Session 16

Ambiguity

Ambiguity

- If there is more than one structure with the same root and the same yield generated by a grammar then the grammar is ambiguous
- Two kinds of ambiguity
 - In the grammar
 - In the language
- If a grammar is ambiguous there might be an unambiguous grammar for the same language
- A language is inherently ambiguous if all its grammar are ambiguous
- There is no algorithm to tell whether a grammar is ambiguous

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

An ambiguous grammar

- Exp is a CFG
 - $G_{exp} = (\{E\}, \{+, *, (,), 1,..., 9\}, E, P)$ where $P = \{E \rightarrow E + E \mid E * E \mid (E) \mid 1 \mid ... \mid 9\}$
- An ambiguous expressions:
 - -E+E*E
- Two derivations:
 - $E \Rightarrow E + E \Rightarrow E + E * E$
 - $-E \Rightarrow E * E \Rightarrow E + E * E$
- They look the same!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

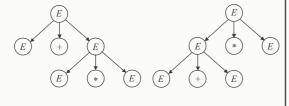
An ambiguous grammar

- The final expression looks the same:
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$
- But the derivations are different:
 - $E \Rightarrow E + E \Rightarrow E + E * E$
 - $E \Rightarrow E * E \Rightarrow E + E * E$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

An ambiguous grammar

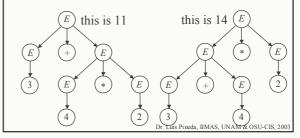
- They final expression looks the same:
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$
- The corresponding syntactic structures are also different!



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

An ambiguous grammar

- The difference is significant
 - $-E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow ^* 3 + 4 * 2$
 - $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow ^* 3 + 4 * 2$



The defect may not be in the grammar

- But different derivations may have the same structure
 - $E \Rightarrow E + E \Rightarrow 3 + E \Rightarrow 3 + 2$
 - $E \Rightarrow E + E \Rightarrow E + 2 \Rightarrow 3 + 2$

• Ambiguity arises when there is more than one structure for the same expression!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

An ambiguous grammar

- A CFG $G = (V, \Sigma, S, P)$ is ambiguous if there is at least one string w in Σ^* for which there is more than one parse tree or syntactic structure, each with root S and yield w
- If every string in the grammar has at most one parse tree, the grammar is *unambiguous*
- If G is an ambiguous CFG such that L = L(G), and there is an unambiguous G_i such that $L = L(G_i)$, we can remove the ambiguity by replacing G by G_i

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Removing ambiguity

- In general, there is no algorithm for removing ambiguity
- There are CFG that have only ambiguous grammars!
- In practice, and for some applications like defining CFG for programming languages, we can remove the ambiguity
- For this, we need to study the causes for the ambiguity of the grammar under study, and then provide a particular solution!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

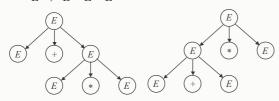
Removing ambiguity

- Consider the language G_{exp} again: where the ambiguity comes from?
- Source 1:
 - Precedence of operators is not respected!
- Source 2:
 - A sequence of identical operators can be grouped either from left to right or from right to left
 - This does not matter if operators are associative

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

An ambiguous grammar

- Precedence of operators is not respected :
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$



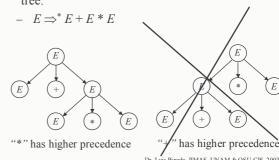
"*" has higher precedence

"+" has higher precedence

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

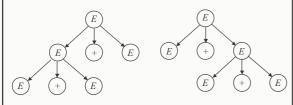
An ambiguous grammar

 Reinforcing precedence: we are left with just one tree:



An ambiguous grammar

- Arbitrary groupings of operators with equal precedence:
 - $-E \Rightarrow^* E + E + E$



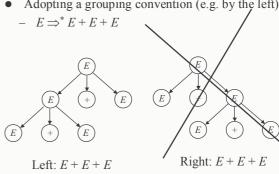
Left: E + E + E

Right: E + E + E

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

An ambiguous grammar

• Adopting a grouping convention (e.g. by the left)



Removing ambiguity

- Enforcing precedence
 - Introduce different kinds of variables representing expressions that share a level of "binding strength": factors, terms and expressions
- Extending G_{exp} with identifiers:
 - $G_{exp} = (\{E, I\}, \{+, *, (,), a, b, 0, 1\}, E, P)$ where $P = \{E \to E + E \mid E * E \mid (E) \mid I,$ $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \}$
- What are the factors, terms and expressions in G_{exp} ?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Binding strength

- A factor (in G_{exp})
 - An expression that cannot be broken apart by any adjacent operator:
 - a) Identifiers: $a1+b00*aa10 \Rightarrow (a1+b0)(0*aa10)$?
 - b) Expression between parenthesis: parenthesis make expressions within them coherent units! They are syntactic devices for creating factors!
- A term (in G_{exp})
 - An expression that cannot be broken by a + operator:

 $a1*a*b \Longrightarrow (a1*a)*b$ is ok. (assoc. by the left) $a1+a*b \Longrightarrow (a1+a)*b$? a*b is a term!

