Session 2

Languages & Language Operations

Definition of Languages

- A language over Σ is a subset of Σ^*
- *L* is a language over Σ if $L \subseteq \Sigma^*$
- How many languages are there for a given Σ ?

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

How many languages are there?

Let $m_0 \dots m_n$ be the list of finite strings formed with symbols of Σ

Let $S_0 \dots S_n$ be the list of all subsets (languages) of Σ^*

	m_0	m_I	<i>m</i> ₂	 m_n
S_{θ}	0	0	0	 0
S _I	0	0	1	 0
<i>S</i> ₂	1	0	1	 0
S _n	1	1	1	 1

A diagonal set: $D(i) = S_i(i)$

	m_0	m_{I}	<i>m</i> ₂	 m _n
S_{0}	0	0	0	 0
S _I	0	0	1	 0
<i>S</i> ₂	1	0	1	 0
S _n	1	1	1	 1

 $D = \{m_2, \ldots, m_n\}$

Dr. Luis Pineda. IIMAS. UNAM & OSU-CIS. 20

Is the anti-diagonal set in the list?

- $\overline{\mathbf{D}}$ is not in the list $S_0 \dots S_n$
- Differs from S_0 in the first element
- Differs from S_I in the second element
- ...
- Differs from S_n in the n + 1 element
- 2^{Σ^*} is not countable!
- There are more languages that we can think of!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Set operations on languages

If $L_1, L_2 \subseteq \Sigma^*$

- Union: $L_1 \cup L_2$ is a Language
- Intersection: $L_1 \cap L_2$ is a Language
- Difference: $L_1 L_2$ is a Language
- If $L_1 \subseteq {\Sigma_1}^*$ and $L_2 \subseteq {\Sigma_2}^*$ then L_1, L_2 are both subsets of $(\Sigma_1 \cup \Sigma_2)^*$ • $\overline{L}_1 = \Sigma_1^* - L_1$ • $\overline{L}_1 = (\Sigma_1 \cup \Sigma_2)^* - \underline{L}_1$

Closures of languages

- The Kleen-star operation L^* :

- The Kleen-plus operation L^+ :

Closures of Languages

- The empty language: Φ
- The language containing only the empty string: $\{\Lambda\}$
- A finite language without Λ
- A finite language with Λ
- An infinite (denumerable) language with Λ
- An infinite (denumerable) language without Λ

Notation of Powers
If $a \in \Sigma$, $x \in \Sigma^*$ and $L \subseteq \Sigma^*$
$-a^k = aaa$ k times
$-x^k = xxx$ k times
$-\Sigma^k = \Sigma\Sigma\Sigma \ k \text{ times}$
$-L^k = LLL$ k times
The case for $k = 0$
$\left. \begin{array}{c} -a^0 = \Lambda \\ -x^0 = \Lambda \end{array} \right\}$ Unit of concatenation for strings
$ - \Sigma^{0} = \{\Lambda\} $ - $L^{0} = \{\Lambda\} $ Unit of concatenation for languages
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Closures of a finite language

Let
$$L = \{0, 1\}$$
 ($\Sigma = \{0, 1\}$ but $\Sigma \neq L$)

$$-L^0 = \{\Lambda\}$$

$$-L^{1} = L = \{0, 1\}$$

$$-L^{2} = L^{1}L^{1} = \{0,1\}\{0,1\} = \{00,01,10,11\}$$

$$-L^3 = L^1 L^2 = \{0,1\} \{00,01,10,11\} =$$

$-L^* = \{\Lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}$

Closures of a finite language

- $Let D^{-} \{0, 11\} (2 (0, 1))$ $L^{0} = \{\Lambda\}$ $L^{1} = L = \{0, 11\}$ $L^{2} = L^{1}L^{1} = \{0, 11\} \{0, 11\} = \{00, 011, 110, 1111\}$ $L^{3} = L^{1}L^{2} = \{0, 11\} \{00, 011, 110, 1111\}$
- L^n is the set of strings that result of concatenating *n* strings or words of *L* (not of symbols of Σ) Closures: - $L^* = \{\Lambda, 0, 11, 00, 011, 110, 1111, 000, 0011, 0110, 01111...\}$

Graphical computation L ⁿ⁺¹				
	1111	01111	111111	
	110	0110	11110	
	011	0011	11011	
	00	000	1100	
		0	11	L
		$L^3 = L L^2$ Dr. Luis I	Pineda, IIMAS, UNAM &	2 OSU-CIS, 2003

Computing L^3 : applying id.				
	L ²	Λ is a la	nguage re	producer!
1111	1111	0 1111	111111	
110	110	0110	11110	
011	011	0011	11011	
00	00	000	1100	
11	11	011	1111	
0	0	00	110	
Λ	Λ	0	11	L^{I}
	Λ	0	11	L
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003				

Computing L ³					
1111	Λ1111	0 1111	111111		
110	Λ110	0110	11110		
011	Λ011	0011	11011		
00	Λ00	000	1100		
11	Λ11	011	1111		
0	Λ0	00	110		
Λ	ΛΛ	0Λ	11A		
	Λ	0	11	L	
		Dr. Luis Pineo	la, IIMAS, UNAM	& OSU-CI	

