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1 Introduction

Particle Swarm Optimisation (PSO) has recently been increasing in popularity as a

Black-Box optimisation algorithm (Ressom et al 2005; Kennedy and Eberhart 1995;

Rascon et al 2008; Meissner et al 2006). An important reason for this is its simple

structure which can be modified, to incorporate improved methods by which particles

exchange information. For example, improvements in performance were seen when

historical accounts were exchanged between particles (Veeramachaneni et al 2003). The

strength of PSO relies on the flow of information throughout the swarm, which ensures

that the global optimum is reached. To this effect, it is important to define which

neighbours a particle can exchange information with. This exchange of information is

referred to as particle topologies (Montes de Oca and Stützle 2008).

In (Meng and Jia 2008) it was stated that the two most popular variations of

topologies between particles are the ‘ring’, in which the particle only has two neigh-

bours, and the ‘full’, in which all the particles exchange information with every one

another (Mendes et al 2004). The latter was very popular, as, when introduced, it

gave promising results when applied to many PSO variations (Mendes et al 2004). The

reason for the consistently good results was that the information flow throughout the

swarm remained constant. It also provided the user with a simple topology, compared

to the neighbourhood-based topologies that rely on the information gathered from only

a handful of neighbours near the particle. However, further experimentation has found

that the Full Topology PSO variation is too dependent on the type of solution space

encountered (Montes de Oca and Stützle 2008) and that, in fact, the larger the neigh-

bourhood, the more stagnant the particle movements become. This suggests that the

use of small neighbourhoods is important in the development of a widely-applicable

PSO variation.
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The most popular definition of a neighbourhood, with which the particle exchanges

information, is the nearest particles to it at any given time. This definition has been

implicitly used since the inception of PSO, and there has been little mention of its

limitations to the information flow throughout the swarm.

In this paper, a new type of ‘neighbourhood’ is defined. This neighbourhood is based

on the concept of particle fidelity is introduced and the effect that this new definition

has on the performance of PSO is explored. In the following section, a brief background

on PSO is provided. This is followed in Section 3 with a brief definition of ‘particle

fidelity’. In Section 4, the effects that particle fidelity has on the performance of PSO

are explored, with a set of popular benchmark solution spaces. Finally, conclusions are

provided.

2 Background

Particle Swarm Optimisation (PSO) is a search algorithm that was introduced by James

Kennedy and Russell Eberhart in 1995 (Kennedy and Eberhart 1995). It is based on

the inner social behaviour of a flock or a school to find food.

A group of particles (or swarm) is randomly placed inside the solution space defined

by an objective function. Each particle can ‘move’ towards different locations in the

solution space, and each location is graded by the objective function. Every particle

is able to remember the best-graded location it has found, and makes it known to a

pre-defined number of neighbours. During each iteration, the velocity of each particle

is modified by considering the best-graded location found by the particle and the best

one found by its neighbours, i.e.

Vxi(k + 1) = Vxi(k) + 2 ∗ r ∗ (pbestxi
− presentxi

) + 2 ∗ r ∗ (gbestxi
− presentxi

) (1)

where k is the iteration index, Vxi is the velocity of the particle in the direction

xi, pbestxi
is the best-graded location in direction xi found by the particle, gbestxi

is the best-graded location in direction xi found by the neighbours of the particle,

presentxi
is the current location of the particle in direction xi, and r is a stochastic

factor that prevents several particles being in the same location. The inclusion of r

makes the particles ‘spread out’ in an area, rather than focus on a single point. This

improves significantly the chances of finding the true global optimum. All the Vxis of

all the particles are modified according to (1) until the best-graded location found by

the whole swarm converges or the maximum number of iterations is exceeded.

PSO can incorporate the concept of a time-decreasing inertia (Shi and Eberhart

1998), which forcefully decreases velocities later in the search. This technique is in

fact an implementation of the temperature decrease of a Simulated Annealing search

(Černý 1985). Applying it to PSO results in an initial exploration of the whole solution

space, pinpointing the area where the global optimum is suspected of being located,

and then evolves into an exploitation of this area for the remainder of the search. It

has been shown that using time-decreasing inertia in PSO provides faster and more

accurate results than without (Shi and Eberhart 1998). It has also been shown that by

a choosing an appropriate value for the inertia weight, and ensuring that the sum of

the weights for each influential location is greater than 4, using time-decreasing inertia

ensures convergence (Eberhart and Shi 2000).
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3 Particle Fidelity

When a particle ‘asks’ its neighbours for the best location they have found, the different

variations of the algorithm do not specify if the neighbours are those closest to the

particle at that precise moment, or if they are the initial neighbours of the particle

when the algorithm was initialised.

A particle, in the initial stages of the algorithm, can define its closest neighbours

as its ‘family’, and only ask those particles throughout the search, rather than relying

on the findings of the closest neighbours it has at each iteration. In this paper, the

behaviour of only gathering information from the initial particle neighbourhood is

referred to as particle fidelity.

4 Experiments & Results

To test whether particles being faithful has any impact on the performance of the

algorithm, two variations of PSO were implemented: one in which the particles relied

on the findings of the closest neighbours at each iteration (Neighbour PSO) and another

in which the particles remained faithful to their respective families (Family PSO). Each

method was applied 100 times to each of four different two-dimensional optimisation

problems. The optimisation problems studied in this section have been popular in

testing optimisation algorithms (Oltean 2003; Meissner et al 2006).

Optimisation Problem 1: De Jong’s Sphere. (Jong 1975) This is a convex solution space

that features a single wide peak. It is a relatively simple problem that is applied here

as a frame of reference, as all optimisation algorithms are expected to be able to solve

it. It is described as:

Z = −
D∑

d=1

x2
d (2)

where D is the number of dimensions (2 in this case) and xd is a dimension. The

maximum is located at xd = 0 for all d, with a value of 0. A graphical representation

of De Jong’s Sphere is shown in Figure 1(a).

