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Frequency displacement, or spectral shift, is commonly observed in

industrial spectral measurements. It can be caused by many factors such

as sensor de-calibration or by external influences, which include changes

in temperature. The presence of frequency displacement in spectral

measurements can cause difficulties when statistical techniques, such as

independent component analysis (ICA), are used to analyze it. Using

simulated spectral measurements, this paper initially highlights the effect

that frequency displacement has on ICA. A post-processing technique,

employing particle swarm optimization (PSO), is then proposed that

enables ICA to become robust to frequency displacement in spectral

measurements. The capabilities of the proposed approach are illustrated

using several simulated examples and using tablet data from a

pharmaceutical application.

Index Headings: Components; Shift; Swarm; Particle swarm optimization;

PSO; Independent component analysis; ICA.

INTRODUCTION

With the increased focus on process analytical techniques
(PAT) in the pharmaceutical industry, there is an ever
expanding use of spectroscopic instruments to provide
important insight into the fundamental mechanisms driving
particular processes.1,2 A common application for spectral
measurements in the pharmaceutical industry is identifying the
concentrations of individual compounds that comprise a
mixture. By knowing the concentration of individual com-
pounds in a reactor, it becomes possible to track the progress of
a reaction or the end-point of a process. A good example
illustrating the benefits available through spectral analysis was
documented by Szostak et al.,3 who demonstrated how Raman
spectral measurements could be used to identify the indepen-
dent compounds in a pharmaceutical tablet. Further extension
of this approach has enabled Raman measurements to be used
to identify counterfeit medicines.4

Having identified the independent compounds in a mixture,
the next stage of any analysis is typically to determine the
concentrations of each of the independent compounds. This can
be particularly important in the pharmaceutical industry; for
example, Dyrby et al.5 was able to identify the concentration of
the active ingredient in a tablet, which could then be used to
ensure that adequate mixing had occurred prior to tablet
production.

Unfortunately, in many processing applications it is
necessary to have a priori understanding of the spectral
signature of the source components, which may not be
available. To identify the independent components, or sources,
in spectral or other types of data, an array of techniques have
been proposed. Many of these techniques fall under the

umbrella of blind source separation (BSS) methods.6 One
commonly applied BSS method is principal component
analysis (PCA). This method is able to reduce the dimension-
ality of a problem by identifying directions of greatest variation
in the data, with the imposed constraint that each of the
directions are orthogonal. Each of these directions can be
considered a ‘‘component’’ of the data, and the small-variance
directions that are identified are typically considered to be
‘‘noise’’.7 However, because only limited constraints are
applied with this algorithm, the components that it identifies
may have little physical meaning.8

A related method that imposes further constraints in its
analysis is non-negative matrix factorization (NMF). As its
name implies, all components that are identified are assumed to
have no negative parts, which can make their physical
representations easier to render.8 However, it has been found
that in certain circumstances it is difficult for the algorithm to
converge to a global optimum, or even to converge at all.9 One
implementation of NMF is based on alternating least squares,
which is considered to be part of a group of methods called
self-modeling curve resolution methods (SMCR).10 These
methods have a similar objective to those of BSS, but their
application is bound to the domain of the spectrum, as they
were originally developed to be used in the field of
chromatography. However, they are now beginning to gain
popularity in the field of spectroscopy.10 These methods
frequently employ singular value decomposition or they
consider the spectral intensity at specific locations that are
common in all the sampled spectra. A disadvantage with these
methods is that they require the number of components that are
to be retrieved to be known a priori. Although this can be
attempted in a variety of ways,10 the presence of noise and
other factors can make this procedure non-trivial.10

Independent component analysis (ICA) is an alternative
approach to extracting meaningful components from a dataset.
This technique has been used extensively in many different
areas of science and engineering and its popularity is
increasing.11,12 Applications involving ICA have shown that
it is a powerful and versatile method able to extract the
independent components, or source signals, from spectra
obtained from a variety of measuring devices such as near-
infrared (NIR) and Raman instruments. The principle assump-
tion that ICA makes is that all sources are independent of one
another,13 which is a reasonable assumption in many
applications. It also provides an applicable objective function
that, when optimized, identifies components that have real
physical meaning.14