- An expression (G_{exp})
 - Any well-formed string that can be broken either by an adjacent + or a *: an expression is the sum of two terms

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Removing ambiguity

- Enforcing precedence
 - With these precedence variables we can find an alternative unambiguous grammar for G_{exp} (i.e. one that generates the same language):

$$\begin{split} G_{exp-I} &= (\{E,\,T,\,F,\,\,I\},\,\,\{+,\,*,\,(,\,),\,a,\,b,\,\,0,\,\,1\},\,E,\,P) \\ \text{where } P &= \{I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F \to I \mid (E) \\ T \to F \mid T * F \\ E \to T \mid E + T\} \end{split}$$

The rules are designed in a way that variables with lower binding strength dominate variables with a higher binding strength.

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Generate: a + a * a

The productions:

$$\begin{split} P &= \{I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F &\to I \mid (E) \\ T &\to F \mid (T * F) \\ E &\to T \mid E + T \, \} \end{split}$$

The derivation

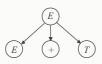
$$E \Longrightarrow E + T$$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate: a + a * a

The productions:

$$\begin{split} P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F \rightarrow I \mid (E) \\ T \rightarrow F \mid (T * F) \\ E \rightarrow T \mid E + T \, \} \end{split}$$



The derivation

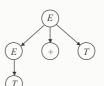
$$E \Rightarrow E + T$$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate:
$$a + a * a$$

The productions:

$$\begin{split} P &= \{I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F &\to I \mid (E) \\ T &\to F \mid (T * F) \\ E &\to T \mid E + T \, \} \end{split}$$



The derivation

$$E \Rightarrow E + T$$
$$\Rightarrow T + T$$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate: a + a * a

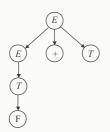
The productions:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$
$$F \rightarrow I \mid (E)$$
$$T \rightarrow F \mid (T * F)$$

$$T \to F \mid (T * F)$$
$$E \to T \mid E + T \}$$

• The derivation

$$E \Rightarrow E + T$$
$$\Rightarrow T + T$$
$$\Rightarrow F + T$$



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate:
$$a + a * a$$

The productions:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

$$F \rightarrow I \mid (E)$$

$$T \rightarrow F \mid (T * F)$$

$$E \rightarrow T \mid E + T \}$$

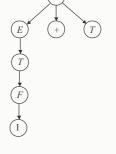
The derivation

$$E \Rightarrow E + T$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow I + T$$



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate: a + a * a

• The productions:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

$$F \rightarrow I \mid (E)$$

$$T \rightarrow F \mid (T * F)$$

$$E \rightarrow T \mid E + T \}$$

• The derivation

The derivation
$$E \Rightarrow E + T$$

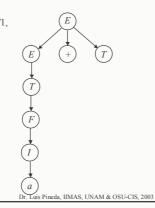
$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow F + T$$

$$\Rightarrow I + T$$

$$\Rightarrow a + T$$



Generate: a + a * aThe productions:

 $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$

$$F \to I \mid (E)$$
$$T \to F \mid (T * F)$$
$$E \to T \mid E + T \}$$

The derivation

$$E \Rightarrow E + T$$

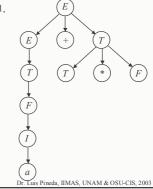
$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow I + T$$

$$\Rightarrow a + T$$

$$\Rightarrow a + (T * F)$$



Generate: a + a * a• The productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, F \rightarrow I \mid (E)$ $T \rightarrow F \mid (T * F)$ $E \rightarrow T \mid E + T \}$ • The derivation $E \Rightarrow^* a + (F * F)$ $T \rightarrow F \mid (F * F)$ $E \rightarrow T \mid E + T \Rightarrow F$ • The derivation of the production of the

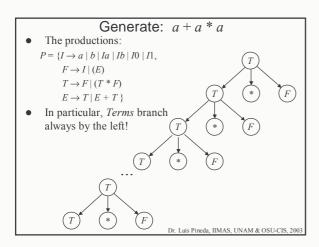
Generate: a + a * a• The productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, F \rightarrow I \mid (E) F \rightarrow F \mid (T * F) F \rightarrow T \mid E + T \}$ • The derivation $E \Rightarrow a + (F * F) \Rightarrow a + (I * F)$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Generate: a + a * a• The productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F \rightarrow I \mid (E) \\ T \rightarrow F \mid (T * F) \\ E \rightarrow T \mid E + T \}$ • The derivation $E \Rightarrow a + (F * F) \\ \Rightarrow a + (I * F) \\ \Rightarrow a + (a * F)$ • The spineda, JIMAS, UNAM & OSU-CIS, 2003

Generate: a + a * a• The productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, F \rightarrow I \mid (E) \\ T \rightarrow F \mid (T * F) \\ E \rightarrow T \mid E + T \}$ • The derivation $E \Rightarrow a + (F * F) \\ \Rightarrow a + (I * F) \\ \Rightarrow a + (a * F) \\ \Rightarrow a + (a * I)$ • The derivation of the derivation

