Session 15

Context Free Grammars and Regular Expressions CFG and FA (CFL RL) • Not all CFL are RL (the pumping lemma) If L is a regular language, is it a CFL? Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

- Every *RE* has a corresponding CFG
- Every FA has a corresponding CFG:
 - Regular Grammar (RG)
- Every RG has a corresponding FA
- Every *RE* has a corresponding **RG**

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

All RL are CFL

- Every regular language is a Context-free language
- There is a CFG for the basic regular languages in Σ :

$$-L(\Phi) = L(G_{\Phi})$$
 where $G = (V, \Sigma, S, \Phi)$

$$-L(\Lambda) = L(G_{\Lambda})$$
 where $G_{\Lambda} = (V, \Sigma, S, \{S \to \Lambda\})$

- If
$$a \in \Sigma$$
 then $L(a) = \{a\} = L(G_a)$ and
 $G_a = (V, \Sigma, S, \{S \rightarrow a\})$

Operations of CFG

- The inductive part:
- Given:

$$-L_1 = L(G_1)$$
 and $G_1 = (V_1, \Sigma, S_1, P_1)$

$$-L_2 = L(G_2)$$
 and $G_2 = (V_2, \Sigma, S_2, P_2)$

•
$$L_u = L_1 \cup L_2 = L(G_1)$$
 whe

$$-G_u = (V_u, \Sigma, S_u, P_u) \text{ and } P_u = P_1 \cup P_2 \cup \{S_u \to S_1 \mid S_2\}$$
$$L_c = L_1 L_2 = L(G_c) \text{ where}$$

$$-G_s = (V_{s_1} \sum S_{s_2} P_s) \text{ and } P_s = P_1 \cup P_2 \cup \{S_s \to S_1 S_2\}$$

•
$$L_* = L_1^* = L(G_*)$$
 where

 $-G_* = (V, \Sigma, S, P) \text{ where } P = P_1 \cup \{S \to S_1 S \mid \Lambda\}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Renaming variables

Names of variables should be unique:

- $-V_1 \cap V_2 \cap V_u \cap V_c \cap V = \Phi$
- Consider G_1 and G_2 such that $V_1 \cap V_2 = X \neq \Phi$
- $G_1 (V_1, Z, S_1, \{S_1 \to AA, A \to C, A \to u\})$
- $-G_2 = (V_2, \Sigma, S_2, \{S_2 \to XB, X \to d, B \to b\})$
- L_1 and L_2 :
- $-S_1 \Rightarrow XA \Rightarrow cA \Rightarrow ca \text{ and } L(G_1) = \{ca\}$
- $-S_2 \Rightarrow XB \Rightarrow dB \Rightarrow db$ and $L(G_2) = \{db\}$
- Consider the union grammar:
- $-P_u = P_1 \cup P_2 \cup \{S_u \to S_1 \mid S_2\}$
- $-S_u \Longrightarrow S_1 \mid S_2 \Longrightarrow XA \Longrightarrow dA \Longrightarrow da \notin L_1 \cup L_2$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

RE are CFG

- The CFG corresponding to $(011 + 1)^*(01)^*$
- Productions of basic grammars: $P_1 = \{A \to 1\}$ and $P_2 = \{B \to 1\}$ $A \Rightarrow 1$ and $B \Rightarrow 1$ {1} & {1} & & {1}
- $\begin{array}{l} \text{Concatenation: } P_c = \{A \rightarrow 1\} \cup \{B \rightarrow 1\} \cup \{C \rightarrow AB\} \\ \text{C} \Rightarrow AB \Rightarrow 1B \Rightarrow 11 \\ \end{array}$
- $\begin{array}{ll} & \text{Concatenation again: } P_c = \{D \rightarrow 0\} \cup \{C \rightarrow AB\} \cup \{E \rightarrow DC\} \\ & E \Rightarrow DC \Rightarrow 0C \Rightarrow 011 \\ & \{011\} \end{array}$
- $\begin{array}{l} \text{Union: } P_u = \{E \to DC\} \ \cup \ \{F \to 1\} \cup \ \{G \to E \mid F\} \\ G \to E \mid F \Rightarrow 011 \mid F \Rightarrow 011 \mid 1 \qquad \{011 + 1\} \end{array}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

<i>RE</i> are CFG	
Provide a CFG for (011 + 1)*(01)*	
Closure: $P = P_1 \cup \{S \rightarrow S_1 S \mid \Lambda\}$ - $P_1 = \{A \rightarrow 011 \mid 1\}$ (Reusing the r	names for clarity)
$-P_2 = \{A \to 011 \mid 1\} \cup \{B \to AB \mid \Lambda\}$ $B \Rightarrow (011 \mid 1)B$	{011 + 1}*
$\Rightarrow (011 \mid 1)(011 \mid 1)B$	(AAB)
$\Rightarrow (011 \mid 1)(011 \mid 1)\dots(011 \mid 1)\Lambda$	$(AAA\Lambda)$
Closure: $P_3 = \{C \to 01\} \cup \{D \to CD \mid \Lambda\}$	{01}*
Concatenation: $P_c = P_2 \cup P_3 \cup \{S \to BD\}$	$\{011+1\}^*\{01\}^*$
Dr. Luis Pineda, II	MAS, UNAM & OSU-CIS,