Much of the research conducted into using ICA to analyze
spectral measurements has concentrated on its use in an off-line
capacity. Moreover, the ability to analyze spectral data in real-
time offers important benefits to industrial automation. In
particular, the ability to analyze spectral measurements in real

Received 7 April 2009; accepted 19 June 2009.
* Author to whom correspondence should be sent. E-mail: Caleb.
Rascon@postgrad.manchester.ac.uk.

1142 Volume 63, Number 10, 2009 APPLIED SPECTROSCOPY
0003-7028/09/6310-1142$2.00/0

� 2009 Society for Applied Spectroscopy



time provides the possibility of using such measurements in a
feedback control system. However, analyzing spectra in real
time introduces a number of complex challenges. In this paper,
the challenge of using misaligned or shifted spectra is
addressed.

In an off-line setting, it may be reasonable to assume that the
spectral data will not suffer from misalignments; however, this
assumption is often not valid in real-time analysis. Inconsisten-
cies related to spectral measurements are frequent as a result of
poor sensor calibration and/or external influences.15 In many
cases these inconsistencies result in frequency displacement, or
shift, in the measurements, and this has a significant effect on
the ability of ICA to extract components with physical meaning
from the spectra. Frequency displacement manifests itself by
shifting the frequency location of important parts of a spectrum.
The shifted parts of the spectrum can be the peaks that ICA uses
to identify the different components that make up the spectrum.
However, these shifts are not uniform, as each component
inside the spectrum may shift independently from the rest.

Various approaches for tackling frequency shifts in spectral
measurements have been presented. The most common
approach is to recalibrate the sensors as required. Unfortunate-
ly, this approach is not ideal, as firstly it is not always obvious
when a sensor requires recalibration and secondly, recalibration
procedures can involve the use of expensive reference
materials, as well as the loss of revenue because of the need
to stop the plant to calibrate the sensor.15 An alternative
method for tackling this problem is to understand the external
influences, such as temperature changes, affecting the mea-
surements and to compensate for them. The influence of
temperature on spectral measurements has been the subject of
several research projects.16–19 In particular, methods to identify
the relationship between temperature and spectral measure-
ments have been explored.19 However, to build such a model,
the temperature at which each measured spectrum was sampled
needs to be known, together with the concentrations of each of
the components in the measured spectrum. Whilst the former
may be routinely measured, the latter is typically unknown.

Another approach is to align the data before applying ICA.
Such a task is not trivial, as each component shifts
independently. Artificially shifting a spectrum to align it with
another, using the spectral features of one component as
reference, will result in the misalignment of other components.
Alternatively, more sophisticated aligning procedures may be
used, such as dynamic time warping (DTW)20 or alignment by
fast Fourier transform (RAFFT or PAFFT).21 These methods
artificially distort the spectra in the alignment process, which
introduces further problems in any further analysis, such as
ICA, where it is assumed that the shape of a component
remains consistent throughout the set of spectral samples.
Applying these methods for pre-aligning will result in ICA
identifying several components where it should have identified
only one.

Given that it can be difficult to ensure that spectral
measurements collected from a process do not suffer from
shift, it is important that real-time and off-line analysis tools are
able to cope with this effect. Unfortunately, the vast majority of
research in this field has focused on ensuring that the
measuring devices themselves do not produce shifted mea-
surements and that if they do, techniques be developed for
reducing or ideally eliminating this shift. Neither of these
approaches ensures that the spectral measurements are free

from shift before complex data analysis tools, such as ICA, are
applied to them.

