
1

Session 3

Regular Languages and

Expressions

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Syntax and Semantics
� Normally languages refer to individual objects,

properties and relations in the world

� Linguistic symbols are syntactic objects

� The representation or reference relation:

John

reads

books

Language The worldRefers to

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Syntax and Semantics
� If language is the the object of study, we need a language

to be able to talk about languages

� Sets of strings (languages) become semantic objects

� The representation or reference relation:

0 + 1

1*

Language The world of languagesRefers to

{0, 1}

{Λ, 1, 11,…}

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The language of Regular Expressions
� Syntax

– Basic constants (for a given Σ)
� Φ is regular expression (RE)

� Λ is RE

� If a ∈ Σ then a is a RE
� A variable, a italic capital letter (e.g. L), is a RE

– Composition rules:

� If E and F are RE then E + F is RE (union)

� If E and F are RE then EF is RE (concatenation)

� If E is a RE then E* is a RE (closure)

� If E is a RE then (E) is a RE (introduction of
parenthesis)

– Only the expressions constructed by a FINITE application
of the rules in this definition are RE

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

An alternative formulation
� Syntax

– Basic constants (for a given Σ)
� Φ is regular expression RE

� Λ is RE

� If a ∈ Σ then a is a RE
� A variable, a italic capital letter (e.g. L), is a RE

– Composition rules (parenthesis are obligatory):

� If E and F are RE then (E + F) is RE (union)

� If E and F are RE then (EF) is RE (concatenation)

� If E is a RE then (E*) is a RE (closure)

– Only the expressions constructed by a FINITE

application of the rules in this definition are RE

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The language of Regular Expressions
� Semantics

– Let RE the set of all regular expressions over Σ, R the set of
regular languages and L an interpretation function from RE
to R

– Interpretation of basic constants

� L(Φ) is Φ (i.e. the empty language)

� L(Λ) is {Λ} (i.e. the language with the empty string)
� If a ∈ Σ then L(a) is {a} {i.e. the language with a}
� L(L) is any language

– Interpretation of composite expressions:

� L(E+F) is the union of L(E) and L(F)

� L(EF) or L(E.F) is the concatenation of L(E) and L(F)

� L(E*) is (L(E))* (i.e. the closure of L(E))

� L((E)) is L(E) (i.e. the same language)

2

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Syntax and Semantics
� The representation or reference function L:

� The interpretation of a composite expression is a function of:

– The interpretation of its constituent parts

– The form of syntactic composition

0 + 1

1*

{0, 1}

{Λ, 1, 11,…}

L

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Examples
RE Language

� ΛΛΛΛ: {Λ}
� 0: {0}

� 001: {001}

� 0 + 1: {0, 1}

� 0 + 10: {0, 10}

� (1 + ΛΛΛΛ)001: {1, Λ}{001}
� (110)*(0 + 1): {110}*{0, 1}

� 1*10: {1}*{10}

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Examples
� … (10 + 111 + 11010)*: {10, 111, 11010}*

� (0 + 10)*((11)* + 001 + ΛΛΛΛ): {0, 10}*{{11}* ∪ {001, Λ}}

� 01* + 1: {0}{1}* ∪ {1} = {1, 0, 01, 011, …, 011…1}

� (01)* + 1: {01}* ∪ {1} = {1, Λ, 01, 0101,…, 0101…01}

� 0(1* + 1): {0}{{1}* ∪ {1}} = {0, 01, 011,…, 011…1}

Note that: 0(1* + 1) = 01*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Equality of Regular Expression

� Regular expressions are equal if they refer to the

same language:

1*(1 + ΛΛΛΛ)

1*
{Λ, 1, 11,…}

RE R

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Example: The language of alternating 0’s and 1’s

� First: The language {01}: 01

Semantics

0 1 {0} {1}

{01}

Syntax

. 01

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

� Second: The language {01}*: (01)*

Example: The language of alternating 0’s and 1’s

Semantics

0 1 {0} {1}

{01}

Syntax

. 01

* (01)
* {01}*

3

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

� But we also need:

� {0101…0}

� {1010…0}

� {1010…1}

Example: The language of alternating 0’s and 1’s

Semantics

{0} {1}

{01}

Syntax

{01}*

0 1

. 01

* (01)
*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The language of alternating 0’s and 1’s

0 1

. 01

* (01)
*

0 1

. 01

* (01)
*

1 0

. 10

* (10)
*

1 0

. 10

* (10)
*0 1

. .0(10)* 1(01)*

0101…1 1010…0 1010…10101…0

+

+

+

(01)* + (10)*

0(10)* + 1(01)*

(01)* + (10)* + 0(10)* + 1(01)*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The expressive power of Λ

ΛΛΛΛ 0 1

. 01

* (01)
*

1 ΛΛΛΛ 0

++ (ΛΛΛΛ + 1) (0 + ΛΛΛΛ)

.

.

(ΛΛΛΛ + 1) (01)*

(ΛΛΛΛ + 1) (01)*(0 + ΛΛΛΛ)

L(ΛΛΛΛ) = {Λ} L(0) = {0}L(ΛΛΛΛ) = {Λ}
Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Are RE ambiguous?

ΛΛΛΛ 0 1

. 01

* (01)
*

1 ΛΛΛΛ 0

++ (ΛΛΛΛ + 1) (0 + ΛΛΛΛ)

.

.

(ΛΛΛΛ + 1) (01)*

ΛΛΛΛ + 101*0 + ΛΛΛΛ ?

