
Curve Resolution by Sample Subtraction

Abstract

Blind Source Separation and Curve Resolution methods have been used increas-
ingly in Spectroscopy and Process Analytical Techniques to extract, from spectral
samples, estimates of the spectral signatures of the underlying components in a
material. Spectral distortion, caused by sensor de-calibration or by external influ-
ences, is an important factor for which current component extraction techniques are
unable to cope with. In this paper, a technique is proposed that is able to estimate
the spectral components from a distorted spectral data set. The capabilities of the
proposed approach are illustrated using simulated and laboratory data.

1 Introduction

Analysis of spectroscopic data has been increasingly used in the Pharmaceutical Industry,
specifically in the area of Process Analytical Technology (PAT) [1, 2]. Szostak et al.[3],
for example, demonstrated how Raman spectral measurements could be used to identify
the compounds in a pharmaceutical tablet. A further use of this approach used spectral
measurements to identify counterfeit medicines [4]. Another important motivation for
spectral signature extraction is their use in the estimation of component concentrations
[5].

There is a wide array of techniques commonly used for component extraction. Many
of these techniques fall under the umbrella of Blind Source Separation (BSS) methods
[6] or Self-Modelling Curve Resolution methods (SMCR) [7]. Of the many BSS/SMCR
techniques available, for the analysis of spectral data, Principal Component Analysis
(PCA), Alternating Least Squares (ALS), Non-Negative Matrix Factorization (NNMF),
and Independent Component Analysis (ICA) have proved popular.

Principal Component Analysis (PCA) is able to reduce the dimensionality of a problem
by identifying directions of greatest variation in the data, with the imposed constraint
that each of the directions are orthogonal. Each of these directions can be considered a
‘component’ of the data, and the small-variance directions that are identified are typically
considered to be ‘noise’ [8]. However, because only limited constraints are applied with
this algorithm, the components that it identifies may have little physical meaning [9].

Non-negative Matrix Factorisation (NMF) assumes that all components that are iden-
tified have no negative parts, which can make their physical representations easier to
render [9]. However, it has been found that in certain circumstances it is difficult for the
algorithm to converge to a global optimum, or even to converge at all [10].

Alternating Least Squares (ALS) extracts the components from a data set by exploit-
ing the assumption of a linear combination, however it is required that the number of
components to be retrieved is known a-priori. Although this can be attempted in a vari-
ety of ways [7], the presence of noise and other factors can make this procedure non-trivial
[7]. However, with ALS this issue can be circumvented by using an increasing amount of
components until convergence is reached [11].
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Independent Component Analysis (ICA) is an alternative approach to extracting
meaningful components from a data set, assuming that all sources are independent of
one another [12]. It provides an objective function that, when optimized, identifies com-
ponents that have real physical meaning [13]. This technique has been used extensively
in many different areas of science and engineering and its popularity is increasing [14, 15].

Much of the research conducted into using these BSS and SMCR methods to analyze
spectral measurements has concentrated on their use in an off-line capacity. However,
the ability to analyze spectral data in real-time offers important benefits to industrial
automation. In particular, the ability to analyze spectral measurements in real-time
provides the possibility of using such measurements in a feedback control system or for
real-time release of product. Unfortunately, analyzing spectra in real-time introduces a
number of complex challenges, such as coping with measurements that may be subject
to distortion from variations of the parameters in the surrounding environment (e.g.
temperature, pressure, humidity, etc.).

Spectral instrumentation requires precise and complex calibration methods, if it is to
obtain spectra that can be used in spectral analysis [16–20]. Continuous calibration of
spectral sensors is necessary as spectral data acquisition methods, such as Raman, Mass
and Infrared, are sensitive to external influences. Relevant external influences include
temperature changes [21–29], pressure changes [25, 27], presence of foreign materials
[16, 18] and hidden factors in the material [17].

It can be argued that calibrating a sensor inside a sterile laboratory is all that is
necessary to overcome the problem of spectral distortion. Unfortunately, this approach
is not ideal, as firstly it is not always obvious when a sensor requires re-calibration and
secondly, re-calibration procedures can involve the use of expensive reference materials,
as well as the loss of revenue because of the need to stop the plant to calibrate the sensor
[30]. This means that calibration is, at best, only a temporary solution.

