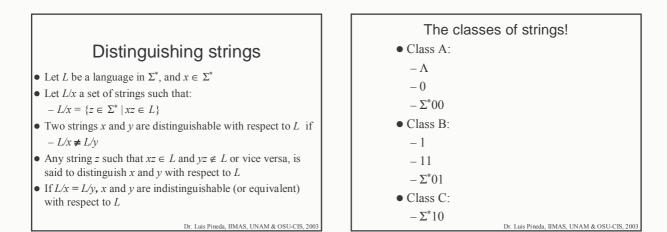
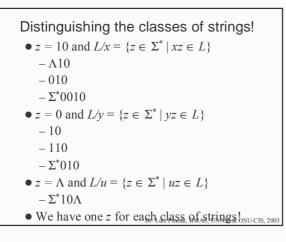
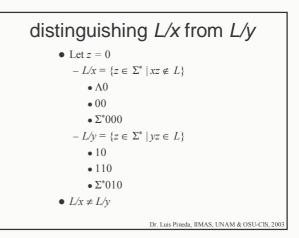


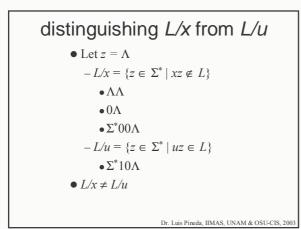
- Class A: The string needs 10 to be in the language:
 A, 0 or ends in 00
- Class B: The string needs a 0 to be in the language: 1, 11 or ends in 01
- Class C: The string ends with 10 and it is in the language!
- More generally, there is a distinguishing string z to get strings of each class into the language:
 L/x = {z ∈ Σ* | xz ∈ L}

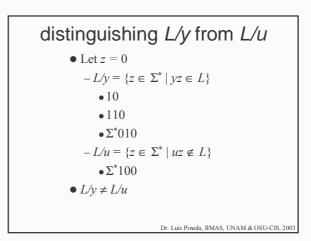
 $\square | A \square \subset L$

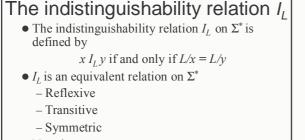










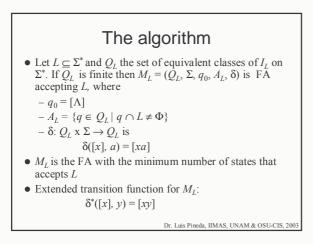


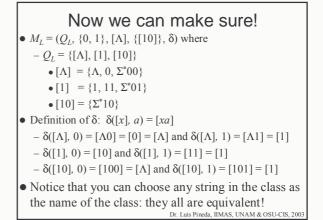
- Notation:
- -[x] denotes the equivalent class containing x
- Two strings are distinguishable with respect to
 - L if they are in different classes of I_L

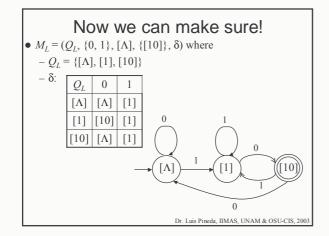
- Any string within the same partition of I_L can be considered the same for operations on strings involving I_L
- *I_L* is right invariant with respect to concatenation:

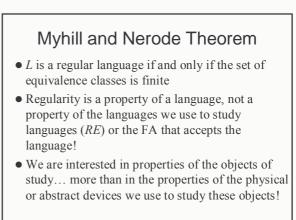
- For $x, y \in \Sigma^*$ and any $a \in \Sigma$, if $x I_L y$ then $xa I_L ya$ if [x] = [y] then [xa] = [ya]

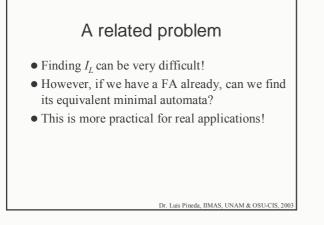
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

