be potentially incorporated according to a
specific task are bound by the composite environment. Here we
draft the setup that is designed specifically for the evacuation
simulation experiments that will be discussed in the Section 5
of this paper. Specifically for this setting, two integrated agent
behavior modules generate the input for the crowd pressure
calculator that is plugged into the analytical module.

3.1. Agents’ behavior module

In agent-based modeling of pedestrian movement, agents are
autonomous entities capable of operating within a given environ-
ment, interacting with other agents, and adjusting their behav-
ior accordingly. We use discrete event agent-based modeling [14]
with fixed, but configurable time step. The agents’ behavior is de-
fined by rules, which are formal conditional constructions that
provide decision alternatives assigned to particular circumstances.
The behavior of pedestrian agents, which are based on available
data, users’ preferences or relevant tasks, can be tuned through a
number of subsystems and these are described as follows:

1. WorldKnowledge is a filter-like module that provides infor-
mation about the surroundings that is available to the agent.
This information includes the features of the modeled space to
which access can be discretionally restricted according to the
perception range and role of agent.

2. PlanningSystem is responsible for defining high-level activities
of agents. By default, we use probabilistic queuing that
attributes each action to a certain probability.

3. BehaviorSystem represents the detailed behavior of an agent
for all cases within the model (i.e. doing an ongoing activity).
We use our own implementation of Marzinotto et al. [15]

Agents "

Common space

(Agents])

Model 1 Model 2
Agents " Agents »
=

Fig. 1. Two forms of integration through common space.

behavior tree, which is flexible behavior mechanisms, providing
modularity [16].

4, NavigationSystem helps agents find their paths towards ob-
jects. This is one of the subsystems that can be implemented
in different ways and thus are easy to replace. We use simple
Euclidean movement for simple cases, shortest path navigation
on graph with A* algorithm, and our implementation of naviga-
tion fields [17,18] if we need to reproduce more detailed move-
ments. These mechanisms cover most required cases, however
the subsystem could also be overloaded by other implementa-
tions.

5. MovementSystem is used for local movements of agents and
caninclude collision avoidance in those cases where movement
of agents can be significantly altered by impenetrable obstacles
and other agents (which is common in pedestrian simulations).
For some cases, when we need Euclidean movement collision
avoidance is also not necessary. In accordance with evaluations
made in previous surveys of models [19], we have chosen and
implemented RVO [20] and Social Force [21] models.

The subsystems presented above have been labeled as for the
sake of convenience and represent abstract features that an agent
in the environment can possess. Unlike subsystem 1 that can only
determine what amount of information is available to an agent
at a given time, subsystems 2-5 can be replaced equivalently,
extended, used in an ensemble [22], or removed altogether in some
cases.

3.2. Model integration

Model coupling in PULSE is maintained through the following
constructions: (a) common space and (b) abstract commonly
controlled agents. These have been developed as to meet specific
demands that might arise in crowd-related research. For instance,
in some cases, a user, who possesses the default pedestrian
model, may need to simulate movement inside a building. Hence,
expansion of the initial functionality of the model is only necessary.
Fig. 2 depicts the general scheme of multimodel approach for
building-district case. Generally, there are two key options: (a)
implement the required logic in the basic model, (b) take an
already-existing model or develop a new model and integrate it
with the primary model. The second option, however, has better
opportunities for model reusability.

Fig. 1 presents two forms of common-space integration
implemented in PULSE: (a) inside the model, that model called
primary (b) and outside. Models used in PULSE can be classified
into native (developed in PULSE directly by its agent-based
framework) and external (already-existing models, with or with
no available source code). Model 1 in the first type of integration

158

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165

i User

I

’ Middleware l
— [—
District model Common space Building model
°
g (T (e L S
@). § @“‘ § -~ A ATl o
o 3 9 :\\i’" ~
o] \ © s Ng?®' | T
° o4 L) o
=} —~ = —_e s X b
= _ @m ®| =

Abstract agents

Fig. 2. Spatial integration by agents tested on two models: district and building models. All entities are mapped as abstract agents in the common space regardless of the
model they belong to. One model (district model) can handle abstract agents on the first iteration while another model (building model) can administer more actions in
succeeding iterations. The common space still treats them as similar agents all throughout the iterations. With additional middleware, the common space can be represented

as a single model for the user.

a Common Space

Agent 1

—(Movement system) (Movement system)—
:(Planning system)} \(Planning system);

e N
Model 1

'b(Agent planner)

(Movement model)
. _/

Agent 2

Model 2

(Agent planner)¢.

(Movement model)..
& /

Movement model

g

Agent 1)

—-(Movement system)
—‘(Planning system)J

Model 1

—(Agent planner)

" J

Agent 2
(Movement system)—

\(Planning system);

~

[

1]

Model 2

(Agent planner).._
. J/

Fig. 3. Two examples of integration through the agent constructor module (a) autonomous models to common space; (b) two models with different planning system but

with shared movement system.

can only be native, whereas additional models are allowed to be
external.

In order to support the exchange of data between models in
real time execution—a feature that is important for time-stepped
models, such as agent-based models, it is necessary to implement
additional methods of interaction. With this in mind, we introduce
the concept of abstract commonly controlled agents (abstract
agents, Fig. 2), whose key features are agent representation in
an abstract model-independent space (common space), and agent
management by a number of models. All entities are mapped in
the common space, regardless of the model they actually exist in.
Entities can then interact with each other during the simulation
given that their actual models support the behavior. An abstract
agent can be handled by one model (e.g. district model) on the
first iteration, but after a few iterations the actions of the same
agent can be administered by another model (e.g. building model)
say if the abstract agent enters a building. In the perspective of
the common space, however, this is still the same agent. With
additional middleware, the common space can be represented as a
single model for the user, despite having hidden internal models.
The two models (district and building models) used in testing our
platform as shown in Fig. 2 will be discussed in detail in Section 4.

