Session 1

Preliminaries and Languages

Central Concepts

- Alphabets
- Strings
- Languages
- Representation
- Interpretation
- Problems

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Alphabets

- A finite (nonempty) set of symbols: Σ
 - $-\Sigma = \{a, b, c, ..., z\}$
 - $-\Sigma = \{\alpha,\,\beta,\,\gamma,\,...,\,\omega\}$
 - $-\Sigma = \{0, 1\}$
 - $-\Sigma = \{0, 1, 2, 3, ..., 9\}$
 - $-\Sigma = \{1\}$
 - $-\Sigma$ = The set of ASCII characters

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

Strings

- A string (a word) over an alphabet Σ
 - A finite sequence of symbols of Σ
- Length of a string
 - The number (positions) of symbols in a string:
 - w = "111" has one symbol in three positions
 - The length of string w is |w|
 - |w| = 3
- The null string: Λ (lambda)
 - Λ may be chosen from any alphabet
 - $\bullet |\Lambda| = 0$

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

- Notation:
 - Lower-case letter at the beginning of the alphabet denote symbols: *a*, *b*, *c*...
 - Lower-case letters at the end of the alphabet denote strings: w, x, y, z

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

- Powers of an alphabet
 - If Σ is an alphabet Σ^k is the set of strings of length k, such that all symbols in k are in Σ
 - $-\ \Sigma^0 = \{\Lambda\}$
 - If Σ = {0, 1} then
 - $\Sigma^0 = \{\Lambda\}$
 - $\Sigma^1 = \{0, 1\}$
 - $\Sigma^2 = \{00, 01, 10, 11\}$ and so on
 - $-\Sigma \neq \Sigma^{1}$ (Σ is the alphabet and Σ^{1} is the set of strings of length 1)

Strings

• For any alphabet Σ the set of *all* strings over Σ is denoted as Σ^*

$$-\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

$$\bullet \ \Sigma^* = \left\{0, \ 1\right\}^* = \left\{\Lambda, \ 0, \ 1, \ 00, \ 01, \ 10, \ 11, \ \ldots\right\}$$

• And without Σ^0 :

$$-\Sigma^{+}=\Sigma^{1}\cup\Sigma^{2}\cup\ldots$$

•
$$\Sigma^+ = \{0, 1\}^+ = \{0, 1, 00, 01, 10, 11, \ldots\}$$

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

Σ^* is denumerable

- A set is *denumerable* or *enumerably infinite* or *countable* if it can be arranged in a single (perhaps infinite) list:
 - 1, 2, 3, 4... is an infinite list
 - -1, 3, 5, ..., 2, 4, 6... is not! $(\infty + 1?)$
 - We need to be able to tell for each object listed, which one is it on the list
- A set A denumerable if there is a function with domain in N (the natural numbers) such that each member of A is associated to one n in N

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Σ^* is denumerable

N	Σ^*	
1	Λ	
2	0	
3	1	
4	00	
5	01	
6	10	
7	11	
8	000	

N	Σ^*
9	001
10	010
11	011
12	100
13	101
14	110
15	111
16	

$$\overline{\Sigma^*} = \{0, 1\}^* = \{ \bigwedge_{\text{F. Pairs Pinceld, IIMAS, UNAM, MeX. & OS-U-CIS}}^{0} \{0, 1\}^* = \{ \bigwedge_{\text{F. Pairs Pinceld, IIMAS, UNAM, MeX. & OS-U-CIS}}^{0} \{0, 1\}^* = \{ \{0, 1\}^* \}_{\text{USA, 2003}}^{0} \{0, 1\}^* = \{ \{0, 1\}^* \}_{\text{F. Pairs Pinceld, IIMAS, UNAM, MeX. & OS-U-CIS}}^{0} \{0, 1\}^* = \{ \{0, 1\}^* \}_{\text{F. Pairs Pinceld, IIMAS, UNAM, MeX. & OS-U-CIS}}^{0} \{0, 1\}^* = \{ \{0, 1\}^* \}_{\text{F. Pairs Pinceld, IIMAS, UNAM, NEX. & OS-U-CIS}}^{0} \{0, 1\}^* = \{ \{0, 1\}^* \}_{\text{F. Pairs Pinceld, IIMAS, UNAM, NEX. & OS-U-CIS}}^{0} \{0, 1\}^* \}_{\text{F. Pairs Pinceld, IIMAS, UNAM, UNAM, NEX. & OS-U-CIS}}^{0} \{0, 1\}^* \}_{\text{USA, 2003}}^{0} \{0, 1\}^* \}_{\text{USA$$

Σ^* is denumerable

- $\bullet \Sigma = \{a,..,z\}$ (26 letters)
 - $-\Sigma^0$ has 1 string of length 0 (i.e. Λ)
 - $-\Sigma^1$ has 26 strings of length 1 (i.e. a,...,z)
 - $-\Sigma^2$ has 26² strings of length 2 (in alphabetic order)
 - $-\Sigma^3$ has 26³ strings of length 3 (in alphabetic order)
- There is a function that for any argument n the value is the corresponding string in Σ^*