In this paper, a post-processing technique is developed that
allows ICA to accurately identify the independent sources
contained in spectral measurements despite the sources being
shifted inside the data. When applying ICA to shifted spectral
data, it is found that several more significant components are
identified than would be otherwise. By combining these
components together in a specific way, the proposed method
is able to accurately identify the source components in the
spectrum. Finding the most appropriate combination of the
identified components can be formulated as a nonlinear
optimization problem. There are many optimization algorithms
that can be applied to solve this problem, one of the simplest
being gradient descent. This method finds a close-to-optimum
point in the solution space by following the ‘‘descent’’ flow
around a starting point. Unfortunately, it is very easy for this
algorithm to reach a local maximum, or minimum, and
consider it to be the global optimum.22 Genetic algorithms
(GAs) are a popular optimization algorithm that have been
designed to specifically search for a global maximum/
minimum and avoid any local solutions.23 A similar technique,
and the one that is utilized in this paper, is particle swarm
optimization (PSO). PSO applies social interactivity between
the different areas of the solution space to arrive at the solution
with significantly fewer iterations than a GA.24 Reduced
computation is a particularly important issue in this work, as
the ultimate goal is to provide real-time analysis of spectral
measurements.

In the following section of the paper, a brief overview of
ICA and PSO is provided. Then, a simulation study is defined
and the effect that frequency shifts have when applying ICA to
this simulated data is illustrated. Afterwards, the proposed
method is applied to a real pharmaceutical dataset.

THEORY

Independent Component Analysis. Independent compo-
nent analysis (ICA) was conceived by Jutten and Herault in
198613 and formally defined by Comon in 1994.25 ICA can be
used to separate a multivariate measurement into a number of
sub-components, or sources, and is therefore ideally suited to
the analysis of spectral measurements of mixtures composed of
independent compounds.

The independence between sources is used as the objective
function within the ICA formulation. This is then optimized to
identify the signals that are most independent of each other.
The different ways that independence can be estimated and
how it is maximized have resulted in several implementations
of the ICA concept.26–28 One popular implementation of ICA is
FastICA,6,29,30 introduced by Hyvärinen.31 FastICA uses the
amount of mutual information shared among the sources as a
measure of independence, estimated using differential entropy
or negentropy.6

The approach can be described by considering a series of
mixtures M, all of which are composed from a group of sources
C, which were mixed by a matrix A, i.e., M¼AC. An estimate
of C (known as C̄) can be extracted from M by applying C̄¼
BM, where B is a de-mixing matrix that ICA seeks to obtain.

To acquire B, M is first mean-centered and whitened. The
singular value decomposition of the covariance matrix MTM is
then calculated, resulting in M̃. Because M̃ is orthogonal, the
number of parameters that must be identified is reduced. The
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dimensionality of the problem can also be reduced in this stage
by discarding small eigenvalues of MTM.

After computing M̃, B is found by using a fixed-point iteration
scheme as defined below:

bi ¼ E M̃GðbT
i M̃Þ

� �
� E GðbT

i M̃ÞT
n o

bi ð1Þ

bi ¼ bi=jjbijj ð2Þ

repeat Eqs. 1 and 2 until convergence criteria is satisfied
where bi is the ith row of B; G is the first-order derivative of a
nonlinear function g that ‘‘does not grow too fast’’6 so it can
converge at a minimal level of entropy. Equation 1 was derived
by applying a constraint on the expected value of bT

i M̃ that
satisfies Kuhn–Tucker conditions, making it possible to find its
maximum value by a Newtonian method. The constraint
applied is ||bi|| ¼ 1, which is met by applying Eq. 2. Both of
these equations are applied until bi converges.

The process repeats as many times as there are rows in M̃.
All the created bis are then concatenated to form B. However,
more than one bi may reach the same maximum, resulting in
several estimates representing the same source. To avoid this,
Eq. 3 is applied after each iteration of the fixed-point schemes
to ensure that the rows in B are non-correlated. This method of
de-correlation is referred to as symmetrical and is preferred for
its equal weighting of all the bis.

B B � ðBTBÞ1=2
h i�1

ð3Þ

When B is calculated, the resulting C̄ will hold the estimated
sources that, because of the small amount of mutual
information between them, can be considered independent,
hence the name independent components (ICs).