RE are CFG

$RE = (011 + 1)^* (01)^*$	
The corresponding CFG is	
$G = (\{A, B, C, D, S\}, \{0, 1\}, S, P)$	
and P has the production	ons:
$A \rightarrow 011 \mid 1$	{011 + 1}
$B \rightarrow AB \mid \Lambda$	$\{011+1\}^*$
$C \rightarrow 01$	{01}
$D \to CD \mid \Lambda$	$\{01\}^*$
$S \rightarrow BD$	$\{011+1\}^*\{01\}^*$
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

What is the form of a grammar for a *RL*?

- ✓ Every *RE* has a corresponding CFG
- Every FA has a corresponding CFG:– Regular Grammar (RG)
- Every RG has a corresponding FA
- Every *RE* has a corresponding RG

CFG corresponding to a FA

 $\begin{array}{c} \delta^*(A, \Lambda) \Longrightarrow A\\ \delta^*(A, \Lambda 1) \Longrightarrow B\\ \delta^*(A, \Lambda 11) \Longrightarrow B\\ \delta^*(A, \Lambda 110) \Longrightarrow C\\ \delta^*(A, \Lambda 1100) \Longrightarrow A\\ \delta^*(A, \Lambda 11000) \Longrightarrow A\\ \delta^*(A, \Lambda 110001) \Longrightarrow B\\ \delta^*(A, \Lambda 11000101) \Longrightarrow C\\ \delta^*(A, \Lambda 11000101) \Longrightarrow B\\ \delta^*(A, \Lambda 11000101) \Longrightarrow C\\ \end{array}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

CFG corresponding to a FA	
The producti	ons:
$A \Longrightarrow \Lambda A$	$A \to \Lambda A$
$\Rightarrow \Lambda 1B$	$A \rightarrow 1B$
$\Rightarrow \Lambda 11B$	$B \rightarrow 1B$
$\Rightarrow \Lambda 110C$	$B \rightarrow 0C$
$\Rightarrow \Lambda 1100A$	$C \rightarrow 0A$
$\Rightarrow \Lambda 11000A$	$A \rightarrow 0A$
$\Rightarrow \Lambda 110001B$	$A \rightarrow 1B$
$\Rightarrow \Lambda 1100010C$	$B \rightarrow 0C$
$\Rightarrow \Lambda 11000101B$	$C \rightarrow 1B$
$\Rightarrow \Lambda 110001010C$	$B \rightarrow 0C$
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

CFG corresponding to a FA getting rid of the A:	
$\Rightarrow 1B$	$A \rightarrow 1B$
$\Rightarrow 11B$	$B \rightarrow 1B$
$\Rightarrow 110C$	$B \rightarrow 0C$
$\Rightarrow 1100A$	$C \rightarrow 0A$
$\Rightarrow 11000A$	$A \rightarrow 0A$
$\Rightarrow 110001B$	$A \rightarrow 1B$
$\Rightarrow 1100010C$	$B \rightarrow 0C$
$\Rightarrow 11000101B$	$C \rightarrow 1B$
$\Rightarrow 110001010C$	$B \rightarrow 0C$
	Dr. Luiz Dinada IIMAS TINAM & OSU CIS

CFG corresponding to a FA		
Accepting a string		
$\Rightarrow 1B$	$A \rightarrow 1B$	
$\Rightarrow 11B$	$B \rightarrow 1B$	
$\Rightarrow 110C$	$B \rightarrow 0C$	
$\Rightarrow 1100A$	$C \rightarrow 0A$	
$\Rightarrow 11000A$	$A \rightarrow 0A$	
$\Rightarrow 110001B$	$A \rightarrow 1B$	
$\Rightarrow 1100010C$	$B \rightarrow 0C$	
$\Rightarrow 11000101B$	$C \rightarrow 1B$	
$\Rightarrow 110001010$	$B \rightarrow 0$	
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20	

CFG corresponding to a FA

Regular Grammars

A grammar $G = (V, \Sigma, S, P)$ is regular if every production takes one of two forms:

- $-B \rightarrow aC$
- $-B \rightarrow a$

Let *L* be a *RL* and $M = (Q, \Sigma, q_0, A, \delta)$ such that L(M) = L; there is a Regular Grammar $G = (V, \Sigma, S, P)$ accepting *L*, defined as follows:

-V = Q The variables of G are the states of M

 $-S = q_0$ The start symbol of *G* is the initial state of *M* $-P = \{B \to aC \mid \delta(B, a) = C\} \cup$