Т	The contribution of L^3 : $c(L_1)c(L_2)$				
		L^2			
	1111	1111	01111	111111	
	110	110	0110	11110	
	011	011	0011	11011	
	00	00	000	1100	
	11	11			$L^{2} - L^{1}$
	0	0			
	Λ	Λ	0	11	L^{I}
		Λ	0	11	L
	$L^3 = L^0 \cup L^1 \cup L^2 \cup (L^1 - L^0)(L^2 - L^1)$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003				

Th	e contr	ibution o	of <i>L</i> ³ : (<i>L</i>	$(1^{-} L^{0})(L^{0})$	$L^2 - L^0$)
		L^2			
	1111	1111	01111	111111	
	110	110	0 110	11110	
	011	011	0 011	11011	
	00	00	000	1100	
	11	11	011	1111	
	0	0	00	110	
	Λ	Λ	0	11	L^{I}
		Λ	0	11	L
	$L^{3} = L^{0} \cup L^{1} \cup L^{2} \cup (L^{1} - L^{0})(L^{2} - L^{0})$ Dr. Luís Pineda, IIMAS, UNAM & OSU-CIS, 2003				

Closures of an infinite language with Λ Let $L = \{\Lambda, 0, 00, 000, ...\}$ ($\Sigma = \{0\}$) $-L^{2} = L^{1}L^{1} = \{\Lambda, 0, 00, 000, ...\} \{\Lambda, 0, 00, 000, ...\}$ = {\Lambda\ $-L^* = \{\Lambda, 0, 00, 000, \ldots\}$

- $-L^{+} = \{\Lambda, 0, 00, 000, ...\}$ L^{*} = L⁺ = L and, indeed, Lⁱ⁺¹ = Lⁱ for all $i \ge 0$

Closure again!

- Any string formed by 0 or more repetitions of the elements of L is in L^*
 - The first element of the string belongs to *L*
 - The first *two* elements of the string are in
 - L^2 , even if they are the same! – The first *three* elements of the strings are in
 - L^3 , because they are produced by the concatenation of L^2 con L, even if they are the same!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

	Closures	
The closure of by 0 and 1, and	of $L = \{0, 1\}$ is the set of all strings formed nd Λ	The closure of $L = \{10, formed by the pairs 10 \}$ and Λ :
• 100111 belor	ngs to the closure:	• 10111111 belongs to th
- 100111	belongs to L	- 10111111
- 100111	belongs to L^2	- 10111111
- 100111	belongs to L^3	- 10111111
- 100111	belongs to L^4	But 1101111does not!
- 100111	belongs to L^5	- 101111
- 100111	belongs to L^6	-101111 - 101111
	Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003	

osures 111} is the set of all strings and 111, including repetitions, he closure: belongs to L belongs to L^2 belongs to L^3 belongs to L^1 belongs to L^2 but belongs to no power of L! Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Closures

The closure of $L = \{11, 111, 11111, 111111...\}$ is the set of strings formed by a sequence of prime numbers in monadic notation, and Λ ! 1111111111 belongs to the closure:

- belongs to L
- 1111111111
- belongs to L^2
- belongs to L^3

Is there a number n > 1 which is not in the closure of L?

Closure

It is perhaps hard to think of the closure of a language! But it is much simpler to see whether a given string is in

- the closure of a language: – Read the string from left to right, and scan members
- of the language one at a time
- If the string is completely scanned, and we have successfully extracted members of the language at every stage of the process, the string is in the closure of the language!
- It is simple to generate string in the closure: just concatenate symbols of L, with repetitions allowed!

Example 1

Give an example of INFINITE Languages L_p , L_2 over $\{a, b\}$ where $L_1 \boxtimes L_1 L_2$ and $L_2 \boxtimes L_1 L_2$. Justify your answer by giving strings in L_1 and L_2 which are not in $L_1 L_2$

Example 2 Give an example of languages L_1, L_2 and L_3 where Let $L_1 = \{\Lambda\}, L_2 = \{a, b\}^+ = \Sigma^+$ and $L_3 = \{a, b\}^* = \Sigma^*$ Right side: $= \Phi \Sigma^*$ Left side: $(L_1L_3) \cap (L_2L_3) = (\{\Lambda\}\Sigma^*) \cap (\Sigma^+\Sigma^*)$ So, $\Phi \neq \Sigma^+$ and $(L_1 \cap L_2)L_3 \neq (L_1L_3) \cap (L_2L_3)$

Summary

- Given an alphabet Σ
- There is universe of strings Σ^*
- A language *L* is a subset of Σ^*
- There are many subsets of Σ^* : 2^{Σ^*}
- There are quite a few languages (more than we can think of) for any $\boldsymbol{\Sigma}$
- Some of these are finite ... other denumerable (countable infinite)
- Given an initial language or set of languages, we can define new languages through language
- operations (e.g. union, concatenation and closures)

Summary

- A Problem: given a language and a string, tell whether the strings belongs to the language:
- - Declarative specification: $s \in L$ Procedural specificati

$$(L, s) \longrightarrow \begin{array}{c} \text{Decision procedure:} \\ \text{An algorithm} \end{array} \longrightarrow \text{Yes or no!}$$

Two sides of the coin:

- Generating all the strings of a language
- Telling whether a string belongs to a language

