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Using Spectral Data in Monitoring

•  Pharmaceutical Industry
–  Crystallisation of active ingredients (Yu et. al., 2003)
–  Confirm sample temperature
–  Identify material concentrations

•  Viable as observed variables in feedback control
–  Or are they?
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Difficulties of Using Spectral Measurements

•  Known for inconsistency due to:
–  Instrument de-calibration
–  External and/or sample temperature
–  Presence of undesired material

•  Results in frequency displacement (aka, shift, lag)

•  Disastrous if using reference spectra for analysis
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Classical Least Square Regression

•  D: a spectral measurement
•  S: set of reference spectra
•  C: set of concentrations

•  S and C need to be aligned
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C = DS(ST S)−1
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Example: Components
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System
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Response using CLSR wo. Applying Lag
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Response using CLSR Applying Lag
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Approach as a Search Problem

•  Find combination of reference spectra that best fits sample
•  For each reference spectrum, look for:

–  Magnitudes → concentrations
–  Shift suffered
–  [Others can be added…]

•  Use Euclidian distance to grade the combination
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Particle Swarm Optimisation

•  Created by Kennedy in 1995
•  Simulates a flock of birds ‘flying’ in the solution space
•  Proven to do as well or better than Genetic Algorithms (Kennedy et. 

al., 1995)
•  Easier to implement and visualise
•  Can incorporate the concept of inertia to speed up search
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Response using PSO Applying Lag
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Comparison

Mean Square Error of responses using CLSR and PSO

Component 1 2 3 4

MSE w. CLSR 0.9639 1.0171 0.6966 1.6604

MSE w. PSO 0.0339 0.0319 0.0375 0.0373
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The baseline of comparison is the response obtained when no lag was applied.
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Conclusions & Future Work

•  Classical spectral analysis methods are frail towards lag
•  As a search problem, lag can be factored in

–  Other disturbances too
•  Useful in monitoring:

–  Inform the need for sensor calibration
–  Alternative temperature measurements

•  Search per sample: ~ 6 min
–  Future work: shortening time of completion
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