Abstract commonly controlled agents (abstract agents) are
agents operating in the common space. The rules followed by
abstract agents form a union of rules for all used models. For
example, the rule movement allows the agent to move from
starting point to destination. Mobilization of the abstract agent
can be handled by the district model on the first iteration, but
after a few iterations, the relocations of the same agent can be
administered by the building model. The decision of the agent
to move from the district level to the building is made within

the planning system. Consequently, agents’ spatial relocations are
processed in the movement system. The key principles of this
are outlined in Fig. 3. There are two types of integration that
can be implemented through the agent constructor module. See
Fig. 3. The first setting allows autonomous models to share space,
but not interact with each other (which is suitable for cases
where objects are isolated—i.e. modeling buildings). The second
setting facilitates interactions between agents that are driven by
the relevant submodules. These submodules in turn allow the
simulations with agents to run. These are driven by different
models, but are positioned in the same space. The synchronization
of agents can be described by a simple algorithm. See listing 1.
When transferring from one model to another, an agent is removed
from the model that has governed its behavior previously. In order
to maintain the agents’ state throughout the transition, additional
data, apart from identifiers, mass, gender etc., is handled.

foreach A in AbstractAgentList:
if (isTimeToChangeModel)
A.ChangeControlModel (requiredModel)

G W N e

A.step()

Listing 1: Integration by agents, control loop

The synchronization of models is described by a simple
sequence (Fig. 4). Different models have their own internal
representation of time and these time representations can either
be absolute or relative. Accordingly, time steps can be regular
(time-stepped models) or irregular (models, providing the set of
events). If necessary, it is possible to use the offset, which is
essentially the multiplier of time. All these factors contribute to the
value of variable isTimeForStep for each model at a given step. The
step incorporates receiving data from the model, sending new data

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165 159

lien Common Model 1 Model 2 Model 1 Model 2
space wrapper wrapper
Ref 1. Initialization sequence
Loop While (simulation)

Alt If (time to step)

3. Put data
4. Put data _ e,

8 Getdata |l _ _7-Getdata :I_F ep
|0 et ddk

Alt If (time to step)

9.Putdata . 10.Putdata
1.|Ste|
|12 Get dataiiiiur:fgjs- Get datafff P
3. Get datai

Fig. 4. Sequence diagram of data exchange.

<<interface>>
IPulseSnapshot
+id :int
+ extentions : list

<<interface>>
|PulseServer

+ Initialize()
+ Load(in config : Config) A
+ Unload() 7

<<interface>>
|AgenSnapshot

+ Update() IPulseSnapshot
+ FeedCommand(in cmd : Command)
+ Serverinfo() : string

+ agents : list

Fig. 5. Model integration and data exchange interfaces.

to the model, and the actual execution of the step. All the models
are initialized instantly, which is an interim solution. However, we
plan to improve this behavior in the future in such a way that the
models will be loaded and unloaded on demand. For instance, it is
only when the agent enters an area, as administered by a model,
that the latter is loaded. Hence, triggered by a particular event.

In our implementation of common space, objects exist in
the geographical coordinate system (latitude, longitude), while
coordinates of the two models are in geographical Cartesian. In this
case, space synchronization is only necessary. This is implemented
through the transformation of the spatial coordinates via three
steps: (1) mapping the origin of the coordinate system of model
to the required geographical point, (2) multiplying model distance
units to convert it to meters if necessary, and (3) converting meters
to latitude and longitude.

3.3. Technical features of integration

Fig. 5 shows the diagram of the key integration interfaces.
[PulseServer interface implementation is necessary for model
integration. It follows a set of requirements. First off, it should
be capable of initializing, loading and unloading the model,
updating the state, managing commands and data. Data exchange
is performed through snapshots, containing an identifier and a
list of agents (in cases where they are used). Particular forms of
snapshots should be implemented based on the type of data that
need to be transferred.

Another major part of integration is data transmission between
models, which perfectly fits the client-server architecture. Here
we choose the transport layer for data transmission. Although
Transmission Control Protocol (TCP) ensures data delivery, this
type of protocol is not suitable for intensive data exchange (with
low latency). 1%-5% of all packets are lost [23]. For this reason, TCP
waits for acknowledgment packets to provide reliable delivery and
resends packets in cases when it suspects that the packets are lost.
Such an approach is robust, but this introduces a latency of up to

several seconds. Real-time simulation strongly suffers from latency
and waiting for acknowledgment is not acceptable. At the same
time, real-time visualization is tolerate to some data loss, thus we
choose UDP as the main transport layer for our system. To build up
the protocol on top of UDP, we choose the following data types for
transmission:

1. Snapshots are binary results of the modeling process containing
all data required for data exchange and visualization.

2. Commands are binary chunks of data that represent instant
activity, such as pressed buttons, mouse position, etc. Their
main use is to control the simulation from the user interface.
The size of user commands does not exceed several bytes.

3. Reliable Requests and Responses are data used for establish-
ing virtual connection, reliable simulation control and data ex-
change. Reliable requests and responses implemented using
acknowledgment packets with resending if protocol suspect
packet loss.

