
Complexity and Structural Properties in Scale-free Networks
Yesid Madrid1,2, Carlos Gershenson3,4 and Nelson Fernández1
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Abstract

We apply formal information measures of emergence, self-
organization and complexity to scale-free random networks,
to explore their association with structural indicators of net-
work topology. Results show that the cumulative number
of nodes and edges coincides with an increment of the self-
organization and relative complexity, and a loss of the emer-
gence and complexity. Our approach shows a complementary
way of studying networks in terms of information.

Introduction
Among representative structural properties of networks we
can list: the degree of nodes and their distribution, the clus-
tering coefficient, and the average path length. The degree is
informative of how many nodes are connected to each other.
The clustering coefficient is a measure of the number of tri-
angles in a graph. The average path length is the average
number of steps along the shortest paths between all possi-
ble pairs of network nodes (Newman et al., 2006). In spite
of the value of these measures to characterize some complex
networks, measuring complexity in networks is desirable.
Recently, measures of emergence, self-organization, com-
plexity, and relative complexity based on information theory
have been developed and their usefulness can be evaluated
(Fernández et al., 2014).

In this paper we analyze the association of topological
structural indicators like the number of nodes, clustering co-
efficient and average path length with formal measures of
emergence, self-organization, complexity, relative complex-
ity to scale-free random networks.

In the next section we present the methods for generating
networks and the formalism to measure complexity. In sec-
tion 3, we briefly present and discuss our results obtained
from the applications of multivariated machine learning un-
supervised techniques. Section 4 presents conclusions and
future work.

Methods
Using the Barabasi-Albert model implemented in SocNetV
software (Kalamaras D., 2015), ten random networks of the
following number of nodes were generated: 5, 10, 15, 20,

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175,
200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900,
1000, 2000 and 3000. In total, 310 scale-free networks were
created. First, structural properties of clustering coefficient
and average path length were calculated. Then, information
measures of emergence (E), self-organization (S), complex-
ity (C), and relative complexity (R) were applied to the vec-
tor obtained from the horizontal sum of the grade of each
node, on the adjacency matrix. Summarizing, E is equiv-
alent to Shannon information (Shannon, 1948), depending
of the probabilities pi for all i symbols in a finite alphabet:
I = −

∑n
i=1 pi log pi. In this work, we use log10. Based

on this equation we define that E = I , S = 1 − E, and
C = 4 × E × S. Relative Complexity R = CNi/CNT

where CNi was the complexity of the network i and CNT

was the average complexity of the other networks. Since
E,S,C ∈ [0, 1] a numerical, color and category scale has
been defined for a better interpretation. The ranges are
[0.8, 1], [0.6, 0.8), [0.4, 0.6), [0.2, 0.4),[0, 0.2). The corre-
sponding colors are: blue, green, yellow, orange, and red.
The matching categories are: very high, high, fair, low, and
very low. R just has two colors of codification: blue ifR > 1
and red if R < 1.

To facilitate the visualization of the relationship of com-
plexity properties and network structure descriptors, accord-
ing to the increment of nodes and edges, multivariated tech-
niques was carried out. Consequently, a principal compo-
nent analysis (PCA) was integrated with a hierarchical clus-
ter analysis (HCPC). PCA was used to summarize and to vi-
sualize the information contained in structural attributes and
complexity properties. HCPC was used for identifying clus-
ters of networks with similar characteristics. Also, statistical
indicators such as v-test (a criterion of normal distribution),
mean in cluster, overal average, and p-values were estimated
to associated clusters and properties (Le and Worch, 2015).

Results and Discussion
The PCA depicts the relationship, variation, and patterns
among structural and complexity properties (fig. 1). A high
percentage of the explained variance of data was captured
in the first two axes (91.46%). In consideration of the po-
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sition of variables in the multidimensional space, it is easy
to see that self-organization and relative complexity are pos-
itively correlated with the increasing of nodes and edges.
Meanwhile, when nodes, edges, self-organization, and rela-
tive complexity increase, the complexity and emergence of
the network decreases. These two groups, in spite of the fact
that they have an opposite behavior, are very close to the
first component (Dim 1) and explain the variance of scale-
free networks in 74.24%. As a relevant fact, it is possible
to see that complexity is more related to the change (emer-
gence) in the system than its regularity (self-organization).
This suggest that some adaptability of scale-free networks
could be related to high variability with a minor proportion
of uniformity in the degree distribution of the nodes.

Considering the structural indicators of clustering coeffi-
cient and average path length, we can observe that they are
opposite as it has been noticed in the literature. They are
associated with the second component and represent a mi-
nor variance explained of the dataset (12.22%). As the form
of clustering coefficient and average path length are posi-
tioned, we cannot establish any relation between them and
emergence, self-organization, complexity, and relative com-
plexity.
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Figure 1: Principal component analysis of complexity and struc-
tural properties in 310 simulations of random scale-free networks
obtained using BA model

Regarding the incremental number of nodes, HCPC anal-
ysis allows the statistical creation and characterization of
five clusters (table 1). The first cluster included networks
with just five nodes. These systems are related statistically
with the clustering coefficient, because of a relatively high
density of ties in small networks. Cluster two groups net-
works with 10 to 50 nodes, indicating that they are the most
emergent and complex of all. Indeed, in cluster two, E
reached the fair category (yellow), in comparison with the

low category of overall (in orange). C was classified as
very high (blue), meanwhile overall was categorized as high
(green). Besides, we can note that these small networks have
a negative relationship with the average path length which
is less than overall. Networks between 60-175 nodes were
grouped in cluster 3. They also have a very high complexity.
Cluster four included networks with 100-600 nodes and are
the most self-organized due to having a very high S. Finally,
networks with the highest number of nodes (700-3000) gain
some relative complexity. That means the increase of the
number of nodes and edges resulting in networks moderately
more complex.
Table 1: Statistical description for Clusters and Structural Proper-
ties in Scale-free Networks.

Cluster Number of Nodes in
Network Grouped

Property
Associ-
ated

V.Test Property µ
in cluster

Property
Overall µ

p-
value/Significance

1 5 C.C. 4.808 0.213 0.019 1.52106***

2
10,15,20,25,30 E 4.316 0.545 0.304 1.586e05***
35,40,45,50 C 3.177 0.949 0.676 1.586−05***

Av.P.Length. -3.165 2.283 2.619 1.553−03

3 60,70,80,90,100 C 2.116 0.873 0.676 0.034*
125,150,175

4 200,225,250,300,350 S 2.928 0.872 0.045 0.003**
400,450,500,600

5 700,800,900 R 4.358 1.007 1.003 1.308e-05***
1000,2000,3000 S 3.082 0.945 0.696 2.04903***

Final Remarks
Our first results are encouraging. It was interesting to find
that growth in random scale-free graphs implies more self-
organization and relative complexity. The relative complex-
ity could be useful to analyze cases when two or more net-
works interact. Thus, the gain of self-organization and rela-
tive complexity could in time be a useful characteristic to
regulate feedback and guide the management of complex
networks.

Further work is required. We are planning to broaden our
explorations and perform further analysis to understand and
clarify the relationship between complexity properties and
structural indicators in random networks, and other complex
topologies.
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