Session 18

Pushdown Automata

Pushdown Automata (PDA)

- PDA is a machine that defines CFG
- Extension of NFA- Λ with the addition of a stack.

A machine for accepting even Pal

- $L = \{xx^r \mid x \in \{a, b\}^*\}$
- $G_{pal-even} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid \Lambda\}$ x = 101101
- How can we tell if the string is in the language?

Notion of a state

- In FA (DFA, NFA and NFA-A) the next state depends on the current state and the symbol on the input: the state is a full picture of the machine at a given point of the computation!
- In PDA, the full picture depends, in addition, of the content of the stack!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

The machine is not deterministic

- How does the machine know when it has reached the end of the first half of the string?
 - It does not: it makes a guess!
 - When every symbol is scanned, the machine either
 - Reads the symbol and do the corresponding op.
 - Makes a lambda transition and changes to the state for reading the second part of the string!
- How does it now that the stack is empty?
 - We use a special symbol in the stack!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Machine operation

Depending:

- Symbol currently been scanned
- Current state
- Symbol on the top of the stack
- Action:
- Select next state (can be the same)
- Action on the stack (push or pop or nothing)
- Accept:
 - All symbols in the string have been scanned
 - An accepting state is reached or the stack is empty

Definition of PDA

A Pushdown Automaton is a 7-tuple:

- $(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$
- where
- -Q is a finite set (of states)
- $-\Sigma$ is the alphabet of the language rec. by the PDA
- $-\Gamma$ is the alphabet for symbols in the stack
- $-q_0 \in Q$ (the initial state)
- $-Z_0 \in \Gamma$ (the initial stack symbol)
- $-A \subseteq Q$ (the set of accepting states)
- $\, \delta$ is a transition function of type:

 $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma \to \text{finite subsets of } Q \times \Gamma^*$

. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Transition function

Transition function for DFA:

- $\delta: Q \times \Sigma \to Q$
- Transition function for NFA:
- δ: $Q \times \Sigma \rightarrow 2^Q$
- Transition function for NFA- Λ
 - $δ: Q × (Σ ∪ {Λ}) → 2^Q$
 - Transition function for PDA:
 - δ: $Q \times (\Sigma \cup {\Lambda}) \times \Gamma \to \text{f.s.s. } Q \times \Gamma^*$

Id	State	Input	Stack symbol	Move(s)
	q_0	0	Z_0	$(q_0, 0Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0)$
3	q_0	0	0	$(q_0, 00)$
4	q_0	1	0	$(q_0, 10)$
5	q_0	0	1	$(q_0, 01)$
6	q_0	1	1	$(q_0, 11)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	$(q_1, 1)$
10	q_1	0	0	(q_1, Λ)
11	q_1	1	1	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)

Transition table $L = \{xx^r \mid x \in \{a, b\}^*\}$						
	Id	State	Input	Stack symbol	Move(s)	
	1	q_0	0	Z_0	$(q_0, 0Z_0)$	
	2	q_0	1	Z_0	$(q_0, 1Z_0)$	
Push	3	q_0	0	0	(q ₀ , 00)	
	4	q_0	1	0	(q ₀ , 10)	
	5	q_0	0	1	(q ₀ , 01)	
	6	q_0	1	1	(q ₀ , 11)	
	7	q_0	Λ	Z_0	(q_1, Z_0)	
	8	q_0	Λ	0	$(q_1, 0)$	
	9	q_0	Λ	1	$(q_1, 1)$	
	10	q_1	0	0	(q_1, Λ)	
	11	q_1	1	1	(q_1, Λ)	
	12	q_1	Λ	Z_0	(q_2, Z_0)	
		non eda, IIMAS, UNAM & OSU-CIS, 2				

Т	rans	sition	table	$L = \{xx^r\}$	$\mid x \in \{a, b\}^*\}$
	Id	State	Input	Stack symbol	Move(s)
	1	q_0	0	Z_0	$(q_0, 0Z_0)$
	2	q_0	1	Z_0	$(q_0, 1Z_0)$
	3	q_0	0	0	$(q_0, 00)$
	4	q_0	1	0	$(q_0, 10)$
	5	q_0	0	1	$(q_0, 01)$
	6	q_0	1	1	$(q_0, 11)$
	7	q_0	Λ	Z_0	(q_1, Z_0)
Middle	8	q_0	Λ	0	$(q_1, 0)$
	9	q_0	Λ	1	$(q_1, 1)$
	10	q_1	0	0	(q_1, Λ)
	11	q_1	1	1	(q_1, Λ)
	12	q_1	Λ	Z_0	(q_2, Z_0)
	Other combinations				non

