Session 14

Context-free Grammars

There are languages that are non-regular

- $Pal = \{w \mid w = w^R\} \subseteq \{0, 1\}^*$
- Pal is not regular:
 - The pumping Lemma:
 - Let *n* be the associated constant
 - Let $w = 0^n 10^n$: |w| = 2n + 1 > n
 - If Pal is regular w = xyz, such that $|xy| \le n$ and |y| > 0; y is a sequence of 0's at the end of the first group: $x = 0^i$ and $y = 0^j$, such that $i \ge 0$, j > 0, i + j = n so $|xy| = |0^i 0^j| = |0^n| \le n \text{ and } |y| = j > 0.$
 - Let m = 0:

 $-xy^mz = xz = 0^i 10^n \notin Pal \text{ as } i < n$

• Pal cannot be represented through a RE or a FA

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Recursive definition of languages

- Recursive definition of a language:
 - Define composite strings of in the language as a function of more simple strings in the language
- Recursive definition of Pal
 - Basis: Λ , 0 and 1 ∈ *Pal*
 - Induction: if $w \in Pal$ then 1w1 and 0w0

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Recursive definition of languages

- A CFG is a notation to express this kind of recursive definitions
 - Variables represent classes of strings (i.e. grammatical categories and languages)
 - Constants represent the lexical symbols
 - Production rules of the form

 $\alpha \rightarrow \beta$

 α can be rewritten as β in any context

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Recursive definition of languages

- Recursive definition of Pal
 - Basis: Λ , 0 and $1 \in Pal$
 - Induction: if $w \in Pal$ then 1w1 and 0w0
- The grammar of Pal: $0110 \in Pal$

1.
$$P \rightarrow \Lambda$$

1.
$$P \Rightarrow 0P0$$

$$2. P \rightarrow 0$$
$$3. P \rightarrow 1$$

$$\begin{array}{ll}
2. & \Rightarrow 01P10 \\
3. & \Rightarrow 01\Lambda10
\end{array}$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Recursive definition of a language: Example 2

- Recursive definition of L_{exp} (Non-regular)

 - Induction: if $w \in L$ then $w + w \mid w * w \mid (w)$

The CFG:

$$a+(a*a)\in L$$
:

$$1. E \rightarrow a$$

1.
$$E \Rightarrow E + E$$

by 2

by 1

$$2. E \rightarrow E + E$$

2.
$$\Rightarrow a + E$$

3. $\Rightarrow a + (E)$

$$3. E \rightarrow E * E$$

3.
$$\Rightarrow a + (E)$$
 by 4
4. $\Rightarrow a + (E * E)$ by 3

4.
$$\Rightarrow a + (E * E)$$
 1

$$4. E \rightarrow (E)$$

5.
$$\Rightarrow a + (a * E)$$
 by 1

6.
$$\Rightarrow a + (a * a)$$
 by 1

Formal definition of CFG

• A context-free grammar (CFG) is a 4-tuple $G = (V, \Sigma, S, P)$,

where:

- V is a set of variables (non-terminal symbols, syntactic categories, types of strings)
- $-\Sigma$ is the alphabet (terminal or lexical symbols)
- $-S \in V$ is the start symbol (sentence, program)
- − *P* is a set of grammar rules or productions of the form:

$$A \rightarrow \gamma$$
 (the productions of A)

where

 $A \in V$ is the head of the production " \rightarrow " is the production symbol

 $\gamma \in \{V \cup \Sigma\}^*$ is the body of the production

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Formal definition: examples

- CFG for Pal
 - $-G_{pal} = (\{P\}, \{0, 1\}, P,$

$$\{P \rightarrow \Lambda, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}$$

- Compact notation for P: $P \rightarrow \Lambda \mid 0 \mid 1 \mid 0P0 \mid 1P1$
- CFG for 0ⁿ1ⁿ
 - $-G_{pal} = (\{P\}, \{0, 1\}, P, \{P \to \Lambda, P \to 0P1\})$
- ullet CFG for $L_{\it exp}$
 - $-G_{exp} = (\{E\}, \{+, *, (,), a\}, E, P)$ Where $P = \{E \to E + E \mid E * E \mid (E) \mid a\}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Productions

 \bullet If α is a string of the form

$$\alpha_1 A \alpha_2$$

and there is a production of form

$$A \rightarrow \gamma$$

then α can by substituted or rewritten by β of form $\alpha_1\gamma\alpha_2$

 We say that α derives β or β is derived from α in one step in G:

$$\alpha \Rightarrow_G \beta$$

- Why context-free?
 - Substitution can be performed regardless the form of α_1 and α_2

