Session 24

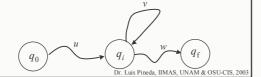
Pumping Lemma for CFG

How can we tell whether a language is a *CFL*?

- First answer: define a CFG or design a PDA for such a language
- But, what if we have a language described by some other means:
 - $-L = \{a^i b^i c^i \mid i \ge 1\}$
 - Is this language a CFL?
- Use the pumping lemma for CFL
- Antecedents:
 - Chomsky Normal Form (1959)
 - Due to Bar-Hillel, Perles and Shamir (1961)
 - The pumping lemma for RE is a simplification of the corresponding lemma for CFL Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The Pumping Lemma for RL

- Suppose *L* is a regular language recognized by a FA with *n* states; then, for any $x \in L$ with $|x| \ge n$, x = uvw for some strings satisfying:
 - $-|uv| \le n$
 - -|v| > 0
 - For any $m \ge 0$, $uv^m w ∈ L$



The "loop" in strings of CFLs

• In long enough derivations, variables have to repeat:

$$S \Rightarrow^* vAz \Rightarrow^* vwAyz \Rightarrow^* vwxyz$$

where $v, w, x, y, z \in \Sigma^*$

 The context before and after a variable in the right-side of a production (e.g. w and y in A → wAy) is pumped up with the repetition of the variable in a derivation:

$$S \Rightarrow^* vAz \Rightarrow^* vwAyz \Rightarrow^* vw^2Ay^2z \Rightarrow^* vw^3Ay^3z \Rightarrow^* ...$$
 since x can be derived from each A ,

$$vAz \implies vxz \in L$$

 $vwAyz \implies vwxyz \in L$
 $vw^2Ay^2z \implies vw^2xy^2z \in L$
 $vw^3Ay^3z \implies vw^3xy^3z \in L$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The Pumping Lemma for CFL

- Let $G = (V, \Sigma, S, P)$, be a CFG in CNF with a total of p variables. Any string u in L(G) with $|u| \ge 2^{p+1}$ can be written as u = vwxyz, for some strings v, w, x, y, and z satisfying:
 - -|wy| > 0
 - $-|wxy| \le 2^{p+1}$
 - For any $m \ge 0$, $vw^m xy^m z \in L$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

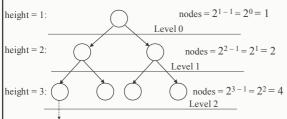
The Pumping Lemma for CFL

- The conditions do not come from Mars:
 - $(i) \; |u| \geq 2^{p+1} \quad (ii) \; |wy| > 0 \qquad \qquad (iii) \; |wxy| \leq 2^{p+1}$
 - for a parameter p (i.e. the number of distinct variables in V)
- A sketch of the story:
 - Syntactic structures produce by Grammars in CNF are binary trees all the way down until nodes dominating terminal symbols, which have only one descendant.
 - terminal symbols, which have only one descendant

 A binary tree of height h has a yield of size $\leq 2^{h-1}$, so a binary tree having more than 2^{h-1} leafs has a height greater than h
 - If the grammar has p variables, a derivation of any string of size equal or greater than 2^{p+1} has a path whose height is greater than p+2 and some variable must appear at least twice!
 - (i) and (ii) are constraints on substrings generated by binary trees with paths of height long enough (i.e. constraint (i)) to have a variable at least twicgl, Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Some facts about binary trees

- Height of a path: number of nodes in a path
- In a complete binary tree number of the nodes in level h is 2^{h-1}

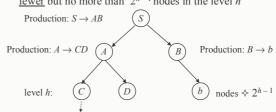


- The derivation of a string u (or yield) with more than 2^{h-1} symbols has a height greater than h
- Nodes in level $l = 2^l$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Structures in CNF

- Height of a tree: the height of the largest path
- In a structure produce by a CFG in CNF there may be fewer but no more than 2^{h-1} nodes in the level h

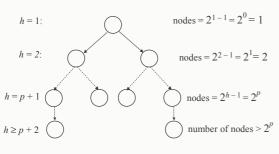


• A string (or yield) with more than 2^{h-1} symbols has a height greater than h

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Some facts about binary trees