Furthermore, it has been observed that specific types of sensors respond non-linearly
to different materials as well as to interactions between different compounds inside the
sample [31], meaning that a single calibration may not resolve the problem. There is
also a growing need to use different laboratories for sampling similar material, and for
this a complex and costly calibration method, called “Calibration Transfer”, is required
[26, 32]. The problem is further complicated by the fact that using the same equipment,
in the same laboratory, with the same sampled material, has been shown to produce
inconsistent results [33]. In addition, the advent of spectral analysis in real-time quality
monitoring [34] highlights the need for aligned spectra in sensors located inside a plant
in which conditions are time-varying. All of the described factors illustrate the difficulty
of satisfying the fundamental assumption that the spectra being analyzed are perfectly
aligned.

To solve this problem it is firstly necessary to understand how external influences
affect spectral measurements and to then compensate for these influences accordingly.
The manner in which a spectrum shape is distorted depends on the type of sensor being
used, the material being inspected, and the external influence involved. For example,
the influence of temperature on spectral measurements has been studied extensively, and
its effects on spectral data have ranged from Spectral Shift [31, 35], to Spectral Warp
[29, 36], to a non-linear distortion that could only be modelled by a second-order system
[24].
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With knowledge of the relationship between any external influence and the manner by
which the specified measurement is distorted, it is then possible to remove the distortion.
For example, the components extracted by ICA from spectral data suffering from Spec-
tral Shift were able to be corrected by a post-processing method [37]. However, a high
investment of time and energy would be required to fix current component extraction
methods for every type of distortion that may be encountered.

In this paper, a new component extraction method is proposed that is able to analyze
spectra suffering from various types of distortion. Its main objective is to estimate the
spectral signatures of the components inside a set of distorted spectra, whilst being able
to be easily modified, according to the distortion suspected of occurring. In the following
section, the proposed methodology is described. In Section 3, a simulation study is
defined and a comparison with ALS is provided. The proposed method is also applied to
a public mass spectral data set and a spectral ice analog set; both suffer from distortions.
Finally, discussions and conclusions from both studies are presented.

2 Proposed Technique

The proposed algorithm aims to extract the underlying components in a spectral data
set by subtracting scaled versions of the samples from the remainder of the set, such that
the samples are left with only one unique component. If the number of samples being
processed is equal to the number of components to be retrieved, then the result of the
algorithm would be that the features appearing in one sample would be those of only one
component.

To illustrate the subtraction process, an example is given where no distortion is
present. Two simple components, shown in Figure 1, were used to create the two simu-
lated sampled spectra shown in Figure 2.
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Figure 1: Reference spectra used in example.
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Figure 2: Two simulated spectral samples created using reference from Figure 1.

Sample 1, shown in the upper graph of Figure 2, is scaled such that the maximum
amplitude is equal to the amplitude at the same location in Sample 2. In the upper
graph of Figure 3, the dashed line is the scaled version of Sample 1, trended over Sample
2. Subtracting the scaled Sample 1 from Sample 2 results in the spectrum shown in the
lower graph of Figure 3. The samples in this example did not suffer from any distortion,
therefore the second peak has been eliminated completely from Sample 2, whilst the
remaining features of the spectra persist.
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Figure 3: Result of subtracting scaled Sample 1 from Sample 2 without shift.

If this process is then carried out in reverse, scaling Sample 2 with Sample 1 and
subtracting, both samples become the unique components, as shown in Figure 4.
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Figure 4: Samples after subtracting scaled Sample 2 from Sample 1 without shift.

Comparison of the shapes of the resulting subtracted components to the reference
spectra in Figure 1 suggests that they are very similar to the sources. It is important to
note that, because of the subtraction process, the amplitudes in the estimated components
are not equal to the ones originally in the samples. However, scaling them back is trivial,
as the original amplitudes of each peak can be carried forward. Algorithm 1 summarizes
the method when no distortion is present in the spectra.

Algorithm 1 Simple Blind Source Separation Algorithm.

repeat
for all Ŝ ⇒ Ŝa do
Ŝam = max(Ŝa, return index )
for all Ŝ 6= Ŝa ⇒ Ŝb do
Ŝb ← Ŝb − (Ŝa ∗ Ŝb[Ŝam ]/Ŝa[Ŝam ])

end for
end for

until convergence

where Ŝ is a subgroup of the data set S which has k samples, equal to the amount
of components to be retrieved. Convergence is reached when the Mean Square Error is
below a pre-specified tolerance, which should be specified to avoid overshooting. For a
set of four spectra, each of length 1500 points, a tolerance of 0.001 gave the best results
in this study.

