

# We already know some properties...

- Myhill and Nerode Theorem: *L* is a regular language if and only if the set of equivalence classes is finite
- How easy is to verify this property for a given language?
  - The language of strings ending in 10?
  - The language of all palindromes?
  - An arbitrary language?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003





























### • Suppose *L* is a *RL* recognized by a FA with *n* states. For any $x \in L$ with $|x| \ge n$ , *x* may be written as x = uvw for some strings *u*, *v* and *w* satisfying: $-|uv| \le n$ : There is an initial segment including the loop -|v| > 0: The length of the loop is at least one - For any $m \ge 0$ , $uv^m w \in L$ : The loop can be pumped up!



#### What if L is not regular?

• If we don't know whether *L* is regular:

- We don't know whether there is a FA that accepts L
- We don't now how many states such FA would have (in case *L* turned out to be regular!)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

#### The Pumping Lemma

- Suppose L is a RL. Then there is an integer n so that for any x ∈ L with |x| ≥ n, there are strings u, v and w so that:
   x = uvw
  - x = uvw
  - $|uv| \le n$ : There is an initial segment including the loop
  - |v| > 0: The length of the loop is at least one
  - For any  $m \ge 0$ ,  $uv^m w \in L$ : The loop can be pumped up!



#### Belonging to a class!

- Necessary and sufficient conditions
  - <u>Necessary</u>: every member of the class has the property
  - <u>Sufficient</u>: having the property is enough for belonging to the class
- What kind of a property is for a language to satisfy the conditions of the pumping lemma?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003



- Myhill and Nerode Theorem: Necessary and sufficient condition for a language to be regular
- Pumping Lemma: only a necessary condition: there are *CFL* that satisfy the conditions of the pumping lemma for *RL*!
- The pumping lemma can be used to show that a language is not regular (by contradiction), <u>but</u> it cannot be used to show that a language is regular!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003



#### Using the pumping lemma

- If we have a language described by some other means:
  - $-L = \{0^n 1^n \in \Sigma^* \mid n \ge 0\}$
  - Is this language regular?
- Strategy:
  - Assume that the pumping lemma holds
  - If a contradiction follows from this assumption the language is not regular

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003



## $L_{pr} = \text{The prime numbers}$ • Player one provides a language L - $L_{pr} = \{x \in \Sigma^* | \text{ length of } x \text{ is a prime number} \}$

- Player two provides *n* 
  - The parameter *n* such that  $p \ge n + 2$  for some *p*
- (i.e. there will always be a prime number larger than *n*)
  Player one provides a string *x* in *L* such that |*x*| ≥ *n*
- The string  $x = 1^p$  is ok!  $|x| = p \ge n + 2 \ge n$
- Player two partitions x into uvw such that
  - $|uv| \le n$  and |v| > 0:
  - Let |v| = k for k > 0
  - Then |uw| = p k,
  - we assume that  $|uv| \le n$

```
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003
```



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

 $L_{pr} = \text{The prime numbers}$ • Player one wins by finding a  $m \ge 0$  such that  $uv^m w \notin L$ - Let's make sure that both factors are different from 1:
• (1 + k) > 1 since k > 0•  $k \le n$  since  $k = |v| \le |uv| \le n$  (original assumption)
• (p - k) > 1 since  $p \ge n + 2$  and  $k \le n$  and  $p \ge 2$ • Consequently,
-  $|uv^{p-k}w| = (p - k)(1 + k)$  where
• (p - k) > 1• (1 + k) > 1-  $uv^{p-k}w \notin L$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2000