The previous paragraph may raise the question on whether the
use of both UDP for time-critical data and TCP for reliable data
is necessary. The answer lies in the fact that both protocols are
built on top of protocol IP. Internal implementation of TCP tends
to induce UDP packet loss in mixed network traffic [24]. To avoid
such effect, we opt atimplementing reliable data transmission over
UDP.

We use temporal coherence to compress snapshots data. Each
snapshot contains its sequence number. When a client receives a
snapshot, it adds acknowledgment to the user command. When
the server receives a user command with acknowledgment, it
then detects that a particular snapshot has been delivered. The
server could now send compressed binary delta between the
acknowledged snapshot and the snapshot that is being sent. If
the event compressed snapshot is too big and does not fit into
the maximum transmission unit (MTU) of communication protocol
(1500 bytes for common networks), the servers then split the
compressed snapshots into chunks. The probability of snapshot
loss grows exponentially with increasing number of chunks. To
prevent heavy snapshot loss, we implement a reliability procedure
for snapshot chunks. Hence, if a new snapshot is not ready and the
servers detect lost chunks, the server resends them.

3.4. Analytical unit

Classes that embody the code of the analytical unit are used to
gather, record, and chart the data. Using these classes, a modeler
defines data sources and hooks up recording or charting classes
to these sources. Data can then be easily recorded in a tabular or
customized format and charted in a sequence graph, histogram
or user-defined plot. Most accidents pertaining to human crowds
in the last decades show that fatal cases are often related to
asphyxia because of crushing [25]. Pressure waves modeling, with
the help of fundamental diagrams [26], which are usually used for
quantitative assessment when simulating crowd movement, does
not fully meet the demands of estimating the traumatic effects
of crowd motion. Cases associated with static or almost static
crowd fundamental diagram values (speed, density and flow) do
not always give us information about possible dangerous zones.
In order to collect this type of data, we introduce a metric called
crowd pressure. Crowd pressure has been previously identified
as more suitable for detecting dangerous zones in the crowd
compared to density alone [2,27]. As suggested by the authors,
pedestrians push each other in reaction to the increasing density
of the crowd. This consequently increases the pressure. Note
that the density value can remain the same in this case. Model-
wise, this type of behavior can be reproduced through the use of
agent-based modeling (flow- and particle-based models do not

160 V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165

Avg crowd pressure

w
O sow

[0 showForce (sF onty)

Fig. 6. Snapshot of our application highlighting the average crowd pressure feature. Average crowd pressure is calculated and plotted in real time for selected zones. Zones

can be selected manually in required places.

provide necessary level of detailization of pedestrian behavior)
so that agents assess crowd conditions and adapt their behavior
accordingly (i.e. increase velocity as to escape the point of critical
pressure). An example of crowd pressure calculation is highlighted
in a sample snapshot of the application in Fig. 6.

Lee and Hughes in [28] used standard forward-backward au-
toregressive modeling to predict crowd pressure. For agent-based
models, however, this metric can be achieved through the use of
force-based models. In this paper, we use our implementation of
social force model to calculate the crowd pressure [21]. However,
there are existing empirical studies of pressure in crowds that de-
scribe thresholds of time and force in newtons. Evans and Hayden
in [29] performed tests on live subjects to find push tolerance for
males and females. Moreover, Hopkins et al. [30] estimated thresh-
olds for crush asphyxia as 6227Nin 15 s or 1112N in 4-6 min. These
values characterize the moments of onset of asphyxia that is the
main risk associated with being in a dense crowd. Despite these
developments in research, it is still difficult to connect the current
pressure model and the real pressure values due to lack of data. Ad-
ditional research needs to be done, which includes pressure mea-
surement and calibration of agent-based model to data at the same
time.

Our crowd pressure model gives a relative value that indicates
a potentially dangerous area in which the relative pressure is
abnormally high. To calculate pressure, we use internals of social
force model. Note that it is also possible to use any force-based
model. The current pressure on the agent is calculated according
to the following formula:

p=2?aﬂ(_e)aa_r>a__r>ﬂ)- (1)
B

In this expression p refers to the total repulsive effect of other
agents (i.e. how other pedestrians g affect the current one) to a

particular agent o. F .4 is repulsion force between agents « and
B, 7 is actual position and ¢ is desired direction of agent.

4. Models

Two agent-based models—district-scale and building-scale
models, are used for prototyping the multi-level environment
for evacuation using multi-agent simulations. The building-scale

model, which was built “from the ground up”, simulates residential
dynamics in buildings and other closed spaces while the district-
scale model, a modified version of the authors’ previous work [31],
aims at a higher level of representing pedestrian dynamics.
These models are both multi-agent, use the activity approach to
path planning, and have common mechanisms of representing
the heterogeneity of physical profiles of agents. Despite having
similarities, these models also differ in terms of the variance in
scales of representation of corresponding simulated environments.
For instance, the district-scale model does not presuppose the
level of detailization of agents’ pedestrian behavior that cannot be
neglected in the building evacuation model. The coupling of the
models in question has been performed using PULSE—the multi-
model integration framework. The following subsections describe
the models used for simulating the case investigated in the present
paper and the tool used for their interaction and integration.