To illustrate how the proposed approach is able to be used when spectral distortion
is present, Spectral Shift is introduced to each component, as shown in Figure 1 is intro-
duced. When spectral samples are distorted, two issues arise. First, the peak in which
the maximum value of Sample 1 lies needs to be re-scaled and aligned to the one in
Sample 2 such that it is completely eliminated from Sample 2, as shown in Figure 5. The
lower graph shows the result of appropriately aligning and scaling Sample 1 such that
the second peak in Sample 2 is eliminated.
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Figure 5: Result of subtracting scaled Sample 1 from Sample 2 with shift.

The second issue can be observed in the lower graph of Figure 5, where the shape
of the remaining peak is considerably distorted. This can be overcome by ‘adding back’
to Sample 2 only ‘certain parts’ of the re-scaled, aligned Sample 1. In the lower graph
of Figure 6, the remaining peak in Sample 2 is restored by adding back the dashed line
shown in the upper graph, which is an appropriately chosen section from Sample 1.
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Figure 6: Restoring remaining features of Sample 2 by partially adding back Sample 1.

The alignment phase and the restoring phase can be incorporated into the definition
of Algorithm 1 to obtain the final version of the proposed approach, summarized in
Algorithm 2. It is assumed that a subset of randomly chosen samples Ŝ has been defined.
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Algorithm 2 BSS by Substraction.

repeat
for all Ŝ ⇒ Ŝa do

for all Ŝ 6= Ŝa ⇒ Ŝb do
Ŝadistorted = find best alignment(Ŝa, Ŝb)

sam = max(Ŝadistorted , return index )

N = Ŝb[sam ]/Ŝadistorted [sam ]

Ŝb ← Ŝb − (Ŝadistorted ∗N)

I = find indexes to repair(Ŝb)
Ŝb[I]← Ŝb[I] + (Ŝadistorted [I] ∗N)

end for
end for

until convergence

The find best alignment function finds the best way to temporarily distort Ŝa such
that its maximum value best aligns with the features that are near it in Ŝb. N is the
value which normalizes the distorted Ŝa such that its maximum value is equal to the
corresponding location in Ŝb. The find indexes to repair function locates the indexes
I of Ŝb that need repairing, and, hence, defines the sections of Ŝadistorted that need to

be added back to Ŝb. An explanation of both of these functions, as well as several
observations made from the implementation, are now discussed.

Finding Best Alignment. The process of finding the best distorted alignment involves
estimating the amount of global distortion needed to be artificially applied to Ŝa such
that the area near its maximum value when being subtracted from Ŝb is close to zero.
In other words, Ŝa is artificially distorted and subtracted from Ŝb to create a temporary
spectrum D, from which the values near the maximum value of Ŝa are gathered. This is
summarized in (1).

D = Ŝb − distort signal(Ŝa, distort measures) (1)

An optimization algorithm, as well as a brute-force approach, can be applied to find
the optimal set of distort measures . However, it was found that when dealing with two or
more spectral distortions at the same time, a brute-force approach was highly inefficient.
The use of an optimization algorithm, such as Particle Swarm Optimization [38, 39]
provided faster results.

Depending on the type of distortions, the objective function used by the optimization
algorithms may differ. For example, when observing Spectral Shift, the objective function
in (2) sufficed.

M = −abs(D[sam ]) (2)

where

sam = max(Ŝashifted , return index ) (3)

and
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Ŝashifted = distort signal(Ŝa, shift). (4)

The max function, with the return index flag, returns the index of the maximum
value of a spectrum, and M is the measure of optimality.

When dealing with a Spectral Shift coupled with a Spectral Warp, the objective
function in (5) provided accurate results.

M = −
sam+range∑

i=sam−range

D[i]2 ∗ i (5)

where range is a predefined number of points to the left and right of sam , the location
of the maximum value of Ŝashifted and warped

defined by (6).

Ŝashifted and warped
= distort signal(Ŝa, shift ,warp) (6)

Each value in D is weighted such that the values to the right side of sam are given
more weight. The reason for this is that, because of the nature of the warp distortion,
the differences between the features are more predominant and more easily identifiable
to the right side of the maximum value.