Generate: a + a * aThe productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, F \rightarrow I \mid (E) T \rightarrow F \mid (T * F) E \rightarrow T \mid E + T\}$ The derivation $E \Rightarrow a + (F * F) \Rightarrow a + (I * F) \Rightarrow a + (a * I) \Rightarrow a + (a * a)$ Defining the production of th

Generate: a + a * aThe productions: $P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$ $F \rightarrow I \mid (E)$ $T \rightarrow F \mid (T * F)$ $E \rightarrow T \mid E + T \}$ The grammar is unambiguous: Variables of lower precedence are introduced before, and variables of higher precedence are units that cannot be broken by variables of lower precedence, which are already in the tree!



Unambiguous grammar

If a grammar is unambiguous leftmost and rightmost derivations are unique!

Leftmost derivation: • Rightmost derivation: $E \Rightarrow E + T$ $E \Longrightarrow E + T$ $\Rightarrow E + (T * F)$ $\Rightarrow T + T$ $\Rightarrow F + T$ $\Rightarrow E + (T * I)$ $\Rightarrow I + T$ $\Rightarrow E + (T * a)$ $\Rightarrow a + T$ $\Rightarrow E + (F * a)$ $\Rightarrow a + (T * F)$ $\Rightarrow E + (I * a)$ $\Rightarrow a + (F * F)$ $\Rightarrow E + (a * a)$ $\Rightarrow a + (I * F)$ $\Rightarrow T + (a * a)$ $\Rightarrow a + (a * F)$ $\Rightarrow F + (a * a)$ $\Rightarrow a + (a * I)$ $\Rightarrow I + (a * a)$ $\Rightarrow a + (a * a)$ $\Rightarrow a + (a * a)$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Ambiguity and leftmost derivations

- Leftmost derivation:
 - $E \Rightarrow E + T$
 - $\Rightarrow T + T$
 - $\Rightarrow F + T$
 - $\Rightarrow I + T$ $\Rightarrow a + T$

 - $\Rightarrow a + (T * F)$ $\Rightarrow a + (F * F)$
 - $\Rightarrow a + (I * F)$

 - $\Rightarrow a + (a * F)$
 - $\Rightarrow a + (a * I)$
 - $\Rightarrow a + (a * a)$

- Theorem: For each grammar
 - G = (V, T, P, S)and string w in T^* , whas two distinct parse trees iff w has two leftmost derivations from S
- Proof: if it were not the case, a left variable in a leftmost derivation should expand in more than one way! Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Inherent ambiguity

- A language L is said inherently ambiguous if all its grammars are ambiguous; if there is at least one unambiguous grammar for L, L is unambiguous.
 - The language of Expressions is unambiguous
 - Regular expressions are unambiguous
- An example of an inherently ambiguous language:

$$L = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n \ge 1, m \ge 1\}$$

- L is context free:

$$S \rightarrow AB \mid C$$

 $A \rightarrow aAb \mid ab$ $B \rightarrow cCd \mid cd$ $C \rightarrow aCd \mid aDd$

 $D \rightarrow bCc \mid bc$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Inherent ambiguity

L is context free:

$$S \rightarrow AB \mid C$$

 $A \rightarrow aAb \mid ab$

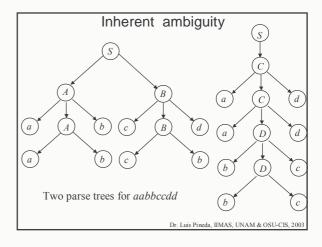
 $C \rightarrow aCd \mid aDd$

 $B \rightarrow cBd \mid cd$

 $D \rightarrow bDc \mid bc$

- The grammar is ambiguous: there are strings with more than two leftmost derivations:
 - Consider: aabbccdd (m = n = 2)
 - $S \Rightarrow AB \Rightarrow aAbB \Rightarrow aabbB \Rightarrow aabbcBd \Rightarrow aabbccdd$
 - $S \Rightarrow C \Rightarrow aCd \Rightarrow aaDdd \Rightarrow aabDcdd \Rightarrow aabbccdd$

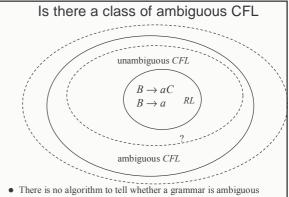
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200



Inherent ambiguity

- The language:
 - $L = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n \ge 1, m \ge 1\}$
- The grammar
- Why are all the grammars for this language ambiguous?
 - Consider any string such that m = n
- There two leftmost derivations for all these strings
- What changes in the grammar can we try?
- The problem: The disjunction!
 - There is no way to avoid a mechanism to match the same number of a's and b's, and at the same time, a mechanism for matching the number of a's and d's
 - Similarly for matching c's and d's and, at the same time, b's and c's

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003



There is no way to tell when a language is inherently ambiguous!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003