4.1. Building model

The building model environment E is presented as a pseudo-
3D continuous space, i.e. a set of interconnected two-dimensional
levels. It is composed of the following elements: (a) points of
interest, (b) navigation route graph that links the points of interest,
(c) impenetrable obstacles and (d) portals (uni- and bidirectional).
Points of interest are objects that attract agents and imply potential
interactions that can take various amounts of time. Examples of
points of interests are seats, bar counters, tables at the waiting
area or ticket office in the cinema. The route graph facilitates the
connection of the points of interest that reflect the most common
relocation patterns and sequences. Obstacles are solid objects such
as walls through which agents cannot pass through. Portals allow
agents to move between two-dimensional levels (using the stairs
and elevators), around the same level or out of the building.

The model uses the following types of input data:

1. Building floorplans (composition of levels in a building). Each
floorplan includes information on the walls, obstacles, points of
interest and waypoint-based route graph.

2. Cinema movie sessions schedule.

3. Description of the agent role structure (cinema activities for
visitors and staff).

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165 161

Fig. 7. Cinema plan with the following key objects: 1- main entrance, 2-ticket
offices, 3-waiting area, 4-bar, 6-cloakroom, 5-service entrance, 7-toilets, 8-seat
places, 9-staff rooms, 10-s floor stairs (staff only), 11-emergency exits, 12-screen.

4, Description of the physical classes of agents represented in the
simulation (which lays the foundations for the estimation of the
maximum speed and other movement attributes).

5. Data on number and characteristics of agents entering the
building.

It is worth mentioning that the datasets matching the types
of data 1-4 are static and thus configured as separate files,
whereas the data on agents entering the building can be both
static and dynamic. In the case when the datasets are dynamic, the
generation of agents on a particular level is dependent on the input
from another model (for instance, an agent leaving the district-
scale modeled space through the portal that marks the entrance to
the cinema is transferred to the cinema-scale model). The example
of the cinema building floorplan is presented in Fig. 7 and is
composed of the following key objects: 1- main entrance, 2-ticket
offices, 3-waiting area, 4-bar, 6-cloakroom, 5-service entrance,
7-toilets, 8-seat places, 9-staff rooms, 10-s floor stairs (staff only),
11-emergency exits, 12-screen.

Agents operating within the environment of the building scale
model are virtual “staff” and “visitors” corresponding to the phys-
ical space being modeled: A, = {A1,, Azp,...Anp} C A. Each
agent is described through a combination of internal features (cur-
rent position, nearest desired position or point of interest, present
speed, maximum speed, performed and scheduled activities) and
behavioral rules. The latter are linked to the functional roles (rep-
resenting the generalized “purposes” of agents’ presence and aims
of the corresponding relocations within the modeled environment)
allocated to the agents’ population. Each agent is allocated strictly
to a single role at a time. For the cinema case, a function-based
composition of the population of agents has been developed with
two major classes: visitors and cinema staff members, defining the
attributed mandatory primary points that set the basic route. For
instance, in the case of a cinema visitor, these points are the en-
trance, seat location, and entrance or exit portals. Complementary
to them, a number of subdivisions based on gender, intention to
visit the bar, necessity and purpose of visiting the toilets, type of
ticket, etc. has been elaborated to demarcate the probabilistic al-
ternatives for secondary activities; after the movie is over, an agent
may either visit the toilet and the cloakroom or proceed straight to
the exit.

In order to bind the behavioral patterns of the simulated agents
to the physical environment that they are operating in, a set of
navigational and path-planning mechanisms has been composed
based upon the adaptation of the solutions presented in [18]. The

resulting multilayer navigation approach is built from the activity
scheduling, path planning and micro-level components. Since each
agent has a functional role and an appropriate schedule, his path
is merged from the sequences of primary and secondary activity
points that are thus linked by the operational waypoints of the
navigation graph. Because two waypoints can communicate in a
number of ways, in order to facilitate optimal relocations, agents’
travel along the graph vertices is informed by the A* algorithm.
Potential collisions with stationary objects and other agents are
solved with the use of the modified Social Force approach first
presented in [21]. This is force-based model, which means that all
the interactions related to agent movements are regulated by the
forces, for example attraction force between agent and his goal,
repulsion force between agents or repulsive force between agents
and obstacles. The calibration of model is based on empirical video
data of pedestrian flow. The method is presented in [32].

Rp—Building scale model rules:

W} C R,—In-building warning behavior rules. Rules whose
execution is triggered as soon as an agent receives the warning
message urging it to leave the building immediately.

C» C Ry—In-cinema general behavior rules. The execution of
this set of rules flows from the very moment an agent enters the
cinema building. Each visiting agent is obliged to buy a ticket (or to
collect a pre-booked one) and proceed to the designated seat. With
a certain probability that is imposed imperatively, an agent can use
the cloakroom, go to the bar, waiting area or the toilet.

L, C R,—Leaving-the-cinema rules. The rule is brought into
execution when the agent leaves the building. Agent only uses
the usual exits. Further regulations of the agent as well as his
coordinates are delegated to the district model.

Ep C R,—Evacuate-the-cinema rules. Similar to L rules, but
agent can use emergency exit. This rule is active only after
evacuation notification.

4.2. District model

The district/city scale model is an elaborated version of the
multi-agent model described in [31]. In its current state, the model
has not only received a significant degree of autonomy but has
served as the cornerstone for the integration of other models
within the PULSE environment. The inputs for this model are:

1. City infrastructure data. This includes information about walls,
obstacles, buildings, points of interest and road graph.

2. Cinema movie sessions schedule.

3. Description of the agent role structure (activity chains for
social-economy classes).

4, Description of physical classes of agents represented in the
simulation.