It is important to note that the objective function needs to be defined by using
appropriate knowledge of the distortion taking place. However, being able to consider
several distortions at the same time is an important quality of the proposed algorithm,
as knowledge from a plant expert can be incorporated in a relatively easy manner.

Finding Locations to Repair. The process of finding which frequency locations re-
quire modification after the subtraction has taken place is relatively simple. It was found
that if the value of a frequency location was outside a predefined range, then it was nec-
essary for it to be repaired. This range does need to be tuned for the specific spectral
signals being used, but, in this study, a value of 1% of the full frequency spread was found
to be suitable for both limits (one negative and the other positive). If the peaks have
sharp edges, having a negative limit close to zero and increasing the positive limit were
found to smoothen the peaks. However, overshooting may result in slow convergence as
well as thin features being created.

Post-Filtering. If there is a small amount of overlap or noise in the spectra, all the
locations to be repaired may be difficult to identify. Therefore, the samples will have
an increasing amount of small features, as more locations are not identified. However,
because of the small nature of these features, they can be filtered out relatively easy. A
moving average window filter with a window of length of 1% of the range of the spectrum
was used in this work to remove the small features. This filter was found to remove a large
quantity of these features, without significantly affecting the structure of the identified
component features.

Number of Samples to Use. The number of samples in the subset Ŝ must be the
same as the number of components to be extracted, k. Although k can be estimated using
several techniques, these have been shown to be fragile against spectral distortion [37].
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However, it was found that the number of components can be estimated if the proposed
algorithm is applied repeatedly, with an increasing amount of samples every time, until
the extracted components begin repeating themselves.

Because the algorithm only requires as much samples as there are components, it may
be possible that a sample with a heavy distortion or noise may be used. Although this is
not an issue in cases where there are more than one component, as the distortion/noise is
‘absorbed’ by the subtracting process in the other components, it becomes an important
factor when dealing with only one component. To this regard, a way to circumvent this
issue that has provided very good results (Section 4 provides a good example of this) is to
run the algorithm with all the possible pairings between samples in the set, and average
the most similar ones, which is a good estimation of the component.

3 Results with Simulated Data

To demonstrate the capabilities of the proposed method, artificial data sets that sim-
ulate the mixtures of four components are used. The reference spectra for these four
components were randomly generated and are shown in Figure 7.
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Figure 7: Reference spectra randomly generated for use in experiments.

The domain of the spectra is in Hertz and their resolution is 0.1 Hz per frequency
point. The structure of these spectra were defined such that they were consistent with
data observed in the Pharmaceutical and Biomedical Industry [40], as well as Mass
Spectrometry[35], and other fields [41, 42].
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Two 100-samples data sets were created. Each sample contained a spectrum of a
simulated mixture of the four reference spectra. Before being ‘mixed’, each spectrum was
scaled by a factor randomly chosen between 0.5 and 1.5, simulating its concentration.

To simulate the effects of external influences, two distortions were chosen: Spectral
Shift, that displaced each component by a different amount, and Spectral Warp, that
stretched or compressed the spectrum by a defined percentage. These two distortions were
decided upon because of their frequent occurrence in literature. One data set suffered
from Spectral Shift within a range of ±2 Hz, and the other suffered from Spectral Shift
as well as a Spectral Warp that ranged between 95% to 1.05%.

Alternating Least Squares and the proposed technique, BSS by Subtraction (SubBSS),
were applied to both data sets, both assuming that the correct number of components
was known a-priori. Four randomly chosen samples were used by BSS by Subtraction,
whilst the whole data set was used for ALS. The results for the first data set are shown
in Figure 8 and for the second data set in Figure 9.
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Figure 8: Components extracted from data set suffering from local shift.
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Figure 9: Components extracted from data set suffering from local shift and global warp.

Figures 8 and 9 show that Alternating Least Squares was not able to extract the
correct components. In fact, in both cases, ALS reached 2000 iterations without conver-
gence. Both Figures show that the BSS by Subtraction technique was able to estimate
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four components similar to the benchmark. As can be observed, when two distortions oc-
cur at the same time, as is the case of Figure 9, the accuracy of the technique is reduced.
However, the extracted components are still similar to the actual source components and
significantly better than those extracted by ALS.