It is important to mention that throughout this article when
using the term ICA, this refers to the FastICA implementation
of this method.

Particle Swarm Optimization. Particle swarm optimization
is a search algorithm that was introduced by James Kennedy
and Russell Eberhart in 1995.24 It is based on the inner social
behavior of a flock or a school to find food.

A group of particles (or swarm) is randomly placed inside
the solution space defined by an objective function. Each
particle can ‘‘move’’ towards different locations in the solution
space, and each location is graded by the objective function.
Every particle is able to remember the best-graded location it
has found, and makes it known to a pre-defined number of
neighbors. During each iteration, the velocity of each particle is
modified by considering the best-graded location found by the
particle and the best one found by its neighbors, i.e.,

Vxi
ðk þ 1Þ ¼ Vxi

ðkÞ þ 2�r�ðpbestxi
� presentxi

Þ
þ 2�r�ðgbestxi

� presentxi
Þ ð4Þ

where k is the iteration index, Vxi
is the velocity of the particle

in the direction xi, pbestxi
is the best-graded location in

direction xi found by the particle, gbestxi
is the best-graded

location in direction xi found by the neighbors of the particle,
and presentxi

is the current location of the particle in direction
xi. r is a stochastic factor that prevents several particles from
being at the same location. It makes the particles ‘‘spread out’’
in an area, rather than focus on a single point, which improves
significantly the chances of finding the true global optimum.
All the Vxi

s of all the particles are modified according to Eq. 4
until the best-graded location found by the whole swarm
converges or the maximum number of iterations is exceeded.

The PSO algorithm can incorporate the concept of a time-
decreasing inertia,32 which forcefully decreases velocities later

FIG. 1. Reference spectra randomly generated for use in experiments.
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in the search. This technique is an implementation of the
temperature decrease in a simulated annealing search,33 first
introduced by Černý in 1985. Applying it to PSO results in an
initial exploration of the whole solution space, pinpointing the
area where the global optimum is suspected to be located. It
then evolves into an exploitation of the area for the remainder
of the search. It has been shown that using time-decreasing
inertia in PSO provides faster and more accurate results than
without.32

Application Study. To demonstrate the capabilities of the
proposed method, artificial datasets that simulate the mixtures
of four components are used. The reference spectra for these
four components were randomly generated and are shown in
Fig. 1.

The domain of the spectra is in Hertz and their resolution is
0.1 Hz per frequency point (fp). The structure of these spectra
was defined such that they were consistent with data observed
in the pharmaceutical and biomedical industry,34 as well as
other fields.35,36

Each dataset consisted of 100 samples, each containing a
spectrum of a simulated mixture of the four reference spectra.
Before being ‘‘mixed’’, each spectrum was scaled by a factor

randomly chosen between 0.2 and 1, simulating its concentra-
tion, and was optionally shifted by a random value, in terms of
fp. A maximum shift value was given to each dataset
(max_shift), defining the range of [�max_shift, max_shift],
from which all the shift values applied to its samples were
randomly chosen.

RESULTS AND DISCUSSION

Application of Independent Component Analysis. Two
datasets, as defined in the previous section, were created; one
was specified with a maximum shift value of 1 fp (0.1 Hz)
while the other was left un-shifted. ICA was applied to both
datasets; the number of components identified in each case was
determined by the whitening process. The ICs identified from
the non-shifted dataset are shown in Fig. 2a, and the ICs
identified from the shifted dataset are shown in Fig. 2b.

Figure 2 shows that ICA is able to identify the four
components in the non-shifted dataset, but it identifies eight
components when using the shifted dataset. The trends
displayed in Fig. 2b show that there are pairs of ‘‘similar’’
components, but the peaks are not located at the same
frequencies and there are downward trends in the leading
edges of the peaks that are very dissimilar to the shape of the
sources.