5. Initial distribution of agents in the modeled area (350k agents
for Vasilyevsky Island, St. Petersburg).

A¢ = {A14, Asa....Anq} C A - District scale model agents,
R4 - district scale model rules:

Dy C R;—Daily behavior rules. Following these rules, agents
visit only points of activity that correlate with their socio-economic
status (for instance, office buildings, universities, specific shops,
leisure facilities etc.).

By C R;—Simple building rules. When agent enter in the
building, which is not represented by separate model, he just wait
there required amount of time, without special simulation of his
activities or movements inside this building.

Cy C Ry—Building-entering rules. The described type of rules
serves as basis for the regulation of the behavior of agents
entering the cinema building. Having entered the building, agents’
properties (such as coordinates) migrate to the building-scale
model.

The example of agent’s daily schedule and visualization of
current agent density are represented on Fig. 8.

162 V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165

Fig. 8. Example of agent’s daily schedule.

5. Multimodel evacuation simulation: Case study

The aim of this section is to illustrate the idea that a wide variety
of research can be carried out by using a set of integrated models
where specific scales and levels (as well as points of view) are
represented by separate models. For instance, it can be applied
to study the dynamics of evacuation in a city area struck by a
flood [33]. Flood, in this case, serves as a trigger for evacuation and
a factor that can affect its dynamics.

The district-scale model provides a common space here,
whereas the building-scale model serves as a secondary model.
A method of commonly controlled agents is applied to ensure
the integration of the agents used in both models. Moreover, it
provides models with a capacity to exchange data in real time.
With regard to spatial integration, agents that are operating within
the secondary model (building-scale model) are also mapped on
the common space (in this case—the one offered by the district-
scale model), but their behavior is governed by the subsystems
from the former model. In other words, from the users’ perspective,
there is no difference where particular agent is modeled, since
it is mapped on the common space. Fig. 9 shows the example of
integration of the two models through common space and PULSE.

We note that the results of the original research for the
emergency evacuation dynamics is not among the prime objectives
of this paper. In other words, the setting that we use has been
extended with a simple model of emergency evacuation precisely
for the purpose of testing the concept.

The following is the description of the proposed simulation sce-
nario. First, we reproduce the daily commute and shopping/leisure
travel dynamics on Vasilyevsky Island (St. Petersburg, Russian Fed-
eration) using the district-scale model. It is assumed that some

500

T

T T
Movie starts Evacuation|

T T T T T
/7777 Building scale agents, A» N
, District scale agents, Ad

B

o

o
T

N w

=1 =]

o <]
T

=

o

o
T

Cinema visitors abstract agents, Ac

0 500 1000 1500 2000 2500 3000 3500 4000
Time, s

Fig. 10. Spatial integration by agents (agent migration). Blue line represents the
number of agents controlled by the building-scale model, while the red one stands
for the number of agents handled by the district-scale model. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

agents attend the cinema as a form of social and recreational ac-
tivity. From the district-scale model, a set of agents is derived and
handled (as soon as agents arrive to the cinema prior to the start of
the session) to the lower level represented by the model of pedes-
trian indoor behavior. After entering the building, agents perform
a series of activities that are built from obligatory (activities that
cannot be skipped such as entering the building, taking seat, and
evacuating the building) and optional (visiting the café, restrooms,
etc.) activities. Within the time frame of the session, agents receive
alarm notification urging them to evacuate immediately from the
building. Agents (both representing staff and visitors) attempt to
leave the building using the shortest available route.

The global set of agents (A) consists of two subsets, representing
the agents governed by separate models: A = A, U Ay. Thus
A. € A-—agents visiting cinema. For the described experiment,
it is true that each agent belonging to A. keeps his/her affiliation
with the set even after leaving the cinema building. The results
of the experiments are presented in Fig. 10. Agents’ arrival to
the cinema is suggested as a non-random process, which can be
inferred from the plot. It is determined by district/city-scale model
and the distribution of agents’ daily activities. The service time
is deterministic given the limited number of services (only one—
the cinema). After the emergency notification is disseminated,
all agents quickly leave the building. In simulation terms, when
an agent leaves the cinema, he/she loses the connection with
the building model and becomes linked to the city/district-scale
model.

PULSE API

I
PULSE Core

PULSE Wrapper

Building scale model

Common space

PULSE Wrapper

City/district scale model

Fig.9. Integration of two models through common space and PULSE.

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165 163

a ’ Preslsure '
141
“°87 12t . 200
o 10 . 250
2 08 . 300
£ 06 . 350
o
2 04 400
©o0.2f
o 20 40 60 80 100 120
Time, s
Pressure
c 141 : ! ;
T 12} an I 200
§ 10} oa . 250
2 08| EEE 300
[
£ o6l 350
o 400
goar
©o2t
00 L 1
0 20 40 60 80 100 120
Time, s

b Pressure

14}
g 21 A . 200
g 1.0+ &N 4 ik B Y 3 MW . 250
@ 08 HEEE 300
T 06 \ mm 350
o
g 0.4} , ', 400
<02

0.0 L L L

0 20 40 60 80 100 120
Time, s

d Pressure

14} : !
T 12p . 200
o —
2 -
[
& —
by~)
=
o
9]

Time, s

Fig. 11. Ensembles of crowd pressure dynamics for agents evacuating using different available exits: (a) main entrance (b) rear right exit (c) top left exit (d) top right exit.

