Session 22

Top-down Parsing

Parsing algorithms

Trivial algorithm: explore all deterministic paths in
certain order (i.e. de first depth or backtrack) and see if
one path leads to acceptance

— Too costly: out of the question!
Confront non-determinism directly

— Use all available information in the input to select the
better choice (maybe deterministically)

— Profit from the form or the grammar: consider the top
of the stack and the next input symbol to determine the
next move in the simulated derivation

Two approaches:
— Top-down

— Bottom-up
Dr. Luis Pineda, IMAS, UNAM & O:

A Top-down simulation
L = Language of balanced parenthesis

Finite state
control

— Push parenthesi
— Pop parenthesis in the way in

Parsing

From Latin: Parts of the speech or grammatical
categories
If G is a CFG over X and x [3", parsing x is the
process of finding a derivation in G for x or
determining that there is non.
Antecedent: simulation of a derivation of G by a PDA
— Top-down leftmost derivation
— Bottom-up rightmost derivation
However, these two are non-deterministic and do not
provide an algorithm directly!

Dr. Luis Pineda, IIMAS, UNAM & OS

Top-down Lookahead Parser
Two moves in original simulation:

— Move 1: If the symbol on top of the stack is a
variable in the left side of a production, replace the
variable by the corresponding right side of the
production
If the input symbol matches the top of the stack,
consume the symbol and pop!

Eliminate non-determinism by looking ahead one
symbol in the input string

In move one: look at the input symbol and make an
intelligent choice of production

Choose a production (move 1) only when there is
no other choice! Dr. Luis Pineda, IMAS, UNAM & O

A Top-down simulation

Finite state
control

A Top-down simulation

Non-determinism arises when
T is on top of the stack: we can
Choose [7]7 or \

Nondeterministic PDA

(4, [TJT)» (le/\)
[CREA)
(g, N)
(q,,\)

Dr. Luis Pineda, IIMAS, UNAM & OS

A lookahead simulation

Look at the next symbol in
the input!

A production is useful if
the leftmost symbol of its
right side matches the next
symbol in the input!

Dr. Luis Pineda, IIMA!

Dr. Luis Pineda, IIMAS, UNAM & OS

A Top-down simulation

Clearly choosing /A is not a
a very good idea!

Lookahead

Remove non-determinism by looking one
symbol ahead in the input string

Consider only the rules that have that
symbol as its leftmost symbol in the right
side of the corresponding production
Design a deterministic PDA that
corresponds to the non-deterministic one

Dr. Luis Pineda, IIMAS, UNAM &

Deterministic lookahhead PDA Consume lookahhead symbol

(9, 57,) (q1» \7“
(q,, TZy)
(g5, [T1T) 3 ('I[, [7]7)
@) : @ N
SR (A
_
“11 (g, N)
AT e T
,

Dr. Luis Pineda, IMAS, UNAM & OS 003 Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Consume lookahhead symbol lookahhead the $ symbol

(q1-5Z,) f (q1-5Z,)
4, 17,) 4, 17,)
(g, [T1T)

@.N - @
(] (g N
(@, N eyl @ N
(g5 \) (g5, N)
(CRAY) (q,, \)
@ P @
@.N A @.N
(g,)

(g1, Zy)

non

Dr. Luis Pineda, IIMAS, UNAM & OS 003 Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Pop operations

@15 \7“)
Stack symbol Move(s)
i (L

(g, N)
(g, N
(g, N)
(g5, \)
(g, N)
(g1, \)
(N No rule entry in the table for: T - A
(g1, \)
42 Zp)

non

deterministic lookahhead PDA

Dr. Luis Pineda, IIMAS, UNAM & OS 003 Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A lookahead simulation

Look at the next symbol in
the input!

A production is useful if
the leftmost symbol of its
right side matches the next
symbol in the input!

A lookahead simulation

Here, we have to remember
that we need a *“]” to balance
the “[” that was consume in
the lookahead move:

the machine go to state g

A lookahead simulation

A lookahead simulation

Use the lookahead!