L(ΛΛΛΛ) L(1) L(ΛΛΛΛ) L(0)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Structure of RE

� Operators apply to the structure below:

0 1

. 01

* (01)
*

0

1

. 01*

* 1*

{Λ , 01, 0101,…, 01…01} {0, 01, 011,…, 011…1}

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Structure and ambiguity

� “Ambiguity” of : 01* + 1

0

1

.01*= (0(1*))

* 1* = (1*)

{1, 0, 01, 011, …, 011…1}

1

+ 01* + 1 = ((0(1*)) + 1)

4

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

0 1

.01 = (01)

(01)

Structure and ambiguity

1

{1, Λ, 01, 0101,…, 0101…01}

+(01)* + 1 = ((01)* + 1)

� “Ambiguity” of : 01* + 1

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Structure and ambiguity

0

.

((1*) + 1)

(1)

{0, 01, 011,…, 011…1}

1

1

+

0(1* + 1)

� “Ambiguity” of : 01* + 1

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

0 1

.01 = (01)

(01)

Structure and ambiguity

01

.

((1*) + 1)

(1)

{1, Λ, 01, 0101,…, 0101…01} {0, 01, 011,…, 011…1}

+(01)* + 1 = ((01)* + 1)

1

1

+

0(1* + 1)

� “Ambiguity” of : 01* + 1

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Precedence of operators

� Precedence order:

– Highest: Star operator (*)

�Applies to the smallest sequence to its left

– Next: Concatenation operator (dot)

� juxtaposition of strings

� Strings with no other operator in between are

grouped together

�Associative (conventionally we group by the left)

– Lowest: Union operator (+)

�Associative (conventionally we group by the left)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Grouping “.” by the left

(ΛΛΛΛ + 1) (01)*(0 + ΛΛΛΛ)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Grouping “.” by the left

ΛΛΛΛ 0 1

. 01

* (01)
*

1 ΛΛΛΛ 0

++ (ΛΛΛΛ + 1) (0 + ΛΛΛΛ)

.

.

(ΛΛΛΛ + 1) (01)*

(ΛΛΛΛ + 1) (01)*(0 + ΛΛΛΛ)

L(ΛΛΛΛ) L(1) L(ΛΛΛΛ) L(0)

5

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Grouping “.” by the right

(ΛΛΛΛ + 1) (01)*(0 + ΛΛΛΛ)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Grouping “.” by the right

ΛΛΛΛ 0 1

. 01

* (01)
*

1 ΛΛΛΛ 0

++ (ΛΛΛΛ + 1) (0 + ΛΛΛΛ)

.

.

(ΛΛΛΛ + 1) (01)*(0 + ΛΛΛΛ)

L(ΛΛΛΛ) L(1) L(ΛΛΛΛ) L(0)

(01)*(0 + ΛΛΛΛ)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Precedence, parenthesis and ambiguity

� RE can apparently be ambiguous, but

– Parenthesis and precedence order eliminate ambiguity

� Also:

– RE have a structure

– Trees show the structure of RE explicitly!

– An ambiguous expression have several possible structures

– There is only one structure for every RE

� Looking at precedence rules and parenthesis, or at the

structure of expressions, there is no ambiguity

� RE are NOT ambiguous!

.

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Equality of Regular Expression

� Useful for simplifying expressions

� As we will see, useful for simplifying Automatas

(with as few states as possible)

– 1* (1 + ΛΛΛΛ) = 1*

– 1* 1* = 1*

– 0* + 1* = 1* + 0*

– (0*1*)* = (0 + 1)*

– (0 + 1)*01(0 + 1)* + 1*0* = (0 + 1)*

� There is a general method (an algorithm) to decide

whether two expressions define the same language

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Simplifying RE
� (r + s + rs + sr)*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Simplifying RE
� (r + s + rs + sr)*

– rs can be formed taking r and the s; similarly for

sr, then:

(r + s + rs + sr)* = (r + s)*

6

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Simplifying RE
� r(r*r + r*) + r*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Simplifying RE
� r(r*r + r*) + r*

– r*r = r+

– r(r*r + r*) + r* = r(r+ + r*) + r*

= r(r*) + r*

= rr* + r*

= r+ + r*

= r*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Interpreting RE
� Consider the two regular expressions:

– r = 0* + 1*

– s = 01* + 10* + 1*0 + (0*1)*

� A string corresponding to r but not to s

– 00

� A string corresponding to s but not to r

– 01

� A string corresponding to both r and s

– Several obvious ones: Λ, 0, 1
� A string in {0, 1}* corresponding to neither r or s

– Any string of the form: 1i0i for i ≥ 2

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Finding RE
� Give a regular expression for the following language:

– { s ∈ {a, b}* : |s| is not divisible by 2}

� If |s | is divisible by 2

– its length is even (i.e. otherwise its length is odd)

� RE for strings of even length:

– (aa + ab + ba + bb)*

� Adding one symbol, either a or b (i.e. odd length strings):

– (aa + ab + ba + bb)*(a + b)

� Alternatively:

– (a + b)(aa + ab + ba + bb)*

� Introducing abstraction:

– (a + b)((a + b)(a + b))*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Regular sets
� Languages built out:

– Φ, Λ and all symbols in Σ
� By means of:

– Union

– Concatenation

– Closure (Kleen-star)

� Through a finite number of operations!

– A regular expression is itself finite string!

– Formally, we don’t allow ellipsis (…)

– The tree of the expression is finite too!

� The resulting set, a language, is subset of the power set of Σ*

(2Σ*:), which cannot even be counted!

� There are many, many, sets that are not regular!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

RE in the space of languages

RL

CFL

CSL and unrestricted Languages