Fig. 11 depicts the ensembles of the crowd pressure metric
values near four different exits from the cinema building. Each
of the graphs represents a set of single-run experiments (with a
given quantity of agents generated for each of them). The number
of agents “attending” a movie (200, 250, 300, 350 and 400 agents)
have been explored to achieve these results. As it can be derived
from the graphs, increasing quantities of agents produce higher
levels of fluctuation in crowd pressure. However, it can be inferred
that an upsurge in the number of agents involved in the simulation
insignificantly adds to the inter-agent pressure and is equally fair
for each of the exits. The entrance, on the other hand, serves
as a balanced egress choice as it provides agents with more
space to navigate. Top exits hinder the relocations of agents given
the spatial constraints in the adjacent area. Moreover, top exits
are closer to the central hall and thus provide a faster, yet less
“comfortable” alternative to rear right exit, as it is not preceded
with the crowd routing fences.

6. Scalability research

In order to explore the scalability of the methods presented, we
performed a simple test that includes two series of experiments.
The first series depicts scalability by agents (Fig. 12(a)) for the
following: (1) model with simple movement system (no social
force or RVO models), (2) model with our implementation of social
force, and (3) data overheads for the assimilation of an exact
amount of agents to common space. The number of agents was
altered up to 1 million.

Scalability by number of secondary models was studied as
well (Fig. 12(b)). We have ranged the number of agents as in the
previous experiment: (1) up to 100000 agents for one secondary
model, and (2) every secondary model added 10 000 agents.

We see a linear relationship for all measured values with the
count of agents (Fig. 12(a)). Thus, computation time for one model
will increase linearly with the number of agents regardless of the
choice of model either with or without social force as well as
overhead processing.

However, if we not only vary the number of agents, but also
the number of secondary models connected to common space, we
no longer see a linear time growth compared to that of only one

secondary model operating on the same total amount of agents
(Fig. 12(b)).

In this case study, we used parallel implementation of the
system and ran it on one PC. Parallel computation is ensured
through the execution of different models as independent threads
within a single application. In addition, the models are parallel. To
achieve this OpenMP and.Net TPL technologies were used.

All series of experiments have been performed on PCs with the
following build: quad-core Intel i7-5820k CPU 3.3 GHz, 16 GB Ram,
1 GB/s network.

7. Discussion and conclusion

In this paper we have presented a methodology that can
be used for conducting complex experiments involving multiple
agent-based models. It is suggested that the behavior of agents
can be tuned with the modular structure consisting of flexible
sets of compatible units (described in Section 3.1): informational,
planning, decision-making mechanisms, navigation and collision
avoidance subsystems. To solve the issue of coordinating the
operation of models, we also proposed a method of model
integration (described in Section 3.2) using common virtual space
and abstract common agents. These help us achieve a clear
interaction between different models and their entities—agents. In
order to initiate the analytical module, we have suggested using
crowd pressure calculator as it represents a major factor of injuries
in dense crowds. This analytical unit (described in Section 3.3) has
been designed specifically to present corresponding estimates in
a comprehensible visual form. It uses the environment to collect,
register, and chart information about the pressure between agents
and obstacles. As output, the module serves the data on relative
pressure that allows to identify extreme pressure points.

It has been mentioned throughout the work that although
PULSE supports crowd pressure estimation, additional empirical
research is yet required to calibrate models to empirical data.
More precisely, a methodology for translating actual metrics into
model parameter values is required. Additionally, results of the
experiments (Section 5) suggest that crowd pressure starts to
oscillate along with increasing number of agents involved into
the simulation. This observation foreshadows the extension of the

164 V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165

a Scalability by agents

3000 -

HE Model 1 (simple movement)
Il Model 2 (SF movement) y
Il Data overheads

2500 -

N
o
o
<3
T
i

Step time, ms
—
wv
(=]
o

1000 | " : 1

500 . o]

600000 800000 1000000

Agents

0 200000 400000

b Secondary model scalability
400 T T T
350 mm One secondary model 1
- EEE 1-10 Secondary models
g 300 - 8
a
@ 250 | 1
2]
8 200} i
w
B
o 150 - 1
<
g
3 100} 1
L]
50 | 4
O L 1 L L 1
0 20000 40000 60000 80000 100000

Agents by secondary model

Fig. 12. Scalability test results: (a) scalability by number of agents (b) scalability by number of secondary models.

application of the module for studying pressure waves (by analogy
with density waves).

The techniques mentioned above were implemented in the
PULSE simulation environment. The PULSE project is an open
source solution distributed with MIT license and is openly avail-
able via GitHub [1]. It has three areas of application: (1) flexible
agent-based model constructor application, (2) middleware model
integration support, and (3) simulation analysis and visualization.
In order to exhibit its applicability, we have run a set of multi-
model evacuation simulations. Two models were used in the ex-
periments: (a) the building-scale model that was implemented
to simulate the egress of agents from the cinema, and (b) the
city/district-scale model that was used to simulate the daily activ-
ity of virtual agents at Vasilyevsky Island area (Saint-Petersburg,
Russia). Both models were implemented, integrated, and analyzed
through the agent-based library from the PULSE. It is worth noting
that the chosen models and corresponding modules related to data
analysis and agent behavior have been chosen in accordance with
the aim of illustrating the case where model integration is crucial.

