Session 2

Languages & Language Operations

Definition of Languages

- A language over Σ is a subset of Σ^*
- *L* is a language over Σ if $L \subseteq \Sigma^*$
- How many languages are there for a given Σ?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

How many languages are there?

- Let $m_0 \dots m_n$ be the list of finite strings formed with symbols of Σ
- Let $S_0 \dots S_n$ be the list of all subsets (languages) of Σ^*

	<i>m</i> ₀	m_{I}	<i>m</i> ₂	 m_n
S_{θ}	0	0	0	 0
S_{I}	0	0	1	 0
S_2	1	0	1	 0
S_n	1	1	1	 1

A diagonal set: $D(i) = S_i(i)$

	m_0	m_{I}	<i>m</i> ₂	 m_n
S_0	0	0	0	 0
S_{I}	0	0	1	 0
S_2	1	0	1	 0
S_n	1	1	1	 1

 $D = \{m_2, \ldots, m_n\}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Graphica	al compu	utation L	n+1
L^2			
1111	01111	111111	
110	0110	11110	
011	0011	11011	
00	000	1100	
	0	11	L
	$L^3 = L L^2_{\text{Dr. Luis I}}$	Pineda, IIMAS, UNAM &	k OSU-CIS, 2003

Conc	atenati	on of a coi	langua mmutat	ge with ive!	its pow	vers is
	L					
	11	0011	01111	11011	111111	
	0	000	0110	1100	11110	
		00	011	110	1111	L^2
		$L^2 L$	$=LL^2$			
			Dr.	Luis Pineda, IIN	AAS, UNAM &	OSU-CIS, 2003

Com	р	uting L	. ³ : app	lying io	d.
L ²		L^2	Λ is a la	nguage re	producer!
11	11	1111	01111	111111	
1	10	110	0110	11110	
0	11	011	0011	11011	
	00	00	000	1100	
	11	11	011	1111	
	0	0	00	110	
	Λ	Λ	0	11	L^{I}
		Λ	0	11	L
			Dr. Luis Pinec	la, IIMAS, UNAM	• I & OSU-CIS, 2003

	Comp	uting <i>L</i>	3	
L^2		•		
1111	Λ1111	01111	111111	
110	Λ110	0110	11110	
011	Λ011	0011	11011	
00	Λ00	000	1100	
11	Λ11	011	1111	
0	Λ0	00	110	
Λ	ΛΛ	0Λ	11Λ	
	Λ	0	11	L
	-	Dr. Luis Pineo	la. IIMAS. UNAM	& OSU-CIS. 20

Tł	ne contr	ibution d	of <i>L</i> ³ : (<i>L</i>	$(1 - L^0)(L^0)$	$L^2 - L^0$)
	L^2	L^2			
	1111	1111	01111	111111	
	110	110	0110	11110	
	011	011	0011	11011	
	00	00	000	1100	
	11	11	011	1111	
	0	0	00	110	
	Λ	Λ	0	11	L^{I}
		Λ	0	11	L
	$L^{3} = L^{0} \cup L^{1} \cup L^{2} \cup (L^{1} - L^{0})(L^{2} - L^{0})$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003				

T	he con	tributio	on of L	.3: c(L	$C(L_2)$
	L^2	L^2			
	1111	1111	01111	111111	
	110	110	0110	11110	
	011	011	0011	11011	
	00	00	000	1100	
	11	11	011	1111	$L^{2} - L^{1}$
	0	0	00	110	
	Λ	Λ	0	11	L^{l}
		Λ	0	11	L
	$L^3 = L^0 \cup$	$L^1 \cup L^2 \cup$	$(L^1 - L^0)(L^1)$	$L^2 - L^1$)	& OSU-CIS 2003

Linuii	infi	nite lar	nguage	S	01
L					,
000	0000	00000	000000		
00	000	0000	00000		
0	00	000	0000		
	0	00	000		L

	Closures
• The closure o by 0 and 1, and	f $L = \{0, 1\}$ is the set of all strings formed and Λ
• 100111 belon	gs to the closure:
- 100111	belongs to L
- 100111	belongs to L^2
- 100111	belongs to L^3
- 100111	belongs to L^4
- 100111	belongs to L^5
- 100111	belongs to L^6
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

	Closures
 The closure of L = formed by the pair and Λ: 	= {10, 111} is the set of all strings rs 10 and 111, including repetitions,
• 10111111 belongs	s to the closure:
- 10111111	belongs to L
- 10111111	belongs to L^2
- 10111111	belongs to L^3
• But 110111does n	lot!
- 101111	belongs to L^1
- 101111	belongs to L^2
- 101111	but belongs to no power of L!
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Closure

- It is perhaps hard to think of the closure of a language!
- But it is much simpler to see whether a given string is in the closure of a language:
 - Read the string from left to right, and scan members of the language one at a time
 - If the string is completely scanned, and we have successfully extracted members of the language at every stage of the process, the string is in the closure of the language!
- It is simple to generate string in the closure: just concatenate symbols of L, with repetitions allowed! Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

- $-L_2 = \{b, bb, bbb, ...\}$
- $-L_1L_2 = \{ab, abb, aab, abbb, aabb, aaabb \dots\}$
- Consequently:
 - $-L_1 \boxtimes L_1 L_2$ and $L_2 \boxtimes L_1 L_2$
 - In particular, $a^k \in L_1$ but $a^k \notin L_1L_2$
 - Similarly, $b^k \in L_2$ but $b^k \notin L_1 L_2$
 - Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

