Session 19

Deterministic Pushdown Automata

Three versions of Pal

$$Pal_{mark} = \{xcx^r \mid x \in \{a, b\}^*\}$$

- abbacabba

$$Pal_{even} = \{xx^r \mid x \in \{a, b\}^*\}$$

– aahhhhaa

$$Pal = \{x \mid x = x^r \in \{a, b\}^*\}$$

- aahhhhaa
- aabbabbaa

Dr. Luis Binada, HMAS, HNAM & OSH CIS, 200

A machine for accepting Pal

The language:

$$Pal = \{x \mid x = x^r \in \{a, b\}^*\}$$

Define M_{pal} :

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, q_0, Z_0, \{q_2\}, \delta)$$

Two kinds of non-determinism:

- For a given state, input symbol and top of the stack there is more than one move
- There are states in which the machine has the choice between consuming a symbol or making a Λ -transition

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Transition function for Pal

Id	State	Input	Stack symbol	Move(s)
1	q_0	0	Z_0	$(q_0, 0Z_0), (q_1, Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0), (q_1, Z_0)$
3	q_0	0	0	$(q_0, 00), (q_1, 0)$
4		1	0	$(q_0, 10), (q_1, 0)$
5	q_0	0	1	$(q_0, 01), (q_1, 1)$
6	q_0	1	1	$(q_0, 11), (q_1, 1)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	(q ₁ , 1)
10	q_1	0	0	(q_1, Λ)
-11	q_1	1	1	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
	Othe	r combina	non	

More than one next state Pal

Id	State	Input	Stack symbol	Move(s)
1	q_0	0	Z_0	$(q_0, 0Z_0), (q_1, Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0), (q_1, Z_0)$
3	q_0	0	0	$(q_0, 00), (q_1, 0)$
4	q_0	1	0	$(q_0, 10), (q_1, 0)$
5	q_0	0	1	$(q_0, 01), (q_1, 1)$
6	q_0	1	1	$(q_0, 11), (q_1, 1)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	$(q_1, 1)$
10	q_1	0	0	(q_1, Λ)
11	q_1	1	1	(q_1,Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
	Othe	r combina	non	

Λ-Transition

Id	State	Input	Stack symbol	Move(s)
1	q_0	0	Z_0	$(q_0, 0Z_0), (q_1, Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0), (q_1, Z_0)$
3	q_0	0	0	$(q_0, 00), (q_1, 0)$
4	q_0	1	0	$(q_0, 10), (q_1, 0)$
5	q_0	0	1	$(q_0, 01), (q_1, 1)$
6	q_0	1	1	$(q_0, 11), (q_1, 1)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	$(q_1, 1)$
10	q_1	0	0	(q_1, Λ)
11	q_1	1	1	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
	Othe	r combina	non	
			ada HMAS LINIAM & OSLI CIS	

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

		OICC	OI /X- I I	ransition
Id	State	Input	Stack symbol	Move(s)
1	q_0	0	Z_0	$(q_0, 0Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0)$
3	q_0	0	0	$(q_0, 00)$
4	q_0	1	0	$(q_0, 10)$
	q_0	0		$(q_0, 01)$
6	q_0	1	1	$(q_0, 11)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	$(q_1, 1)$
10	q_1	0	0	(q_1, Λ)
-11	q_1	1	1	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
	Othe	non eda, IIMAS, UNAM & OSU		

Id	State	Input	Stack symbol	Move(s)
1	q_0	0	Z_0	$(q_0, 0Z_0)$
2	q_0	1	Z_0	$(q_0, 1Z_0)$
3	q_0	0	0	$(q_0, 00)$
4	q_0	1	0	$(q_0, 10)$
5	q_0	0	1	$(q_0, 01)$
6	q_0	1	1	$(q_0, 11)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	0	$(q_1, 0)$
9	q_0	Λ	1	$(q_1, 1)$
10	q_1	0	0	(q_1, Λ)
11	q_1	1	1	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)

Transition function for $M_{pal-even}$							
Id	State	Input	Stack symbol	Move(s)			
1	q_0	0	Z_0	$(q_0, 0Z_0)$			
2	q_0	1	Z_0	$(q_0, 1Z_0)$			
3	q_0	0	0	$(q_0, 00)$			
4	q_0	1	0	$(q_0, 10)$			
5	q_0	0	1	$(q_0, 01)$			
6	q_0	1	1	$(q_0, 11)$			
7	q_0	Λ	Z_0	(q_1, Z_0)			
8	q_0	Λ	0	$(q_1, 0)$			
9	q_0	Λ	1	$(q_1, 1)$			
10	q_1	0	0	(q_1, Λ)			
-11	q_1	1	1	(q_1, Λ)			
12	q_1	Λ	Z_0	(q_2, Z_0)			
	Othe	r combina		non			
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2							

A machine for accepting $M_{pal-mark}$ The language: $Pal_{mark} = \{xcx^r \mid x \in \{a,b\}^*\}$ Define $M_{pal-mark}$: $M_{pal-mark} = (\{q_0,q_1,q_2\},\{0,1\},\{0,1,Z_0\},q_0,Z_0,\{q_2\},\delta)$ No non-determinism at all!