Hyvärinen et al., pg. 1, wrote that ‘‘Actually, and perhaps
surprisingly, it turns out that [to solve the ICA problem] it is
enough to assume that [the sources] [...], at each time instant t,
are statistically independent.’’6 Meaning that each source needs
to be aligned properly in every mixture for it to be considered
the same component. If not, ICA identifies ‘‘partial compo-
nents’’ such as the ones shown in Fig. 2b. In this paper, this
feature is referred to as component division.

These partial components are different from the sources not
only in peak locations, but in peak shapes as well, so they
cannot be considered as source estimates by themselves. If the
maximum shift is increased, then further partial components for
each source are identified. This is important as in more realistic
situations the size of this shift is likely to vary continuously,
and hence more partial components would be identified.

Proposed Post-Processing Algorithm. Figure 3a shows
two related components that were identified when ICA was
applied to the shifted dataset. Figure 3b shows the spectrum
that results from simply adding these two spectra together.
Figure 3c shows the reference spectrum that is most similar to
the two spectra identified using ICA. These figures clearly
show that by adding the two partial components together, an
accurate approximation of the reference spectra is obtained.

The combined component illustrated in Fig. 3b is referred to
in this paper as the estimated independent component (EIC)
and is the estimate of the source to which the combined ICs are
related. This relatively simple technique provides a feasible
solution to identifying the source components in a spectrum
affected by frequency shift. However, exhaustive testing has
shown that when more partial components are identified, the
simple addition of related components does not produce
accurate approximation of the source spectra.

The post-processing algorithm proposed in this paper
operates in three stages:

(1) Partial components that are related are identified and
grouped.

FIG. 2. ICs identified by ICA with and without applying shift. (a) ICs
identified without shift. (b) ICs identified with a maximum shift of 1 fp.
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FIG. 3. Result of combining related ICs. (a) ICs found to be related. (b)
Combination of the ICs. (c) Source to which the ICs are related.

FIG. 4. Result of PSO search to correct the shape of the linear mix. (a) Source.
(b) ICs from a 2 Hz maximum shift. (c) Shape-corrected EIC.
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(2) The grouped components are combined to produce an
optimal EIC.

(3) Final processing of the EICs is undertaken to remove
artifacts from other components.

Each of the these three stages is now described in detail.

Grouping Related Components. Two components that are
‘‘related’’ to each other will have a high correlation coefficient
in an area near the origin in their resulting normalized cross-
correlation vector (NCCV). In this example, an area of 40 fp
(;8 Hz) with a cut-off value for the NCCV of 0.7 gave the best
results in terms of finding which components were ‘‘related’’.
However, studies suggested that the cut-off value of 0.7 was
too strict using other datasets. A way to find a balanced cut-off
value for a dataset is by applying all the values between 0.4 and
1 (with a step size of, say, 0.01) and recording the number of
groups of ICs that were obtained for each value. Any values
lower than 0.4 may give false positives of relation between ICs.

The number of groups most frequently recorded was found to
be a good estimate of the number of sources in the data, and
any cut-off value that produced this number is appropriate.
However, the cut-off value will not always be optimal, and
some components may get left out. In such cases, user
intervention may be necessary.

Combining Related Components. When only two compo-
nents are found to be related, scaling them to be of the same
height and adding them often provides a reasonable approx-
imation to a source spectrum, as shown in Fig. 3. However,
when more than two components are found to be related, it is
not enough to equalize heights and combine them, as
demonstrated in Fig. 4. In this example, four ‘‘grouped’’
components are identified and displayed in the upper graph of
Fig. 4b. The resulting EIC displayed in the lower graph of Fig.
4b has a very different shape from the source shown in Fig. 4a.

To resolve this problem it is necessary to find the optimal
combination of the scaling factors of the related components.

FIG. 5. PSO performance using the most similar EICs (0.2 Hz set). (a) Results for Comp. 1. (b) Results for Comp. 2. (c) Results for Comp. 3. (d) Results for
Comp. 4.
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For example, the upper graph of Fig. 4c shows the four re-
scaled related components that, when added together to provide
the EIC in the lower graph of Fig. 4c, accurately describe the
source in Fig. 4a. To find the optimal combination, PSO was
applied. The optimal EIC was defined as:

EIC ¼ shift IC1 þ ICn þ
Xn�1

i¼2

aiICi; l

 !

