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Abstract. In this paper, we propose a new methodology for efficiently
discovering objects from images without supervision. The basic idea is
to search for frequent patterns of closely located features in a set of
images and consider a frequent pattern as a meaningful object class. We
develop a system for discovering objects from segmented images. This
system is implemented by hashing only. We present experimental results
to demonstrate the robustness and applicability of our approach.

1 Introduction

Object recognition and discovery from images have been challenging problems in
image analysis over the past decades. Typically, objects are represented by either
a set of geometric elements such as cones, spheres, and planes (model-based),
their contour (shape-based) or their appearance (appearance-based). Then, an
object class is modeled by creating an approximate representation (generative
models such as Bayesian network [1], and Non-Negative Factorization [2]) or
defining an optimal decision boundary (discriminative models, e.g. boosting [3],
and SVM [4]) from a set of given examples. In general, these methods scale
poorly for very large databases because a) they require some kind of supervision,
b) their performance is greatly affected by the high dimensionality of the object
representation, and/or c) they are tailored to specific object classes (e.g. faces).

This work attempts to overcome these limitations by efficiently discovering
objects from images without supervision. Our assumption is that an object con-
sists of multiple components which are expressed as a set of local image features.
To discover object classes without supervision we search for frequent patterns
of closely located image features and consider one frequent pattern as a mean-
ingful object class. By searching the known classes, the same approach can be
further used for matching a query object with the most similar class, thus en-
abling the unification of modeling and matching. To simplify the complexity
of our approach, we implement it completely by relying on a single technique,
namely hashing. We show that hashing can be used to efficiently realize a variety
of similarity judgments. Specifically, we demonstrate that the next three kinds
of similarity judgments can be implemented by hashing: (1) standard distance-
based similarity judgment, (2) distance-based similarity judgment considering
the relative size, and (3) matching robust to small variations. By experiment,
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we prove that our approach can discover diverse object classes robustly against
rotation and slide operations as well as small intraclass variations.

This paper is organized as follows. We describe locality-sensitive hashing in
Sect. 2. In Sect. 3 we give an overview of our approach. Then, Sect. 4 discusses
the detailed description of our system and reports some experimental results.
Finally, Sect. 5 concludes the paper.

2 Similarity Judgments by Hashing

Similarity judgment is a fundamental element for pattern recognition in image
analysis systems where multiple similarity measures might be necessary because
items are defined by many attributes. However, as most image analysis schemes
presume only specific spaces and similarity measures (commonly the Euclidean
distance), it is not guaranteed that the same scheme will have the same good
performance when applied to other spaces and/or similarity measures. The com-
plexity of the system will increase if one decides to support several schemes
simultaneously to treat different kinds of similarity measures.

Since hashing techniques have provided an efficient searching mechanism for
various similarity judgments that are common in image analysis tasks, we believe
that it is possible to construct a simple and efficient image analysis system
by using such techniques. Hence, in this paper we consistently rely on hashing
techniques inspired by the locality-sensitive hashing (LSH) [5].

We describe in detail LSH hereinafter. Let P be a set of points in a d-
dimensional space and C be the maximum coordinate value of any point in
P . We can transform every p ∈ P to a Cd-dimensional vector by concatenating
unary expressions for every coordinate, that is,

f(p) = Unary(x1)Unary(x2) · · ·Unary(xd), (1)

where Unary(x) is a sequence of x ones followed by C −x zeros. A hash function
is computed by picking up k bits (which are called sample bits) randomly from
these Cd bits and concatenating them. This corresponds to partitioning the d-
dimensional space into cells of different sizes by k hyperplanes so that near points
tend to have the same hash value. As k becomes large, remote points are less
likely to take the same hash value because the size of generated cells becomes
small. Figure 1 illustrates the space partitioning when d = 2, C = 5 and k = 2.
This example presents the hash value of each cell when the second and eighth
bits (i.e. x = 2 and y = 3) are selected from the total 2×5 = 10 bits. By contrast,
depending on the result of space division, near points may take different hash
values (e.g. point A and point B in Fig. 1). To exclude this failure, multiple l
hash functions h1, h2, · · ·hl are prepared in LSH expecting that two points close
to each other will take the same hash value at least for one hash function.

Overall, LSH considers that a pair of points with the same hash value are
close to each other. We borrow this idea but while this LSH scheme utilizes
randomized functions, we define deterministic functions more suitable for our
object discovery scheme.
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Fig. 1. Space partition by LSH

3 Overview of Our Approach

In this section we present an overview of our approach for discovering objects
automatically from a set of images Σ. Each image in Σ consists of several local
image features. The underlying idea is to search for frequent patterns of closely
located features in Σ and consider each frequent pattern as a meaningful object
class. Thereby, our approach runs in four phases described below.