Definition of Deterministic PDA

- Let $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ be a PDA. M is deterministic if there is no configuration for which M has a choice of more than one move. For this, M has to satisfy two conditions:
- 1. For any $q \in Q$, $a \in \Sigma \cup \{\Lambda\}$) and $X \in \Gamma$, the set $\delta(q, a, X)$ has at most one element
- 2. For any $q \in Q$ and $X \in \Gamma$, if $\delta(q, \Lambda, X) \neq \Phi$, then $\delta(q, a, X) = \Phi$ for every $a \in \Sigma$

A language *L* is a *deterministic context-free language* (DCFL) if there is a deterministic PDA (DPDA) accepting *L*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Definition of Deterministic PDA

- Let $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ be a PDA. M is deterministic if there is no configuration for which there is:
- No more than one move from one configuration
- No choice between consume a symbol and make a Λ-transition

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Causes of non-determinisms

In the language?

$$-I := \{ r \mid r = r^r \in \{a, b\}^* \}$$

$$-Pal_{even} = \{xx^r \mid x \in \{a, b\}^*\}$$

$$-Pal_{mark} = \{xcx^r \mid x \in \{a, b\}^*\}$$

The description of languages with complex structure requires the use of powerful expressive devices in the grammar:

- Λ
- Choice of productions
- Ambiguity?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Causes of non-determinisms

In the grammar

$$-G_{nal} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid \Lambda\}$$

$$-G_{pal-even} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid \Lambda\}$$

$$-G_{pal-mark} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid c\}$$

What production was used to generate a symbol in a particular derivation?

$$-001100$$
 $P \to 0P0 \text{ or } P \to 0?$

 $-001\Lambda 100$ $P \rightarrow \Lambda$ is used, but when?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Removing non-determinism?

Removing Λ-productions:

$$-G_{pal} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid 00 \mid 11\}$$

$$-G_{pal\text{-}even} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid 00 \mid 11\}$$

This is not enough!

 For a given left-side variable we still have different right-sides producing the same next symbol in a derivation!

$$P \rightarrow 0P0 \mid 0 \mid 00$$

 During interpretation we cannot tell what production was in used (in generation) relying only in local information: interpretation state, input symbol and symbol on top of the stack, Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

The PDA for Pal_{mark} is deterministic!

$$Pal_{mark} = \{xcx^r \mid x \in \{a, b\}^*\}$$

$$-G_{pal-mark} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid c\}$$

No productions induce non-determinism:

 $-P \rightarrow 0P0 \mid 1P1$: One push and one pop!

 $-P \rightarrow c$: Reaching the first half

No production with the same left-side variable produce the same next symbol in the right-side!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

DPDA and Regular languages

- Regular grammars have a corresponding NFA
- NFA has an equivalent FA
- FA is deterministic
- A DPDA can simulate deterministic FA
 - Define a PDA that only uses its states (i.e. it has a stack and stack symbol, but these are not used!)
 - If $A = (Q, \Sigma, q_0, A, \delta_A)$ is a FA construct a PDA $P = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta_P)$

such that

$$\delta_P(q, a, Z_0) = \{(p, Z_0)\}$$

for all states p and q in Q such that $\delta_A(q, a) = p$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Deterministic CFL

- Pal_{mark} has is a DCFL (has a corresponding DPDA)
- Pal_{mark} is not a RL:
 - The pumping lemma: Consider $w = 0^n c 0^n$: choose uv two groups of 0's of the first half: pump down the v group, and the resulting string is not in the language!
- On the other hand, Pal and Pal_{even} are CFL for which
- The set of *deterministic CFL* properly include *RL* and is properly included in *CFL*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Deterministic and ambiguous CFL

$$L_{pal} = \{x \mid x = x^r \in \{a, b\}^*\}$$

$$-G_{pal} = (\{P\}, \{0, 1\}, P, P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid 00 \mid 11\}$$

- PDA for G_{pal} is Non-deterministic!
- G_{pal} is unambiguous: Leftmost derivations are unique!
- Several derivations but one tree!
 - We might make wrong guesses along the way (which eventually will die before reaching the accepting state)
 - There may be several derivations (e.g. rightmost, leftmost)
 - But there is only one structure for the input string!

Dr. Luis Pinoda IIMAS LINAM & OSILCIS 2003