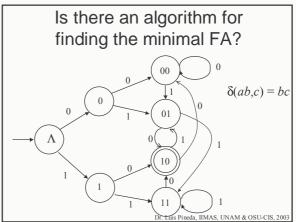






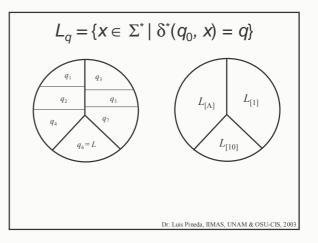


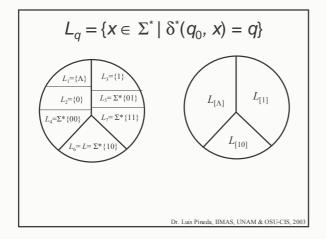


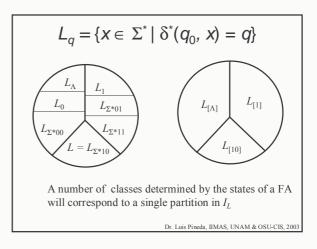


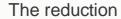
A second way to partition the set of strings!

- The language consisting of the sets of strings that reach a state from the initial state:
 - $L_q = \{ x \in \Sigma^* \mid \delta^*(q_0, x) = q \}$
- The set of all strings is the union of these sets for all $q \in Q$!
- The states of a FA offer a second partition on the set of strings



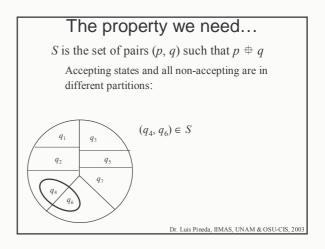


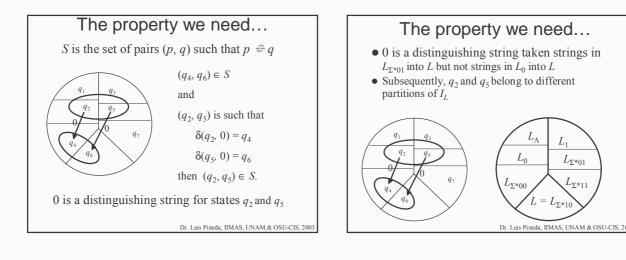




- Let (p, q) be pairs of states in the same equivalent class
- The languages L_p and L_q are subsets of the same equivalent class
 - $-p \equiv q$
- On the other hand, if *p* and *q* do not belong to the same partition, the corresponding languages are subsets of different equivalent classes
 p ⊕ *q*
- The minimal FA can be found identifying al (*p*, *q*) such that *p* ∉ *q*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20





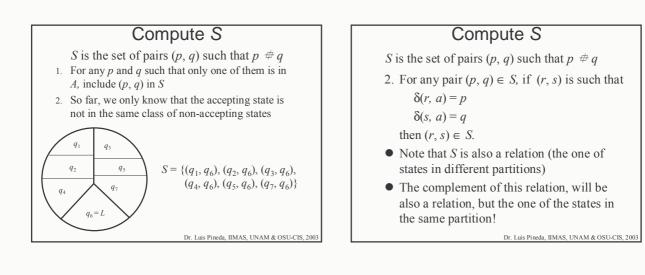
The property we need...

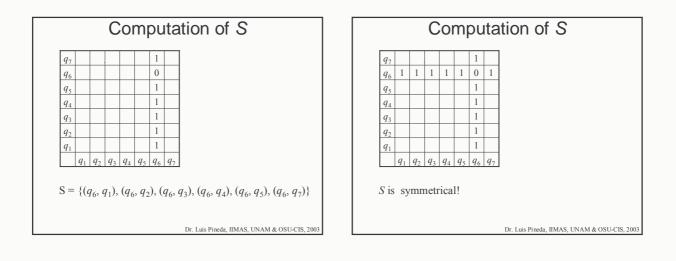
- If (p, q) is a pair of states such that $p \notin q$ and $\delta(r, a) = p$ and $\delta(s, a) = q$, then (r, s) is also a pair of states such that $r \notin s$
- If $p \oplus q$ then there is a *z* such that - $\delta^*(p, z) \in A$ or $\delta^*(q, z) \in A$, but not both
- So, only one of
 - $-\delta^*(r, az) = \delta^*(\delta(r, a), z) = \delta^*(p, z)$
 - $-\delta^{*}(s, az) = \delta^{*}(\delta(s, a), z) = \delta^{*}(q, z)$
 - will be in A!
- Paths of non-equivalent states are formed by non-equivalent states!