ð5Þ

and the following function was minimized:

P ¼ min½PearsonðEIC; data sampleÞ� ð6Þ

where ICi is the ith IC in the group, n is the number of ICs
inside the group, the Pearson function is a measure of similarity
based on the Pearson product-moment coefficient, and
data_sample is a randomly chosen sample spectrum from the
dataset. PSO aims to find the optimal combination of ais

(scaling factors applied to each ICi). The range of the ais was
chosen empirically to be between 0.8 and 3, which provided
good optimization speed without losing accuracy. The EIC is
being compared to a data sample that may be shifted, so, to
obtain an optimal fit, the EIC is artificially shifted an amount l
that PSO also aims to find.

The Pearson coefficient was used as it only takes into
account the similarity of the shapes of the spectra, regardless of
their magnitudes. To force only one optimal combination to
exist, the first and last ICs of the group (IC1 and ICn) remain
unchanged throughout the search. If all the ICs vary, different
combinations would exist that give the same measure of
optimality.

Final De-Correlation. Figure 3b shows that when calculat-
ed, the EIC may contain artifacts from other components (e.g.,
the small peaks between 20–35 Hz), implying that the EICs are
not completely de-correlated. To reduce this correlation, the
following update to every EIC is applied until convergence is

FIG. 6. PSO performance using the least similar EICs (1.1 Hz set). (a) Results for Comp. 1. (b) Results for Comp. 2. (c) Results for Comp. 3. (d) Results for
Comp. 4.
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reached:

EICi  EICi � EICj�
EICiðfjmÞ
EICjðfjmÞ

� �
ð7Þ

where EICi is the EIC to be updated; EICj is any other EIC; and
fjm is the frequency location with the most energy in EICj.

Estimated Independent Components in Further Analy-
sis. Once identified, the EICs can be used as reference spectra
for further analysis, such as determining the concentrations of
the various components in a measured spectrum. This can be
achieved by finding a combination of scaling factors and shift
values for each EIC, which, when combined, create a spectrum
that is the closest in shape to the measured spectrum. To find
such a combination, PSO can be applied to find an optimal:

C ¼
Xn

i¼1

½ci�shiftðEICi; liÞ� ð8Þ

such that

P ¼ minðEÞ ¼ min
XF

f

Cðf Þ �MSðf Þ
jjMSjj

� �2
( )1=2

ð9Þ

where MS is the measured spectrum; C is the spectrum created
when applying the concentrations ci and shift values li to their
respective normalized EICs (EICi) and adding them; and C(f)
and MS(f) are the energies located at frequency f in both spectra
of size F. E is a measure of dissimilarity between C and the
normalized measured spectra (MS/||MS||), based on the
Euclidean distance between them, which has been found to

give good results with this method. P is the minimum distance,
which identifies the optimal combination of concentrations and
shift values that best fit MS.

When the optimal combination is found, the estimated
concentrations of the normalized version of the sources inside
the measured spectra (x̂i) can be calculated by

x̂i ¼ ci�jjMSjj ð10Þ

Experiments and Results. For the following experiments,
20 different datasets were created, each having a different
maximum shift value, which ranged between 1 fp (0.1 Hz) and
20 fp (2 Hz). The proposed post-processing technique was
applied, and for every dataset, four EICs were identified,
matching the number of reference spectra used.

The maximum correlation coefficient between the reference
sources and their corresponding EICs shifted between �4 and
þ4 Hz, which was used as a measure of similarity. Table I
provides the mean value of the similarity metric for each
dataset, denoted by their maximum shift value. The bold
numbers highlight the most and least similar sets of EICs.
These values indicate that the proposed approach has
successfully identified the four sources even in situations of
severe shift.