 $\{B \to a \mid \delta(B, a) = F \text{ and } F \in A\}$

All RL are CFL

✓ Every *RE* has a corresponding CFG

- ✓ Every FA has a corresponding CFG:
 Regular Grammar (RG)
- Every RG has a corresponding FA
- Every *RE* has a corresponding RG

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

condition?	
$A \rightarrow 0A$	$\delta(A, 0) = A$
$A \rightarrow 1B$	$\delta(A, 1) = B$
$B \rightarrow 0C$	$\delta(B, 0) = C$
$B \rightarrow 1B$	$\delta(B, 1) = B$
$C \rightarrow 0A$	$\delta(C, 0) = A$
$C \rightarrow 1 \mathrm{B}$	$\delta(C, 1) = B$
$B \rightarrow 0$	$\delta(B, 0) = ?$

A FA corresponding to CFG

A FA corresponding to CFG		
• We can use the	productions in reverse, but	
$A \rightarrow 1B$	$\Rightarrow 1B$	
$B \rightarrow 1B$	$\Rightarrow 11B$	
$B \rightarrow 0C$	$\Rightarrow 110C$	
$C \rightarrow 0A$	$\Rightarrow 1100A$	
$A \rightarrow 0A$	$\Rightarrow 11000A$	
$A \rightarrow 1B$	$\Rightarrow 110001B$	
$B \rightarrow 0C$	$\Rightarrow 1100010C$	
$C \rightarrow 1B$	$\Rightarrow 11000101B$	
$B \rightarrow 0$	$\Rightarrow 110001010$	

A FA corres	ponding to CFG	
• We need an additional accepting state: F		
$A \rightarrow 1B$	$\Rightarrow 1B$	
$B \rightarrow 1B$	$\Rightarrow 11B$	
$B \rightarrow 0C$	$\Rightarrow 110C$	
$C \rightarrow 0A$	$\Rightarrow 1100A$	
$A \rightarrow 0A$	$\Rightarrow 11000A$	
$A \rightarrow 1B$	$\Rightarrow 110001B$	
$B \rightarrow 0C$	$\Rightarrow 1100010C$	
$C \rightarrow 1B$	$\Rightarrow 11000101B$	
$B \rightarrow 0$	\Rightarrow 110001010F	
• Only one will do!		
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200	

A FA corre	esponding to CFG
• The resulting <i>M</i> is	s non-deterministic
$A \rightarrow 1B$	$\Rightarrow 1B$
$B \rightarrow 1B$	$\Rightarrow 11B$
$B \rightarrow 0C$	$\Rightarrow 110C$
$C \rightarrow 0A$	$\Rightarrow 1100A$
$A \rightarrow 0A$	$\Rightarrow 11000A$
$A \rightarrow 1B$	$\Rightarrow 110001B$
$B \rightarrow 0C$	$\Rightarrow 1100010C$
$C \rightarrow 1B$	$\Rightarrow 11000101B$
$B \rightarrow 0$	\Rightarrow 110001010F
It is a NFA!	
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Regular Grammars

- For any language $L \subseteq \Sigma^*$, *L* is regular iff there is a *RG G* so that $L(G) = L \Lambda$
- Let *L* be a Regular Grammar $G = (V, \Sigma, S, P)$ such that L(G) = L; there is an NFA $M = (Q, \Sigma, q_0, A, \delta)$ defined as follows:
- $-Q = V \cup \{f\}$ The states of *M* are the variables of *G*, and an additional final state *f*
- $-q_0 = S$ G's start symbol is M's initial state - δ is defined as follows:
 - $\delta(q, a) = \{p\} \text{ if } q \to ap \in P \text{ and } q \to a \notin P$ $\delta(q, a) = \{p\} \cup \{f\} \text{ if } q \to ap \in P \text{ and } q \to a \in P$

Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Regular GrammarsLet L be a Regular Grammar $G = (\{A, B, C\}, \{0, 1\}, A, P)$ where $P = \{A \rightarrow 0A \mid 1B, B \rightarrow 0C \mid 0 \mid 1B, C \rightarrow 0A \mid 1B\}$ then $M = (\{A, B, C, F\}, \{0, 1\}, A, \{F\}, \delta)$,where δ as follows: $\delta(A, 0) = \{A\}$ $\delta(A, 0) = \{A\}$ $\delta(B, 0) = \{C, F\}$ $\delta(C, 0) = \{A\}$ $\delta(C, 0) = \{A\}$ $\delta(C, 1) = \{B\}$ Dr. Luis Fineda, IIMAS, UNAM & OSU-CIS, 2003

RG corresponding to a RE

- There is a NFA- Λ for every *RE* Kleene's theorem
- There is a NFA for every NFA- Λ
- There is a DFA for every NFA
- There is a RG for every DFA
- Then, there is a RG for every *RE*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

RG corresponding to a RE

- ✓ Every *RE* has a corresponding CFG
- ✓ Every FA has a corresponding CFG:
 Regular Grammar (RG)
- ✓ Every *RG* has a corresponding FA
- ✓ Every *RE* has a corresponding RG

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