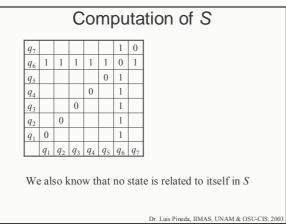
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

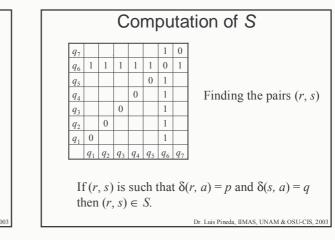
The algorithm...

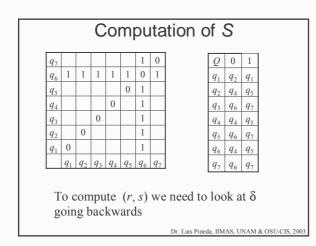
- Let S be the set of pairs (p, q) such that $p \notin q$
 - For any p and q such that only one of them is in A, include (p, q) in S
 - For any pair $(p, q) \in S$, if (r, s) is a pair for which $\delta(r, a) = p$ and $\delta(s, a) = q$ then $(r, s) \in S$
 - No other pairs are in S

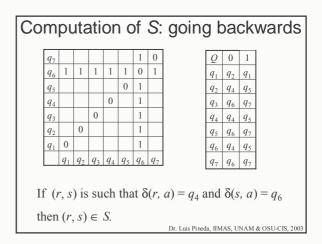


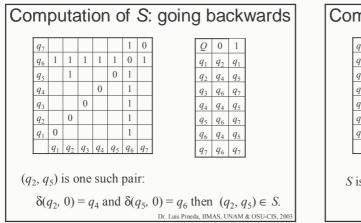






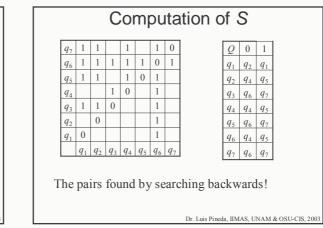


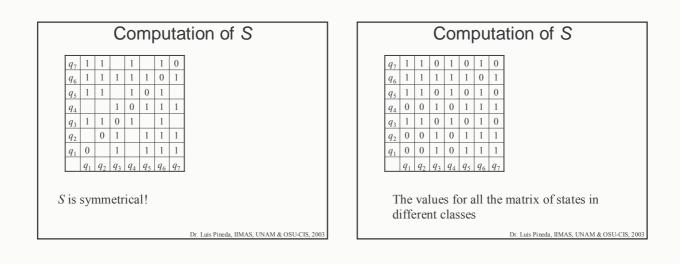


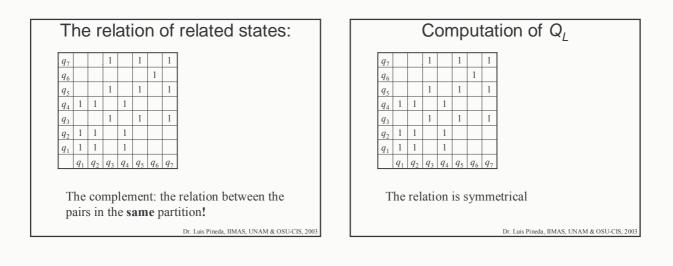


q_7 q_6	1	1	1	1	1	1	0			
q_5		1			0	1				
q_4				0		1				
q_3			0			1				
q_2		0			1	1				
q_1	0					1				
	q_1	a.	a.	a.	q_5	a	a			