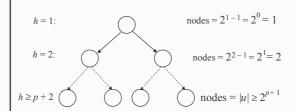
• If number of leafs $> 2^p$ then the height is at least p + 2



Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

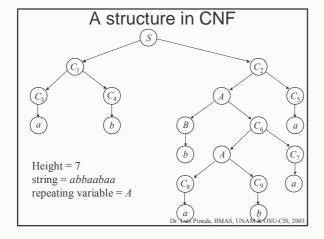
size of strings and derivation length

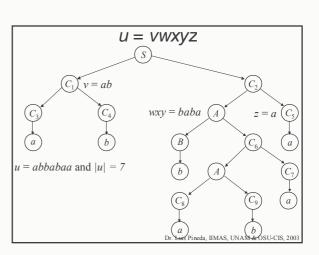
• If $|u| \ge 2^{p+1}$ then the height is at least p+2

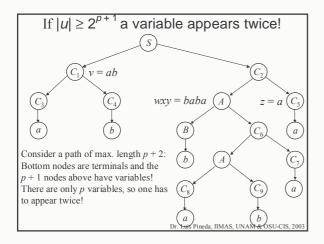


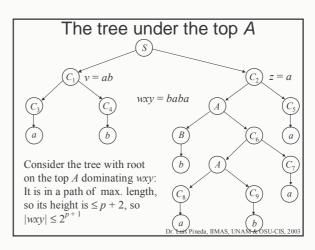
• If there are p different variables in the grammar, a string u such that $|u| \ge 2^{p+1}$ has a syntactic tree whose height is at least p+2

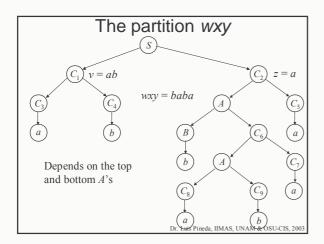
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

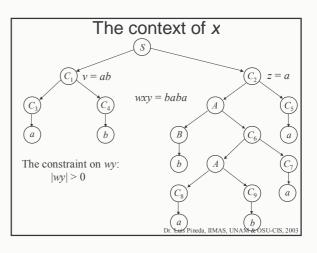


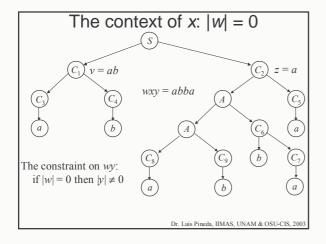


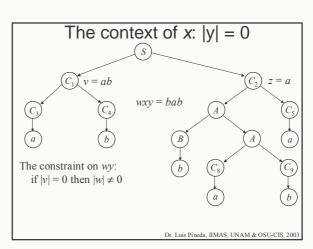












The Pumping Lemma for CFL

- Let *L* a *CFL*. There is an integer *n* so that for any *u* satisfying $|u| \ge n$ there are strings *v*, *w*, *x*, *y*, and *z* satisfying:
 - -u = vwxvz
 - -|wy| > 0
 - $-|wxy| \le n$
 - For any $m \ge 0$, $vw^m xy^m z \in L$
- Proof:
 - Find a CFG in CNF that generates $L \{\Lambda\}$.
 - Let p be the number of variables in this grammar and $n = 2^{p+1}$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Using the pumping lemma for CFL

- If we have a language described by some other means:
 - $-L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$
 - Is this a *CFL*?
- Strategy:
 - Assume that the pumping lemma for *CFL* holds
 - If a contradiction follows from this assumption the language is not context free!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

$L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$

- Let *n* be the constant and $u = a^n b^n c^n$
 - -|u| = 3n (This is ok: $n = 2^{p+1}$)
- Partition u into vwxyz such that $|wxy| \le n$ and |wy| > 0; since $|wxy| \le n$ this substring has at most two distinct types of symbols:
- Choose m = 0 in $vw^m xy^m z$
 - Since |wy| > 0, either |w| > 0 or |y| > 0 (or both!)
 - The segments of two symbols containing w and y
 have less symbols than the segment including the
 symbol which is not in wxy
 - − *L* is not a CFL!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