4 Case Study: SELDI-TOF Samples

The data set that was used in this study was a publicly available data set consisting of
11 mass spectrometry samples that were measured from a study examining individuals
with multiple sclerosis [35]. The samples used were those of healthy individuals, taken
as a reference for quality control. It was found that, even though the spectra should
be consistent, as can be seen in Figure 10, there were significant deviations in the m/z
axis, the most relevant of which is Spectral Shift. Jeffries states the reason for this as
being the considerable amount of calendar time between the processing of samples (even
several weeks), which makes the procedure highly frail against machine drift, even with
‘identical calibration procedures, personnel, equipment and sample handling techniques’
[35].
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Figure 10: SELDI-TOF proteomic spectra from serum.

Using rank analysis techniques, such as Singular Value Decomposition, it was con-
cluded that there was no redundancy in the data, i.e. it was of full rank. However, by
applying the BSS-subtraction method to this data repeatedly, using an increasing num-
ber of samples, it was concluded that there was a single component in the spectra. This
component is shown in Figure 11a.

Figure 11b shows the spectral sample ultimately used in the study as reference; it
required re-sampling and further alignment to create [35]. Comparison of Figures 11a
and 11b illustrate that the proposed algorithm has successfully identified the reference
spectrum of the active component.
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(a) Component obtained by SubBSS.
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(b) Reference spectrum.

Figure 11: Recovered component and its reference spectrum.

In Figure 12a, it can be seen that the component1 and the reference are aligned as
the result of the proposed algorithm. In Figure 12b, a zoomed in area of the composite
plot (between 5640 and 6140 m/z) indicates that the alignment is nearly exact.
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(a) Component and reference overlayed.
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(b) Zoomed in version of Figure 12a.

Figure 12: Recovered component and its reference spectrum.

5 Case Study: Ice Analogs

The data set that was used in this study was a publicly available data set consisting of
9 NIR samples that were measured from samples of carbonized ice (H2O+CO). These
measurements were initially measured in an experiment to observe the effect that heat
had on the NIR spectrum [43]. The two most relevant variations that were recorded are
highlighted in Figure 13. It shows the 9 NIR spectra and highlights, with arrows, the
effect that the increase in heat has on the spectra. All the spectra shown in this case
study are in cm−1.

1The component was scaled for visualization purposes.
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Figure 13: Spectral data of ice UV-radiated in different amounts.

As in the SELDI-TOF case study, using rank analysis to estimate the number of
components did not provide sensible results, making the data set full rank. Again, the
BSS-subtraction method was applied repeatedly, using an increasing number of samples,
until the extracted components began repeating themselves. It was concluded that there
were two components in the spectra, which are shown in Figure 14.
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Figure 14: Components extracted using SubBSS.

Figure 15b provides the reference spectrum for carbonised ice obtained from The
Cosmic Ice Laboratory at NASA [44]. Comparison of Figures 15a and 15b illustrate
that the proposed algorithm has successfully identified the reference spectrum of one
component. As for the second component, an important peak at 2340 cm−1 is found,
which is close to what spectroscopy literature [45] states as the probable presence of a
type of carbonyl (CO or CO2), which is expected.
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(a) First component obtained by SubBSS.
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(b) Reference spectrum from NASA.

Figure 15: Recovered component and its reference spectrum.

6 Discussion and Conclusions

This paper has proposed a novel technique for extracting components from spectral mea-
surements, that have been distorted by external influences. The proposed method is
simple in form and intuitive, which should help with acceptance in industry. The method
can also cope with many different types of distortion and can be modified with relative
ease to cope with an array of distortions that may be suspected of being present.

The algorithm showed great potential for resolving the problem of component ex-
traction from distorted spectra with both a simulated data set and data distorted from
practical situations. It was shown that the algorithm was able to cope with two different
types of distortions taking place at the same time, and the fact that more distortions can
be considered bodes well for its generalized application. This algorithm, as shown in the
Ice Analogs case study, is well suited for use on composite spectra (the estimation process
is straightforward and robust against noise). However, it also showed a good ability to
obtain an aligned reference from a data set of distorted spectra due to machine drift, as
shown in the SELDI-TOF case study.

It is important to note that the proposed method assumes that the components to
be extracted are uncorrelated. If there is correlation, then shared features will appear in
only one of the components, and incorrect components will be identified.
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