Session 1

Preliminaries and Languages

Central Concepts

- Alphabets
- Strings
- Languages
- Representation
- Interpretation
- Problems

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

Alphabets

- A finite (nonempty) set of symbols: Σ
 - $-\Sigma = \{a, b, c, ..., z\}$
 - $-\Sigma = \{\alpha, \beta, \gamma, ..., \omega\}$
 - $-\Sigma = \{0, 1\}$
 - $-\Sigma = \{0, 1, 2, 3, \dots, 9\}$
 - $-\Sigma = \{1\}$
 - $-\Sigma$ = The set of ASCII characters

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

- A string (a word) over an alphabet Σ
 A finite sequence of symbols of Σ
- Length of a string
 - The number (positions) of symbols in a string:
 w = "111" has one symbol in three positions
 The length of string w is |w|
 - |w| = 3
- The null string: Λ (lambda) - Λ may be chosen from any alphabet

r. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 20

Strings

- Notation:
- Lower-case letter at the beginning of the alphabet denote symbols: *a*, *b*, *c*...
- Lower-case letters at the end of the alphabet denote strings: w, x, y, z

Strings

Powers of an alphabet

- If Σ is an alphabet Σ^k is the set of strings of length *k*, such that all symbols in *k* are in Σ

$$-\Sigma^{\circ} = \{\Lambda\}$$

- If $\Sigma = \{0, 1\}$ then
- $\Sigma^0 = \{\Lambda\}$

•
$$\Sigma^{*} = \{0, 1\}$$

- $\Sigma^2 = \{00, 01, 10, 11\}$ and so on
- $-\Sigma \neq \Sigma^{1}$ (Σ is the alphabet and Σ^{1} is the set of strings of length 1)

Strings

For any alphabet Σ the set of *all* strings over Σ is denoted as Σ^*

- And without Σ^0 :
- $-\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots$

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 20

Σ^* is denumerable

- A set is denumerable or enumerably infinite or countable if it can be arranged in a single (perhaps infinite) list:

 - We need to be able to tell for each object listed, which one is it on the list
- A set *A* denumerable if there is a function with domain in N (the natural numbers) such that each member of A is

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Σ^* is denumerable

- $\Sigma = \{a,..,z\}$ (26 letters)
- $-\Sigma^0$ has 1 string of length 0 (i.e. Λ)
- $-\Sigma^{1}$ has 26 strings of length 1 (i.e. a,...,z)
- $-\Sigma^2$ has 26² strings of length 2 (in alphabetic order)
- $-\Sigma^3$ has 26³ strings of length 3 (in alphabetic order)
- There is a function that for any argument *n* the value is the corresponding string in Σ^*

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Strings

Concatenation of strings

- If x and y are strings xy denotes the concatenation of x and
- More precisely: if $x = x_1 x_2 \dots x_i$ and $y = y_1 y_2 \dots y_j$ then xy $= x_1 x_2 \dots x_i y_1 y_2 \dots y_j$ - i.e: x = 01101 and y = 110 then xy = 01101110

- Identity of concatenation: $\Lambda x = x \Lambda = x$
- Concatenation is associative: (xy)z = x(yz)

Strings

- Concatenation of sets of strings
- If $A, B \subseteq \Sigma^*$ the concatenation of A and B is $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- Concatenation is NOT commutative
- $-A = \{a, b\}$ and $B = \{c, d\}$
- $-AB = \{ac, ad, bc, bd\}$
- $-BA = \{$ ca, cb, da, db $\}$

Languages

- A language is a set of strings made out of symbols of an *alphabet*
- Natural languages (English, Spanish, etc.)
- Syntactic level: Sentences are made out of words
- Lexical level: Words are made out of symbols of an alphabet
- Formal languages
- Syntactic level: Well-formed expressions are made out strings (tokens)
- Lexical level: tokens are made of alphabet symbols (ASCII)

Definition of Languages

- A language over Σ is a subset of Σ^*
- *L* is a language over Σ if $L \subseteq \Sigma^*$
- L needs not to include all symbols in Σ , so if *L* is a language over Σ , it is also a language over a super set of Σ

Examples of Languages

- The language of all strings consisting of *n* 0's followed by *n* 1's, for some $n \ge 0$:
 - $\{\Lambda, 01, 0011, 000111, ...\}$
- The set of strings of 0's and 1's with an equal number each:
- $\{\Lambda, 01, 10, 0011, 0101, 1001, \ldots\}$ The set of strings representing prime numbers in binary notation:

Examples of Languages

- Σ^* is a language over any alphabet
- Φ , the empty language, is a language over any alphabet
- $\{\Lambda\}$, the language consisting of the empty string
- Note that $\Phi \neq \{\Lambda\}$

Stating a language

- As set formation:
- $\{w \mid a \text{ property of } w \}$
- Example: {w | w consists of a sequence of n 0's followed by a sequence of n 1's}
- Expressing *w* with parameters
 - $\{0^n 1^n \mid n \ge 0\}$ where *n* is the parameter
- $\{0^i 1^j \mid 0 \le i \le j\}$ where *i* and *j* are the parameters
- Combining set operators with concatenation $= \{ab, bab\}^* \cup \{bb\}^*$
- Or even:
 - $\{hvh \mid v \in \{a, h\}^*\}$
- It would be nice to have a simple and clear way to do it!

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Representation Strings in languages *represent* objects in the world: – John, Pete and Luis are represented by {*john*, *pete*, *luis*}

- 2, 3, 5, 7, 11 are represented by {10, 11, 101, 111, 1011, ...}
- A representation can be thought of as a function from the world to a language!
- This function is applied by the sender of a message!

John → is represented by John Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003

Interpretations

- Strings in languages are *interpreted* as objects in the world:
- {john, pete, luis} are interpreted as John, Pete and Luis
- {10, 11, 101, 111, 1011, ...} are interpreted as 2, 3, 5, 7, 11
- A interpretation can be thought of as a function from the the language to the world!

This functions is applied by the receiver of the message!

→ is interpreted as → John

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 200

- A *problem* is the question of deciding whether a string is a member of some particular language
- If Σ is an alphabet, L is a language over Σ , the
 - problem *L* is:
 - Giving a string w in Σ^* , decide whether or not w is in L
- Problems and Languages are really the same thing!

r. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 20

A Problem The problem of whether a number is prime can be expressed by the language L_p consisting on all monadic strings whose length is a prime number:

- $-L_{\rm n} = \{11, 111, 11111, 111111\}$
- $-111 \in L_{-}$
- 1111∉ Î
- Given a string of 1's say "yes" or "not" depending the string in question represents a prime
- We need to think of the language as a representation; otherwise we cannot define the algorithm

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 20

Problems Two ways of think of Problems: - As decision questions: Deciding whether a string is in a set of strings 111 ∈ {11, 111, 1111, 11111, 111111, 1111111,...}? - As procedures transforming an input into an output: 111 → Algorithm yes

- Question of complexity theory:
 - Executing an algorithm will take some computational resources: space and time
 - If a problem is *hard* it can be *reduced* to an equivalent but simpler formulation

Dr. Luis Pineda, IIMAS, UNAM, Mex. & OSU-CIS, USA, 2003