

There are languages that are non-regular

 $Pal = \{w \mid w = w^R\} ⊆ \{0, 1\}^*$

Pal is not regular:

- The pumping Lemma:
 - Let *n* be the associated constant
 - Let $w = 0.10^{\circ}$. $|w| = 2n + 1^{\circ}$
 - If *Pal* is regular w = xyz, such that $|xy| \le n$ and |y| > 0; y is a sequence of 0's at the end of the first group: $x = 0^{j}$ and $y = 0^{j}$, such that $i \ge 0$, j > 0, i + j = n so $|xy| = |0^{j}0^{j}| = |0^{n}| \le n$ and |v| = j > 0.
 - Let m = 0:
 - $-xy^m z = xz = 0^i 10^n \notin Pal$ as i < n
- *Pal* cannot be represented through a *RE* or a FA

Dr. Luis Pineda, IIMAS, UNAM & OSU-C

Recursive definition of languages

- Recursive definition of a language:
- Define composite strings of in the language as a function of more simple strings in the language
- Recursive definition of Pal
 - Basis: Λ , 0 and $1 \in Pal$
- Induction: if $w \in Pal$ then 1w1 and 0w0

r. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Recursive definition of languages

- A CFG is a notation to express this kind of recursive definitions
 - Variables represent classes of strings (i.e. grammatical categories and languages)
 - Constants represent the lexical symbols in Σ
- Production rules of the form $\alpha \to \beta$

 α can be rewritten as β in any context Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Recursive definition of Pal- Basis: Λ , 0 and $1 \in Pal$ - Induction: if $w \in Pal$ then 1w1 and 0w0The grammar of Pal: $0110 \in Pal$ $1. P \rightarrow \Lambda$ $1. P \Rightarrow 0P0$ $2. P \rightarrow 0$ $2. \Rightarrow 01P10$ $3. P \rightarrow 1$ $3. \Rightarrow 01\Lambda10$

Recursive definition of languages

$P \rightarrow 1$	3. $\Rightarrow 01\Lambda 10$
$P \to 0P0$	= 0110
5. $P \rightarrow 1Pl$	

Recursive definition of a language: Example 2 Recursive definition of L_{exp} (Non-regular) Basis: a Induction: if $w \in L$ then w + w | w * w | (w) $a + (a * a) \in L$: The CFG: 1. $E \Longrightarrow E + E$ by 2 by 1 $\Rightarrow a + (E)$ by 4 $\Rightarrow a + (E * E)$ 4. $E \rightarrow (E)$ $\Rightarrow a + (a * E)$ by 1 $\Rightarrow a + (a * a)$ by 1

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Formal definition of CFG A context-free grammar (CFG) is a 4-tuple $G = (V, \Sigma, S, P),$

where:

- V is a set of variables (non-terminal symbols,
- syntactic categories, types of strings)
- $-\Sigma$ is the alphabet (terminal or lexical symbols)
- $-S \in V$ is the start symbol (sentence, program)
- *P* is a set of grammar rules or productions of the form: $A \rightarrow \gamma$ (the productions of *A*)
 - where
 - $A \in V$ is the head of the production
 - " \rightarrow " is the production symbol
 - $\gamma \in \{V \cup \Sigma\}^*$ is the body of the production

Formal definition:examples

- $Crocost L_{exp}$
- $-G_{exp} = (\{E\}, \{+, *, (,), a\}, E, P)$ Where $P = \{E \to E + E \mid E * \underline{E} \mid (E) \mid a\}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Productions

If α is a string of the form

 $\alpha_1 A \alpha_2$

and there is a production of form

- $A \rightarrow \gamma$
- then α can by substituted or rewritten by β of form $\alpha_1 \gamma \alpha_2$
- We say that α derives β or β is derived from α in one step in *G*:
- $\alpha \Rightarrow_G \beta$

Why context-free?

– Substitution can be performed regardless the form of α_1 and α_2

is Pineda, IIMAS, UNAM & OSU-CIS, 200

Derivations of CFG

- Derivation in Pal:
- $P \Rightarrow_G 0P0 \Rightarrow_G 01P10 \Rightarrow_G 01\Lambda 10 = 0110$
- Derivation in $L = 0^n 1^n$ - $P \Rightarrow 0P1 \Rightarrow 00P11 \Rightarrow 00\Lambda 11 = 0011$
- If it is clear what is G, we just write " \Rightarrow "

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Derivations of CFG

*-derivation: derivations in zero or more steps in a grammar G:

 $\alpha \Rightarrow^*_G \beta$

- either $\alpha = \beta$
- or there is a $k \ge 1$ and strings $\alpha_0, \alpha_1, \dots, \alpha_k$, with $\alpha_0 = \alpha$ and $\alpha_k = \beta$ so that $\alpha_i \Rightarrow_G \alpha_{i+1}$ for every *i* such that $0 \le i \le k-1$
- Examples:
 - $P \Rightarrow^{*}_{Pal} 0110$
- $P \Rightarrow^*_L 0011$

How many derivations are there?

• *Exp* is a CFG

- $G_{exp} = (\{E\}, \{+, *, (,), a\}, E, P)$ where $P = \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}$
- A derivation of $a + (a * a) \in Exp$
 - $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E * E)$ $\Rightarrow a + (E * a) \Rightarrow a + (a * a)$
 - There can be many ways to derive a string!
 - Are they all equivalent?

Derivations and Parse Trees

- If there is a derivation there is a recursive inference
- If there is a recursive inference there is a parse tree
- If there is a parse three there are leftmost and rightmost derivations
- If there are leftmost and rightmost derivations there is a derivation!

. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Let $G = (V, \Sigma, S, P)$ be a CFG. The language generated by G is:

 $L(G) = \{x \in \Sigma^* \mid S \Longrightarrow^*_G x\}$

- A language L is a *context-free language* (CFL) if there is a CFG G so that L = L(G)
- Sentential forms: derivations from the start symbol
- L(G) consists of the sentential forms in Σ*
 Derivations from the start symbol that have no variables