Scalability tests show that time step increases linearly when a
single model is used. However, an increase in the number of mod-
els leads to a change in the form of computation time growth.
This casts certain limitations on real-time simulations, as increased
numbers of agents and models can significantly slow down the cal-
culations. Moreover, network data transfer shall be studied as well,
since overhead has been analyzed here with regard to processing
data that has already been received. As such kind of research re-
quires additional methodology and metrics that are outside the
scope of this paper. However, we suggest to explore these in future
works. Distributed execution was implemented through the UDP
protocol. However, as previously mentioned, it has not been re-
searched yet. The distribution of our system is another topic aimed
for a separate research, which will be conducted in the future. This
research should include different protocols, as well as integration
with cloud-based platform, that will be responsible for dynamic al-
location of computing resources.

At this point, we have gained plausible results from integrating
models for the case derived from the area of emergency crowd
management (planning and assessing the evacuation of the visitors
of an entertainment facility). In order to provide the presented
methodology with more elaborated test, we plan to integrate the
proposed scheme into the operational decision-support system in
attempt to improve the provision of information, which would
assist practice of planners and rescue service officials. To widen
the scope of application of the methodology described here, we
are looking forward to reproducing other scenarios. These may
replicate various interplaying urban processes or other cases from
planning and management.

Moreover, we plan to make a few important extensions to
PULSE and the related models. One of our current works in-
progress is focused on PULSE, its infrastructure and code base. We
plan to improve the agents’ navigation system and extend it by
introducing new levels and scales (in addition to planning,
pathfinding and collision avoidance). One of the improvements we
are planning to implement in the nearest perspective is the inte-
gration of the district/city model (also known as the virtual society
model) and a traffic model.

Acknowledgment

We would like to thank Alva Presbitero for her help in editing
the manuscript. This paper is financially supported by Ministry
of Education and Science of the Russian Federation, Agreement
#14.584.21.0015 (11.11.2015).

References

[1] V. Karbovskii, PULSE project, available at: https://github.com/vladkar/pulse-
project-open, 2016.

[2] D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An
empirical study, Phys. Rev. E 75 (4) (2007) 46109.

[3] G. Morvan, Multi-level agent-based modeling-a literature survey, 2012, arXiv
preprint arXiv:1205.0561.

[4] J. Gil-Quijano, T. Louail, G. Hutzler, From biological to urban cells: lessons
from three multilevel agent-based models, in: Principles and Practice of Multi-
Agent Systems, Springer, 2012, pp. 620-635.

[5] N. Gilbert, K. Troitzsch, Simulation for the Social Scientist, McGraw-Hill
International, 2005.

[6] D.-A. Vo, A. Drogoul,].-D. Zucker, An operational meta-model for handling
multiple scales in agent-based simulations, in: 2012 IEEE RIVF International
Conference on Computing and Communication Technologies, Research,
Innovation, and Vision for the Future, RIVF, 2012, pp. 1-6.

[7] T. Huraux, N. Sabouret, Y. Haradji, A multi-level model for multi-agent based
simulation, in: Proc. of the 6th International Conference on Agents and
Artificial Intelligence, ICAART, Angers, France, 2014.

[8] L.Jalali, S. Mehrotra, N. Venkatasubramanian, Multisimulations: towards next
generation integrated simulation environments, in: Formal Modeling: Actors,
Open Systems, Biological Systems, Springer, 2011, pp. 352-367.

[9] B. Camus, C. Bourjot, V. Chevrier, Multi-level modeling as a society
of interacting models, in: Proceedings of the Agent-Directed Simulation
Symposium, 2013, p. 3.

[10] R. Suleiman, et al. Social Science Microsimulation. Tools for Modeling,
Parameter Optimization, and Sensitivity Analysis, 1998.

[11] T. Korhonen, et al. Integration of an agent based evacuation simulation and
the state-of-the-art fire simulation, in: Proceedings of the 7th Asia-Oceania
Symposium on Fire Science & Technology, 2007, pp. 20-22.

[12] A. Filippoupolitis, et al. Emergency response simulation using wireless sensor
networks, in: Proceedings of the 1st International Conference on Ambient
Media and Systems, 2008, p. 21.

[13] S. Jain, CR. McLean, An Integrated Gaming and Simulation Architecture
for Incident Management Training. National institute of standards and
technology. Technology administrations, US Department of commerce, 2006.

[14] W.K.V. Chan, Y. Son, C.M. Macal, Agent-based simulation tutorial - Simulation
of emergent behavior and differences between agent-based simulation and
discrete-event simulation, in: Proceedings - Winter Simulation Conference,
2010, pp. 135-150.

https://github.com/vladkar/pulse-project-open
https://github.com/vladkar/pulse-project-open
https://github.com/vladkar/pulse-project-open
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref2
http://arxiv.org/1205.0561
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref4
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref5
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref8

V. Karbovskii et al. / Future Generation Computer Systems 79 (2018) 155-165 165

[15] A. Marzinotto, et al. Towards a Unified Behavior Trees Framework for Robot
Control., 2014, pp. 5420-5427.

[16] AJ. Champandard, Understanding Behavior Trees, 2007.

[17] S.Patil,]. Van Den Berg, S. Curtis, Directing crowd simulations using navigation
fields, IEEE Trans. Vis. Comput. Graphics (2011).

[18] D. Voloshin, D. Rybokonenko, V. Karbovskii, Towards a performance-realism
compromise in the development of the pedestrian navigation model, Procedia
Comput. Sci. 51 (2015) 2799-2803.

[19] V. Viswanathan, et al. Quantitative comparison between crowd models for
evacuation planning and evaluation. 2014, arXiv preprint arXiv:1401.0366.