Phase I: By extracting every feature in Σ, we derive a set of object compo-
nents. We denote this set by C = {C1, C2, . . . , CN}.

Phase II: The components in C are classified according to their attributes.
A label ID is assigned to each component according to the classification
result; the labels are expressed by �1, �2, . . . , �M , where M is the number
of component classes.

Phase III: Closely located components are gathered to generate object can-
didates. Let T = {T1, T2, . . . , TZ} be the set of all object candidates.

Phase IV: We determine object classes by searching frequent patterns in T .
A pattern with multiple occurrences is regarded as a meaningful object
class. Each object class is represented by the set of component labels
that is common in the multiple occurrences.

Figure 2 presents an example of the operation of our approach. First, 11 compo-
nents from C1 to C11 are extracted from two images. Next, the labels from �1 to
�6 are assigned to each component; here, similar components have the same label
(e.g. both roofs C3 and C8 have �3). Then, the object candidates T1, T2, T3 and
T4 are generated by gathering closely located components. Finally, the Class 1
(”tree”) and Class 2 (”house”) are regarded as meaningful object classes because
each of them has two occurrences in the images; ”tree” is represented by �1 and
�2 whereas ”house” is represented by �3, �4 and �5.
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Fig. 2. Intuitive example of our object discovery approach

4 Object Discovery from Segmented Images

This section describes the implementation details of our system. As inputs, our
system receives images preprocessed by segmentation and color quantization
algorithms; each region of the preprocessed images is regarded as a single local
feature. In addition, we assume that an object consists of closely located regions
and does not overlap with other objects. Thus, our system performs three kinds
of similarity judgments: (1) distance-based similarity judgment considering the
relative size in Phase II, (2) ordinary distance-based similarity judgment in Phase
III, and (3) matching robust to small variations in Phase IV. We modify the
LSH scheme described in Sect. 2 to implement the first two kinds of similarity
judgments whereas for the third kind we extend the standard hashing for exact
matching to perform matching robust to small variations.

4.1 Phase I: Extraction of Components

In order to extract object components, we first identify regions in Σ that corre-
spond to background. Then, we consider as object components all regions in Σ
that are not identified as background . Let us denote this set of components by C.
Although the discrimination between background and foreground regions is dif-
ficult and sometimes requires supervision, when the background is non-textured
or represents the largest regions of the image, the automatic identification of the
background becomes possible.
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Fig. 3. Location of sample bits on the real line when α = 10, β = 2 and i = 1

4.2 Phase II: Labeling of Components

The components in C are labeled according to their color and size such that com-
ponents of the same color with similar size are assigned the same label. For this
purpose, since color quantization is performed in the preprocessing phase, we may
cluster components of different color separately. Therefore, the components of the
samecolor arehashedaccording to their sizes.However, the similaritybetween sizes
should be relative to their absolute value. Hence, the hash functions are defined by
selecting sample bits at intervals proportional to the distance from the origin. That
is, for the i-th hash function (1 ≤ i ≤ l), the sample bits are set as follows.

Location of sample bits
hi : α + i, αβ + i, αβ2 + i, . . . , αβk + i, (2)

where α determines the position of the first sample bit and β is the growth
factor of the intervals (α > 0 and β > 1). Figure 3 illustrates the location of
the sample bits on the real line when α = 10, β = 2 and i = 1. Note that the
intervals between the sample bits become wider as they become farther from 0.

To cluster similar components we apply the CENTER algorithm [6]. CENTER
makes graphs where vertices are components and an edge is made between a pair of
components if they have the same hash value at least for one hash function. Then,
graphs are partitioned in such a way that in each cluster the center node has an
edge to the other nodes. This process is carried out by following the next steps.

Step I: For each color, pick up the biggest unchecked component B in C.
Step II: Select all the unchecked components that have an edge to B and merge

them into the same cluster.
Step III: Mark all the merged components as checked.
Step IV: Repeat step 1-3 until all the components have been checked.

After this process, we assign the labels �1, �2, . . . , �M to the clusters according
to the size of the center components such that �1 and �M corresponds to the
largest and smallest component respectively.

4.3 Phase III: Generation of Object Candidates

We generate object candidates by clustering closely located components. The
nearness between two separate components is determined by the Euclidean dis-
tance among their pixels. Therefore, we hash all pixels in every component in C.
The hash functions are defined by selecting sample bits at equal intervals of a
parameter I. Consequently, the number of sample bits k is expressed as follows.
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k =
Xmax + Ymax

I
, (3)

where Xmax and Ymax denote respectively the number of columns and rows of
the given image. We define the I hash functions so that the sample bits do not
coincide one another at all in the following way.