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

- Concatenation of strings
 - If x and y are strings xy denotes the concatenation of x and y
 - More precisely: if $x = x_1 x_2 \dots x_i$ and $y = y_1 y_2 \dots y_j$ then $xy = x_1 x_2 \dots x_i y_1 y_2 \dots y_j$
 - i.e: x = 01101 and y = 110 then xy = 01101110
 - -|xy| = i + j
 - Identity of concatenation: $\Delta x = x \Delta = x$
 - Concatenation is associative: (xy)z = x(yz)

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

- Concatenation of sets of strings
 - If $A, B \subseteq \Sigma^*$ the concatenation of A and B is

$$AB = \{xy \mid x \in A \text{ and } y \in B\}$$

- Concatenation is NOT commutative
 - $-A = \{a, b\} \text{ and } B = \{c, d\}$
 - $-AB = \{ac, ad, bc, bd\}$
 - $-BA = \{ca, cb, da, db\}$

Concatenation of strings

 $AB = \{xy \mid x \in A \text{ and } y \in B\}$

d	ad	bd
С	ac	bc
B A	a	b

Different from $BA = \{ca, cb, da, db\}$

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

• However:

$$-\Sigma^{n+1} = \Sigma \Sigma^n = \Sigma^n \Sigma \quad (\Sigma = \Sigma^1)$$

- If
$$\Sigma = \{0, 1\}$$
 then

$$\bullet \ \Sigma^0 = \{\Lambda\}$$

•
$$\Sigma^1 = {\Lambda}{0, 1} = {0, 1}{\Lambda} = {0, 1}$$

•
$$\Sigma^2 = \{0, 1\}\{0, 1\} = \{00, 01, 10, 11\}$$

•
$$\Sigma^3 = \{0, 1\}\{00, 01, 10, 11\} = \{00, 01, 10, 11\}\{0, 1\}$$

= $\{000, 001, 010, 011, 100, 101, 110, 111\}$

• ...

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Languages

- A *language* is a set of *strings* made out of symbols of an *alphabet*
- Natural languages (English, Spanish, etc.)
 - Syntactic level: Sentences are made out of words
 - Lexical level: Words are made out of symbols of an alphabet
- Formal languages
 - Syntactic level: Well-formed expressions are made out strings (tokens)
 - Lexical level: tokens are made of alphabet symbols (ASCII)

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

Definition of Languages

- A language over Σ is a subset of Σ^*
- *L* is a language over Σ if $L \subseteq \Sigma^*$
- L needs not to include all symbols in Σ , so if L is a language over Σ , it is also a language over a super set of Σ

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Examples of Languages

• The language of all strings consisting of n 0's followed by n 1's, for some $n \ge 0$:

$$\{\Lambda, 01, 0011, 000111, \ldots\}$$

• The set of strings of 0's and 1's with an equal number each:

$$\{\Lambda, 01, 10, 0011, 0101, 1001, \ldots\}$$

• The set of strings representing prime numbers in binary notation:

$$\{10, 11, 101, 111, 1011, ...\}$$

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

Examples of Languages

- Σ^* is a language over any alphabet
- Φ, the empty language, is a language over any alphabet
- $\{\Lambda\}$, the language consisting of the empty string
- Note that $\Phi \neq \{\Lambda\}$

Stating a language

- As set formation:
 - $\{w \mid a \text{ property of } w\}$
 - Example: $\{w \mid w \text{ consists of a sequence of } n \text{ 0's followed by a sequence of } n \text{ 1's}\}$
- Expressing w with parameters
 - $\{0^n 1^n \mid n \ge 0\}$ where *n* is the parameter
 - $-\{0^i1^j\mid 0 \le i \le j\}$ where *i* and *j* are the parameters
- Combining set operators with concatenation
 - $\{ab, bab\}^* \cup \{b\} \{bb\}^*$
- Or even:
 - $-\ \left\{byb\mid y\in\ \left\{a,\,b\right\}^{*}\right\}$
- It would be nice to have a simple and clear way to do it!

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Representation

- Strings in languages represent objects in the world:
 - John, Pete and Luis are represented by {john, pete, luis}
 - 2, 3, 5, 7, 11 are represented by {10, 11, 101, 111, 1011, ...}
- A representation can be thought of as a function from the world to a language!
- This function is applied by the sender of a message!

Interpretations

- Strings in languages are interpreted as objects in the world:
 - {john, pete, luis} are interpreted as John, Pete and Luis
 - {10, 11, 101, 111, 1011, ...} are interpreted as 2, 3, 5, 7, 11
- A interpretation can be thought of as a function from the the language to the world!
- This functions is applied by the receiver of the message!

Problems

- A *problem* is the question of deciding whether a string is a member of some particular language
- If Σ is an alphabet, L is a language over Σ , the problem L is:
 - Giving a string w in Σ^* , decide whether or not w is in L
- Problems and Languages are really the same thing!

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

A Problem

- The problem of whether a number is prime can be expressed by the language L_p consisting on all monadic strings whose length is a prime number:

 - 111 ∈ L_p
 - 1111 $\notin \hat{L}_p$
- Given a string of 1's say "yes" or "not" depending the string in question represents a prime
- We need to think of the language as a representation; otherwise we cannot define the algorithm

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Problems

- Two ways of think of Problems:
 - As decision questions: Deciding whether a string is in a set of strings

- As procedures transforming an input into an output:

- Question of complexity theory:
 - Executing an algorithm will take some computational resources: space and time
 - If a problem is hard it can be reduced to an equivalent but simpler formulation