[20] J. Van den Berg, M. Lin, Reciprocal velocity obstacles for real-time multi-agent
navigation, Robot. Autom. (2008).

[21] D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Phys. Rev.
E51(5)(1995)4282.

[22] A.Kiselev, V. Karbovskii, S. Kovalchuk, Agent-based modelling using ensemble
approach with spatial and temporal composition, Procedia Comput. Sci.
(2016).

[23] G. Fiedler, UDP and TCP. Available at: http://gafferongames.com/networking-
for-game-programmers/udp-vs-tcp/, 2013.

[24] H. Sawashima, et al. Characteristics of UDP packet loss: Effect of tcp traffic. of
INET'97: The Seventh Annual ..., 1997.

[25] R.S. Lee, R.L. Hughes, Exploring trampling and crushing in a crowd, J. Transp.
Eng. 131(8) (2005) 575-582.

[26] A.Seyfried, A. Schadschneider, Fundamental diagram and validation of crowd
models, in: International Conference on Cellular, 2008.

[27] A. Johansson, et al., From crowd dynamics to crowd safety: a video-based
analysis, Adv. Complex Syst. 11 (4) (2008) 497-527.

[28] R. Lee, R. Hughes, Prediction of human crowd pressures, Accid. Anal. Prev.
(2006).

[29] EJ. Evans, F. Hayden, Report on tests of static loads on live subjects to
determine tolerable forces that can be exerted by crowd control crush barriers,
Guildford, UK, 1989.

[30] LH.G. Hopkins, et al., Crowd pressure monitoring, in: R.A. Smith, J.F. Dickie
(Eds.), Engineering for Crowd Safety, Elsevier, Amsterdam, 1993, pp. 389-398.

[31] V.A. Karbovskii, et al., Personal decision support mobile service for extreme
situations, Procedia Comput. Sci. 29 (2014) 1646-1655.

[32] D. Voloshin, D. Rybokonenko, V. Karbovskii, Optimization-based calibration
for micro-level agent-based simulation of pedestrian behavior in public
spaces, Procedia Comput. Sci. 66 (2015) 372-381.

[33] V.V. Krzhizhanovskaya, et al., Distributed simulation of city inundation by
coupled surface and subsurface porous flow for urban flood decision support
system, Procedia Comput. Sci. 18 (2013) 1046-1056.

Vladislav Karbovskii is a Senior Researcher at the
eScience Research Institute (Computational Social Science
team) and an Assistant Professor at the High Performance
Department at ITMO University, St. Petersburg, Russia.
He completed his engineering degree in 2011 and Ph.D.
degree in Computer Science in 2015 both at ITMO Uni-
versity. Prior to joining ITMO University, he worked at
the industry and developed enterprise high-performance
3 distributed systems. His current research interests in-
t clude artificial intelligence, agent-based modeling,
machine learning and data science, distributed and high-
performance computing, software engineering and computational social science.

Daniil Voloshin is a Ph.D. degree candidate at the ITMO
University and a research assistant at the international
laboratory “Urban Informatics”, Saint-Petersburg, Russia.
He currently holds B.A. and M.A. degrees in Sociology
from Saint-Petersburg State University, Russia. In 2015 he
received a grant aimed at supporting young scientists from
the Russian Foundation For Basic Research. For the last
4 years he has been involved into work in international
collaborative research projects, organized by the ITMO
University, Russia and the University of Amsterdam, the

. Netherlands. His research interests include computational
social science, urban studies, collective behavior, crowd studies and agent-based
modeling.

Andrey Karsakov is a Ph.D. student at the ITMO University
and a research assistant at eScience Research Institute of

\ ITMO University. He currently holds Engineering Diploma
S s in Industrial Electronics from Togliatti State University,
4 G Russia. He also has a more than 6 years work experience

o in business in the fields of design, computer graphics
and visualization. His research interests focused on
visualization, virtual reality, human-computer interaction
and UI/UX design.

Alexey Bezgodov is a Ph.D. Engineering sciences program
at ITMO University, Russia. He has also worked in video
games industry for two years, mostly involved with real-
time rendering. His current research interests include
rendering technologies, graphics resource virtualization,
networking and artificial intelligence.

Carlos Gershenson is a tenured research professor at
the Universidad Nacional Auténoma de México and a
leader of the Self-organizing Systems Lab. He is editor-in-
Chief of Complexity Digest. He got a B.Eng. in Computer
Engineering at the Fundacién Arturo Rosenblueth in
Mexico City. Later, he obtained his M.Sc. in Evolutionary
and Adaptive Systems at the University of Sussex, UK, and
a Ph.D. at the Free University of Brussels, Belgium. He was
a postdoc at the New England Complex Systems Institute,
USA. His current research interests include self-organizing
systems, complexity, artificial life, information, evolution,
cognition, artificial societies, and philosophy.

http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref17
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref18
http://arxiv.org/1401.0366
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref20
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref21
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref22
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref25
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref27
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref28
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref29
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref30
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref31
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref32
http://refhub.elsevier.com/S0167-739X(16)30373-9/sbref33

	Multimodel agent-based simulation environment for mass-gatherings and pedestrian dynamics
	Introduction
	Related work
	Methodology
	Agents' behavior module
	Model integration
	Technical features of integration
	Analytical unit

	Models
	Building model
	District model

	Multimodel evacuation simulation: Case study
	Scalability research
	Discussion and conclusion
	Acknowledgment
	References