Т	rans	sition	table	$L = \{xx^r\}$	$ x \in \{a, b\}^*\}$
	Id	State	Input	Stack symbol	Move(s)
	1	q_0	0	Z_0	$(q_0, 0Z_0)$
	2	q_0	1	Z_0	$(q_0, 1Z_0)$
	3	q_0	0	0	$(q_0, 00)$
	4	q_0	1	0	$(q_0, 10)$
	5	q_0	0	1	$(q_0, 01)$
	6	q_0	1	1	$(q_0, 11)$
	7	q_0	Λ	Z_0	(q_1, Z_0)
	8	q_0	Λ	0	$(q_1, 0)$
	9	q_0	Λ	1	$(q_1, 1)$
Рор	10	q_1	0	0	(q_1, Λ)
rop	11	q_1	1	1	(q_1, Λ)
	12	q_1	Λ	Z_0	(q_2, Z_0)
	Other combinations				non eda, IIMAS, UNAM & OSU-CIS, 2

Acceptance by a PDA

- Acceptance by final state:
- If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is a PDA. Then, L(M), the language accepted by M by final state, is: $L(M) = \{w \mid (q_0, w, Z_0) \Leftrightarrow^*_M (q, \Lambda, \alpha)\}$
- for some $\alpha \in \Gamma^*$ and some $q \in A$. The stack may or may not be empty when w is accepted, because α may or may not be Λ .
- A Language $L \subseteq \Sigma^*$ is said to be accepted by M if L is precisely the set of strings accepted by M, and we write L = L(M)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Acceptance by a PDA

Acceptance by empty stack:

- If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is a PDA. Then, N(M), the language accepted by M by *empty stack*, is: $N(M) = \{w \mid (q_0, w, Z_0) \Leftrightarrow^*_M (q, \Lambda, \Lambda)\}$

Here, the final state is irrelevant!

- If $L \subseteq \Sigma^*$ is accepted by a PDA M_F by *final state*, there is a PDA M_N that accepts L by empty stack
- For a given PDA *M*, the language it accepts by final state is usually different from the language it accepts by empty stack!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A machine for accepting *Pal* (by final state)

- The language:
 - $Pal = \{x \mid x = x^r \in \{a, b\}^*\}$
- The grammar:
- $G_{pal} = (\{P\}, \{0, 1\}, P, P \to 0P0 \mid 1P1 \mid 1 \mid 0 \mid \Lambda)$
- Define M_{pal} :

 $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, q_0, Z_0, \{q_2\}, \delta)$

- Guesses computing the first part of the input string:
- Still in there: stay in state, consume symbol and push
- The first half of an even-length pal. is reached: change state, with a A-transition
- The middle symbol of an odd-length pal is reached: change the state, consume symbol but do not push it into the stack! Dr Luis Pineda IUMAS, UNAM & OSUCIS, 20

Transition table

Id	State	Input	Stack symbol	Move(s)	
1	q_0	0	Z_0	$(q_0, 0Z_0), (q_1, Z_0)$	
2	q_0	1	Z_0	$(q_0, 1Z_0), (q_1, Z_0)$	
3	q_0	0	0	$(q_0, 00), (q_1, 0)$	
4	q_0	1	0	$(q_0, 10), (q_1, 0)$	
5	q_0	0	1	$(q_0, 01), (q_1, 1)$	
6	q_0	1	1	$(q_0, 11), (q_1, 1)$	
7	q_0	Λ	Z_0	(q_1, Z_0)	
8	q_0	Λ	0	$(q_1, 0)$	
9	q_0	Λ	1	$(q_1, 1)$	
10	q_1	0	0	(q_1, Λ)	
11	q_1	1	1	(q_1, Λ)	
12	q_1	Λ	Z_0	(q_2, Z_0)	
Other combinations				non	
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS					