To provide a measure of the accuracy with which PSO can
estimate concentrations in measured spectra using these EICs,
another dataset was generated with a maximum shift value of 1
Hz. In Figs. 5 and 6, the estimated and real concentrations are
plotted, using the most and least similar EICs, respectively, and
it can be seen that the concentrations are well estimated. The
mean square error was 2.9707 3 10�04 and 9.9480 3 10�04 for
the 0.2 Hz and 1.1 Hz EIC sets, respectively. These results

TABLE I. The average similarity metric of each EIC set against the reference spectra.

Set Corr. Set Corr. Set Corr. Set Corr. Set Corr.

0.1 0.9997 0.5 0.9945 0.9 0.9922 1.3 0.9924 1.7 0.9926
0.2 0.9999 0.6 0.9924 1.0 0.99924 1.4 0.9935 1.8 0.9917
0.3 0.9899 0.7 0.9930 1.1 0.9871 1.5 0.9937 1.9 0.9902
0.4 0.99942 0.8 0.9934 1.2 0.9923 1.6 0.9928 2.0 0.9882

FIG. 7. Spectral data of pharmaceutical tablets. FIG. 8. ICs that were found by ICA in spectral data.
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highlight the accuracy with which PSO can estimate the

concentration of each identified component in the mixtures.

CASE STUDY

In this section the ability of the proposed technique to

compensate for shift in a real set of spectral data was

investigated. The dataset that was used in this study is part

of a public database consisting of 310 NIR spectra, made

available by Dyrby et al.,5 sampled from pharmaceutical tablets

of Escitalopramt. It is composed of several batches, differing

by the size of the tablet (5, 10, 15, and 20 mg), and each batch

has three sub-batches that differ in production scale (full scale,

pilot scale, and laboratory scale).

The mixture inside the tablets is composed of an active

ingredient and several excipients, such as mycrocrystalline

cellulose (dominant), magnesium stearate, and talc. In this

section, the results when analyzing the batch of laboratory-

scaled 5 mg tablets is presented. The results obtained using this

dataset were comparable to those from the other datasets.
Figure 7 shows the spectra from this batch of measurements.

Detailed examination of the spectra in Fig. 7 suggests that
there is some frequency shift in the data, specifically in the area
between 8000 and 8500 cm�1, as well as the incidence of a
small amount of noise. When ICA is applied to this data, 30
components were identified (shown in Fig. 8). Considering that
there are 30 spectra in the dataset, it can be deduced that ICA is
unable to reduce the observations to their unique components.
This result illustrates the sensitivity of ICA to frequency shift.

The proposed shift compensation algorithm was applied to
the dataset, and the resulting components are shown in Fig. 9.
Details provided by Dyrby et al.5 suggest that the active
ingredient has an important peak near 8830 cm�1, and visual
comparison of Fig. 9b to the reference spectrum provided in the
original work indicates that the component in Fig. 9b is similar
to the spectral signature of the active ingredient. It is
suggested5 that the dominant excipient, mycrocrystalline
cellulose, has a prominent peak near 8200 cm�1, indicating
that the component in Fig. 9c is a good candidate for this

FIG. 9. EICs obtained from the results in Fig. 8. (a) EIC 1. (b) EIC 2. (c) EIC 3. (d) EIC 4.
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material. Information on the other materials in the tablet is not
available.

It is important to note that the spectral signature of the active
ingredient did not suffer from shift in the dataset. However, the
severe shift in the other components made it difficult to
correctly identify it using ICA alone. This implies that even
from the same batch, seemingly irrelevant components (such as
excipients in pharmaceutical tablets) may cause difficulties
when identifying the active ingredients.

CONCLUSION

This paper has demonstrated that FastICA is not robust when
applied to spectral data that suffers from frequency displace-
ment. However, by using a post-processing algorithm it is
possible to recover the shape of the spectra of the source
components. The proposed approach was successfully applied
to both simulated examples and to pharmaceutical NIR data.

In each study the proposed algorithm was able to recover a
set of components that were very similar to the expected
components. Further analysis showed that the accuracy with
which the reference components could be identified from the
data was such that the concentration of each of the components
in the data could be identified with a very high level of
accuracy.
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