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Derivations of CFG

- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda10 = 0110$
- Derivation in $L = 0^n 1^n$
 - $-P \Rightarrow 0P1 \Rightarrow 00P11 \Rightarrow 00\Lambda11 = 0011$
- If it is clear what is G, we just write " \Rightarrow "

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Derivations of CFG

• *-derivation: derivations in zero or more steps in a grammar *G*:

$$\alpha \Rightarrow^*_G \beta$$

- either $\alpha = \beta$
- or there is a $k \ge 1$ and strings $\alpha_0, \alpha_1, \ldots \alpha_k$, with $\alpha_0 = \alpha$ and $\alpha_k = \beta$ so that $\alpha_i \Rightarrow_G \alpha_{i+1}$ for every i such that $0 \le i \le k-1$
- Examples:
 - $-P \Rightarrow^*_{Pal} 0110$
 - $-P \Rightarrow^*_L 0011$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

How many derivations are there?

- Exp is a CFG
 - $G_{exp} = (\{E\}, \{+, *, (,), a\}, E, P)$ where $P = \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}$
- A derivation of $a + (a * a) \in Exp$
 - $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E * E)$ $\Rightarrow a + (E * a) \Rightarrow a + (a * a)$
 - There can be many ways to derive a string!
 - Are they all equivalent?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Leftmost and right most derivations

- Leftmost derivation: \Rightarrow_{lm}
 - $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E * E)$ $\Rightarrow a + (a * E) \Rightarrow a + (a * a)$
 - $-E \Rightarrow^*_{lm} a + (a * a)$
- Rightmost derivation: \Rightarrow_{rm}
 - $E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a)$ $\Rightarrow E + (a * a) \Rightarrow a + (a * a)$
 - $E \Rightarrow_{rm}^* a + (a * a)$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

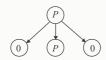
Syntactic structure

- Derivation in *Pal*:
 - _ F

Productions: $P \rightarrow \Lambda \bigcup_{Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200} 1 P1$

Syntactic structure

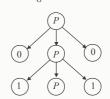
- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0$



Productions: $P \rightarrow \bigwedge_{\text{Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200}} 1 P1$

Syntactic structure

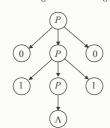
- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0 \Rightarrow_G 01P10$



Productions: $P \to \Lambda \ |\ 0\ |\ 1\ |\ 0P0\ |\ 1P1$ Dr. Luis Piñeda, IIMAS, UNAM & OSU-CIS, 200

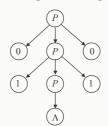
Syntactic structure

- Derivation in *Pal*:
 - $P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda10$



Syntactic structure

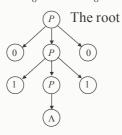
- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda 10 = 0110$



Productions: $P \rightarrow \Lambda \mid 0 \mid 1 \mid 0P0 \mid 1P1$ Dr. Luis Pineda, IJMAS, UNAM & OSU-CIS, 2

Syntactic structure

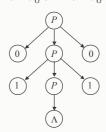
- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda10 = 0110$



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Syntactic structure

- Derivation in *Pal*:
 - $-P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda 10 = 0110$

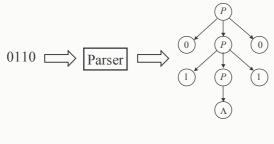


The yield

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Parsing

• Parsing: Recursive inference to obtain the syntactic structure of a string in the language



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Derivations and Parse Trees

- If there is a derivation there is a recursive inference
- If there is a recursive inference there is a parse tree
- If there is a parse three there are leftmost and rightmost derivations
- If there are leftmost and rightmost derivations there is a derivation!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The language of a grammar

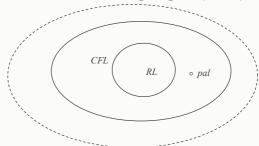
• Let $G = (V, \Sigma, S, P)$ be a CFG. The language generated by G is:

$$L(G) = \{x \in \Sigma^* \mid S \Rightarrow^*_G x\}$$

- A language L is a *context-free language* (*CFL*) if there is a CFG G so that L = L(G)
- Sentential forms: derivations from the start symbol
- L(G) consists of the sentential forms in Σ^*
 - Derivations from the start symbol that have no variables

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Context-free Languages (CFL)



- All RL are CFL but not all CFL are RL
- There are also languages which are not CFL

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003