$L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$

Choose m = 0 in $vw^m xy^m z$:

- Case 1: wxy is in the a's block:
 - $-w = a^i$, $y = a^j$ and $a^{n-i-j}b^nc^n \notin L$ as i > 0 or j > 0 and n-i-j < n
- Case 2: wxy is in the a's and b's block:
 - $-a^{i}b^{j}c^{n} \notin L$ as $i \le n$ or $j \le n$ (maybe both) and $i + j \le 2n$
- Case 3: wxy in the b's block:
 - $-w = b^i$, $y = b^j$ and $a^n b^{n-i-j} c^n \notin L$ as i > 0 or j > 0 and n i j < n
- Case 4: wxy in the b's anc c's blocks:
 - $-a^n b^j c^j \notin L$ as $i \le n$ or $j \le n$ (maybe both) and $i + j \le 2n$
- Case 5: wxy in the c's block:
 - $-w=c^i, y=c^j$ and $a^nb^nc^{n-i-j} \notin L$ as i > 0 or j > 0 and n-i-j < n

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

$L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$

- The abstraction:
 - The segments of two symbols containing *w* and *y* have less symbols than the segment including the symbol which is not in
- Case 1: wxy is in the a's block:
 - $-w=a^{i}$, $y=a^{j}$ and $a^{n-i-j}b^{n}c^{n} \notin L$ as i > 0 or j > 0 and n-i-j < n
- Case 2: wxy is in the a's and b's block:
 - $-a^ib^jc^n \notin L$ as $i \le n$ or $j \le n$ (maybe both) and $i + j \le 2n$
- Case 3: wxy in the b's block:
 - $-w = b^i$, $y = b^j$ and $a^n b^{n-i-j} c^n \notin L$ as i > 0 or j > 0 and n i j < n
- Case 2 includes case 1 and case 3!
 - The segment $|a^ib^j| \le 2n$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

$L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$

- The abstraction:
 - The segments of two symbols containing w and y have less symbols than the segment including the symbol which is not in wxy
- Case 3 (again): wxy in the b's block:
 - $-w = b^i$, $y = b^j$ and $a^n b^{n-i-j} c^n \notin L$ as i > 0 or j > 0 and n i j < n
- Case 4: wxy in the b's anc c's blocks:
 - $-a^n b^j c^j \notin L$ as $i \le n$ or $j \le n$ (maybe both) and $i + j \le 2n$
- Case 5: wxy in the c's block:
 - $-w = c^i$, $y = c^j$ and $a^n b^n c^{n-i-j} \notin L$ as i > 0 or j > 0 and n i j < n
- Case 4 includes case 3 and 5!
 - The segment $|b^ic^j| \le 2n$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

$$L = \{a^i b^i c^i \in \Sigma^* \mid i \ge 1\}$$

- The abstraction:
 - The segments of two symbols containing w and y have less symbols than the segment including the symbol which is not in wxy
- The abstraction: let m = 0
 - -p: The segment $|a^ib^j| < 2n$ and $a^jb^jc^n \notin L$
 - -q: The segment $|b^ic^j| \le 2n$ and $a^nb^ic^j \notin L$
 - -L is not a *CFL* as p or q

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

$$L = \{x \in \{a, b\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x)\}$$

- Let *n* be the constant and $u = a^n b^{n+1} c^{n+1}$
 - -|u| = 3n + 2 (This is ok: $n = 2^{p+1}$)
- Partition *u* into *vwxyz* such that $|wxy| \le n$ and |wy| > 0
 - Again wxy has at most two kinds of symbols
- Case 1:
 - w or y have at least one a
 - choose m = 2 and $a^i b^j c^{n+1} \notin L$ as $i \ge n+1$ so $a^i \ge c^{n+1}$
- Case 2:
 - w or y have no a's
 - chose m=0 and $a^nb^jc^j \notin L$ as i < n+1 or j < n+1 (maybe both) and $n_a(u) \ge n_b(u)$ or $n_a(u) \ge n_c(x)$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