Location of sample bits
h1 : 1, I + 1, 2I + 1, · · · (k − 1)I + 1
h2 : 2, I + 2, 2I + 2, · · · (k − 1)I + 2

...
hI : I, 2I, 3I, · · · kI

. (4)

For generating object candidates, we adopt the next rule.

Rule 1. Two separate components Ci and Cj (i, j = 1, . . . , N) are clustered into
the same object candidate if one pixel in Ci and one pixel in Cj have the same
hash value at least for one hash function.

Each object candidate Ti (1 ≤ i ≤ Z) is represented by a vector

Ti = [υ1, . . . , υM ], (5)

where υr (1 ≤ r ≤ M) denotes the number of components with label �r in the
object candidate Ti. For example, the object candidate T1 in Fig. 2 is generated
from the components C6 and C7 (with labels �1 and �2 respectively) because they
are close to one another. In this case, the representation of the object candidate
becomes T1 = (1, 1, 0, 0, 0, 0).

4.4 Phase IV: Determination of Object Classes

In order to determine meaningful object classes, we search for multiple occur-
rences of similar object candidates. We judge object candidates as similar if their
primary components are the same. Standard hashing is applied to accelerate this
process. To compute the hash value for an object candidate Ti (1 ≤ i ≤ Z), we
first concatenate the elements υr (1 ≤ r ≤ M) of Ti, that is,

cat(Ti) = υ1υ2 · · · υM , (6)

where υ1, υ2, · · · , υM are expressed by λ bits so that |cat(Ti)| = λM . In order to
avoid small intra-class variations, we generate J hash values for Ti by ignoring
the ξ, ξ+1, . . . , ξ+J−1 smallest components from cat(Ti), where ξ presents the
maximum integer such that the sum of the size of the ξ smallest components in
Ti does not exceed the μ% of the whole size of Ti. After computing the J hash
values for each object candidate, we obey the next rule to determine meaningful
object classes.

Rule 2. Two object candidates are classified into the same cluster if at least one
of their J hash values is the same.
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Fig. 4. Discovery of objects with rotation and slide variations: (a) original image, (b)
preprocessed image, (c) class 1 and (b) class 2

Fig. 5. Discovery of objects with intraclass variations

After clustering the object candidates, we regard as meaningful object classes
only those clusters with multiple object candidates. We represent each of these
classes in the same form as (5), where υr (r = 1, . . . , M) stands for the number
of components with label �r that are common to all object candidates of the
given class. For instance, T2 and T4 in Fig. 2 are classified into the same cluster
by ignoring C11, which is extremely small relative to the size of T2. Then, since
this cluster has two object candidates, it is regarded as a meaningful object class
(Class 1) and represented by �3, �4 and �5, i.e., υ = (0, 0, 1, 1, 1, 0). Note that �6

is not included, because it is not a component of T4.

4.5 Experimental Results

For the experiments, each image was segmented by using the MST-based algo-
rithm [7] and then a color quantization was performed. Finally, we considered
the extremely big regions of the image as background and remove them so that
objects were isolated. An example of the segmentation, quantization and back-
ground removal can be seen in Fig. 4(a) and 4(b).
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Initially, we evaluated the robustness of our system against rotation and slide
operations. To that end, we applied our system to an image that contains two
instances of two different object classes (Fig. 4(b)). Note that the orientations
of the two instances of the same class differ approximately by 90 degrees. Since
our system does not consider the exact location relation between components,
both object classes (Fig. 4(c) and 4(d)) were successfully discovered despite these
transformations.

We also evaluated the robustness of our system against intraclass variations.
In Fig. 5 we present two examples of this evaluation. The first example consists of
an image containing two kinds of candy (Fig. 5(a)). The other example consists
of two kinds of faces: human faces and tiger faces (see Fig. 5(b)). Note that the
two human faces are different. In both examples our system derived two object
classes successfully. The columns Class 1 and Class 2 in Fig. 5 illustrate the
instances of each derived class in each image. As we can observe our system can
cope with small intraclass variations such as faces of different subjects.

5 Conclusions

We proposed a new methodology for discovering object classes from images
which can discover and recognize diverse object classes without supervision. This
methodology can be suitable for indexing and searching objects in large image
databases with diverse contents. We demonstrated that frequent patterns of local
image features can lead to discover meaningful object classes. Our approach can
be completely implemented by only hashing which simplifies its implementation
and at the same time enables the integration of various similarity measures. We
proved by experiment that our approach is robust against rotation and slide
operations as well as small intraclass variations.
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