Optimisation Problem 2: Rastrigin Function. (Rastrigin 1974)The Rastrigin Function

features many local minima, but only one global optimum at its center. As shown in

Figure 1(b), the shape of the Rastrigin Function is similar to that of De Jong’s Sphere,

but much ‘bumpier’. It is described as:

Z = −10 ·D −
D∑

d=1

x2
d − 10cos(2πxd) (3)

It was modified such that the optimum was the maximum value of the function,

with a value of 0, located at xd = 0 for all d.
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Optimisation Problem 3: Schaffer F6 Function. (Schaffer et al 1989) As shown in Fig-

ure 1(c), this function simulates a set of ‘waves’ similar to those that appear after

throwing a rock into a pond. All the points in the top of each wave have values very

similar to that of the global optimum, and the closer the wave is to the center, the

closer these values are to the global optimum. This translates to having an infinite

number of local minima to avoid. The function is described as:

Z = −0.5 −
sin2

√
x2
1 + x2

2 − 0.5

1 + 0.01 · (x2
1 + x2

2)
(4)

It was modified such that its optimum was the maximum value of the function,

with a value of 0, located at xd = 0 for all d.

Optimisation Problem 4: Rosenbrock Function. (Rosenbrock 1960) The Rosenbrock

function aims to ‘trick’ the optimisation algorithm into finding an area of local minima

from which it is difficult to ‘jump out’ of and find the global optimum. It is described

as:

Z = −
D−1∑
d=1

100 · (xd−1 − x2
d)2 + (1 − xd)2 (5)

It was modified such that its optimum was the maximum value of the function,

with a value of 0, located at xd = 1 for every d. A graphical representation of this

modified version of the Rosenbrok Function is shown in Figure 1(d).
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(a) De Jong’s Sphere. (b) Rastrigin Function.

(c) Schaffer F6 Function. (d) Rosenbrock Function.

Fig. 1: Graphical representation of the solution spaces used in testing.

In the tests, the number of particles in the swarm was set to 10, with each particle

having 5 neighbours/family members. The optimal value in all the problems was 0, and,

because the accuracy of the MATLAB software was 2.2204 ∗ 10−16, any point found

with a fitness below this value was considered to be the global optimum and given the

value of 0. Inertia was reduced from 1 to 0.2 in the first 300 iterations of the search.

The number of iterations was limited to 30,000; if the maximum number of iterations

was reached, the best solution found at this time was returned as the solution of the

search.

The results when testing Neighbour PSO are shown in Table 1, and those using

Family PSO are shown in Table 2.
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Table 1: Results using Neighbour PSO.

De Jong Rastrigin Schaffer F6 Rosenbrock

Mean Error from Optimum 0 0 0 0.4342 ∗ 10−7

Mean Error from Optimal Di-
mension Values

0 0.0021 ∗ 10−6 0.0021 ∗ 10−6 0.7459 ∗ 10−6

Mean Number of Iterations 559.7 1189.4 604.8 6096.1
Standard Deviation of Number
of Iterations

24.9 4138.8 106.9 3461.6

Table 2: Results using Family PSO.

De Jong Rastrigin Schaffer F6 Rosenbrock

Mean Error from Optimum 0 0.1776 ∗ 10−7 0 0
Mean Error from Optimal Di-
mension Values

0 0.0865 ∗ 10−8 0.2230 ∗ 10−8 0

Mean Number of Iterations 617.8 966.7 958 5664.5
Standard Deviation of Number
of Iterations

34.8 2936.5 261.8 761.6

In all the tests, both PSO variations arrived at a value close to the optimal, and,

as expected, the De Jong function was optimised consistently. However, because of the

nature of the test functions, a close-to-optimal value may belong to a local optimum.

An analysis of the mean error from the optimal values of each dimension shows that

it decreased substantially when the particles were faithful to their family, from errors

in the range of 10−6 to 10−8.

Another factor that was considered was the number of iterations necessary to reach

a global optimum. Although the mean number of iterations did not appear to deviate

when using either of the two variations, the substantial decrease of the standard de-

viation when testing the Rastrigin and Rosenbrock function indicates that, when the

particles were being faithful, the number of iterations needed to find the optimal solu-

tion tends to vary less from its mean. This suggests that, when applying Family PSO,

the search is more likely to find an optimal solution in the expected number of itera-

tions. When testing with the De Jong function, the change in the standard deviations

between using the PSO variations is small. The only function in which Family PSO

takes considerably more iterations to converge than Neighbour PSO is with the Schaf-

fer F6 function, but Family PSO consistently obtains a better result than Neighbour

PSO when being tested with that function.

5 Conclusions & Discussion

Particle neighbourhoods have been shown to be the PSO variations with the widest

applicability, however, the definition of ‘neighbourhood’ has not been discussed. In this

paper, a new definition of neighbourhood was introduced, referred to as ‘family’. In

the Family PSO variation proposed in this paper, a particle gathers information from

only its initial family, regardless of their position in the solution space.
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Tests showed that, when optimising functions with a high number of local optima,

there is increased reliability and performance in the PSO search if the particles are

faithful to their initial family. An explanation for this is that, because of their initial

uniform distribution, all the particles will have a different family, resulting in all the

particles communicating with each other. If one family finds an important location,

the members of that family will communicate it to their respective families, and so

forth. In addition, because of their fidelity, the flow of information remains constant,

resulting in consistent findings. In the case of Neighbour PSO, there is a high probability

that the neighbours of one particle are the same as another, as their close distance is

the only factor that joins them, which can result in a high number of particles not

communicating with the rest of the swarm.
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