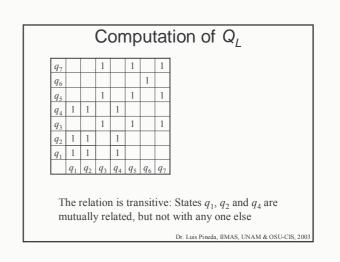
q_7	<u> </u>					1	0						
q_6	1	1	1	1	1	0	1						
q_5		1			0	1							
q_4				0		1							
q_3			0			1							
q_2		0				1							
q_1	0					1							
		q_2		a	a	q_6	a	1					

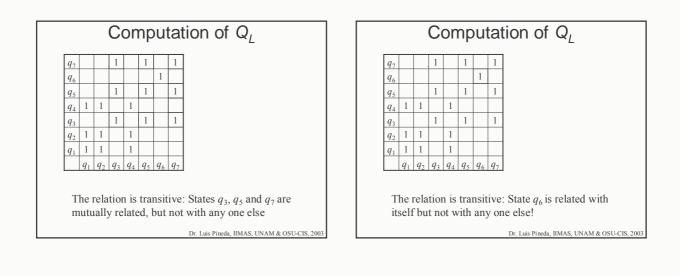


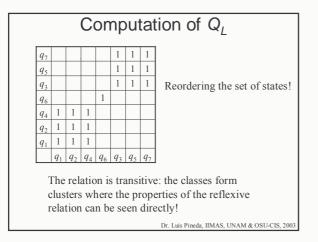


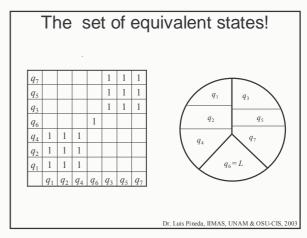


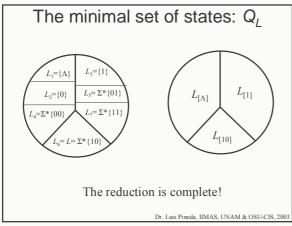
7			1		1		1
						1	
5			1		1		1
4	1	1		1			
3			1		1		1
2	1	1		1			
1	1	1		1			
	q_1	q_2	q_3	q_4	q_5	q_6	q_7

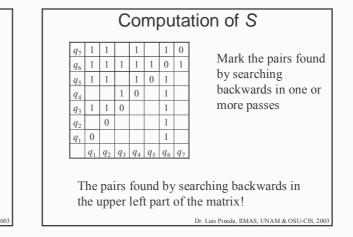


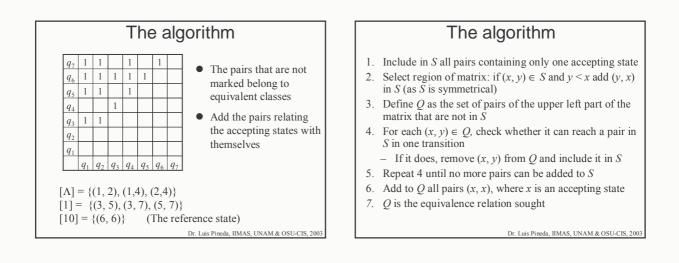


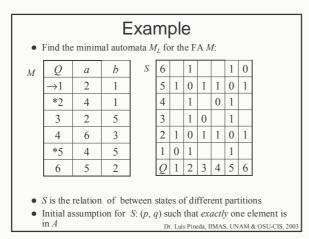












(r, s)	$\delta(r, a)$	$\delta(s, a)$	(<i>p</i> , <i>q</i>)	Pass	S	6	0	1	0	1	1	1
(4, 6)	6	5	(6, 5)	1		5	1	0	1	1	0	
(3, 6)	2	5	(2, 5)			4	1	1	1	0	1	
(3, 4)	2	6	(2, 6)	1		3	0	1	0	1	1	1
(1, 6)	2	5	(2, 5)			2	1	0	1	1	0	H
(1, 4)	2	6	(2, 6)	1			-	-	-	-		
(1, 3)	2	2	(2, 2)			1	0	1	0	1	1	1
						Q	1	2	3	4	5	1