Consume the symbol
and Push right-side of
production!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

il

)
--

[

(q[, [TJT)
(4, \)
(g1, N
(1Y)
(g5 N\)

T $

A lookahead simulation

After pop:

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A lookahead simulation Consume lookahhead symbol

(41, 52)
i
inite state
I @ mﬂ
control

(@, N
Lookahead again: consume (¢,. \)

the symbol in the input and
pop the 7 on top of the stack! oy
14,.)
Also, recall the symbol that
91>
Iy

consumed by the lookahead:

Goto sate il

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003 Dr. Luis Pineda, IIMAS, UNAM & OS

A lookahead simulation A lookahead simulation

Finite state Finite state
control control

Here, we are in state g:
we have to pop the symbol
that was consumed by the
previous lookahead!

Dr. Luis Pineda, IIMAS, UNAM & O S, 2003 Dr. Luis Pineda, IIMAS, UNAM & O

A lookahead simulation

1)
(q1,57,)
(g1, TZy)

Finite state

control
(g, N)

(g1, N

I 0 (q,,\)

Lookahead again! (g5 N
(q,, \)

(CANAY)

A lookahead simulation

Finite state

Lookahead again!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A lookahead simulation

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A lookahead simulation

We did not have to
replace the symbol on
top of the stack by one
among many choices!

A lookahead simulation

deterministic lookahhead PDA

(4 Zy)

non
1

The problem of left-recursion

Left recursion:
— A problem with the top-down lookahead simulation:
Another unambiguous grammar for L
S - T3
T - T [A
A leftmost derivation:
S =18 = 1I71$ = NTI[7]$ = TTI[T[T]$...
.= (IS

Dr. Luis Pineda, IIMAS, UNAM & (

deterministic lookahhead PDA

(41> SZy)
(91, TZy)

(g5, TIT])
(q,, \)
5 (g1,)
(o TITI0S, Zp) U @1
= (g;» (00S- SZy) il sV

(g, 001008, 7Z,) i (@, ")
(1Y)

(g,)
(g, N)
(92, Zp)
non
Dr. Luis Pineda, IMAS, UNAM & Of

Finite state
rol

Input

(g0, (01018, Zy) (g0, (01018, Zy)
= (gy, [18. SZ,) = (4,
(¢, L1008, 72,) i
(g,
(g,
(g,

(1%, 87y)

18, TI71[712,)

(
10
1008, 11717,)
10
1008$, T7TIIT1Z,)

o[
o[
o[
o[

for ever!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003 Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Eliminating left-recursion Factoring

Consider again the balanced parenthesis grammar:
S T8, T [TIT|N

Eliminate /A-productions:
Wil R I (0 | (7] [0

Consider the construction of a lookahead PDA:
Wl T (0 | (7] [0

— when T'is on top of the stack there are 4 choices!

The solution:
— Find an equivalent grammar without left-recursion
Consider the T-productions (B does not begin with 7)
o g 1 64
Replace by
T- BU andU - aU|N

Example: I I
il Factor the first symbol of the right sides:

T - I01] | A (a=[7,B=N SL T8, 74U U~ nTITI1
Replace by

T - UandU - [TIU|N

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003 Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Factoring

Right-sides starting with 7] can also be factored:
AR RS iAot o e e
‘\ A4
Factor again rights sides starting wi‘Fh the/same syt
Let W - T|N\
Thenin U — TIW | 1W
So

sl e e L w0 and 7 L T A

Eliminating the variable 7 (7 - [U):
S [US, U~ [UW|IW and W — [U| N

The first leftmost symbol of a ri
same left-side variable are all di

Deterministic and ambiguous CFL

unarn

/ /Deterministic
O

1
1
\

I ARTAAY

Unambiguous CFLs can be parsed

looking ahead k symbols
Dr. Luis Pineda, IMAS, UNAM &

LL(1) Grammar

LL(1) Grammars:
— Without left-recursion

— Factoring: For all productions o — a3, where g, is
different for all productions with left-side o

Can be parsed by a deterministic top-down PDA by
looking one symbol ahead in the tape

LL(k) Grammars:
— Deterministic PDA
— Looking k symbols ahead

Dr. Luis Pineda, IIMAS, UNAM & OS

Deterministic parsing and DCFL

eterministic,
O

Deterministic parsing extends the class of DCFL

Dr. Luis Pineda, IIMAS, UNAM &

003

