Syntax and Semantics Session 3 Normally languages refer to individual objects, properties and relations in the world Linguistic symbols are syntactic objects The representation or reference relation: Regular Languages and Expressions John books Language Refers to The world

Syntax and Semantics

- If language is the the object of study, we need a language to be able to talk about languages
- Sets of strings (languages) become semantic objects
- The representation or reference relation:

$$0 + 1 + \{0, 1\}$$

$$1^* + \{\Lambda, 1, 11, ...\}$$

Language Refers to The world of languages

The language of Regular Expressions

- Basic constants (for a given Σ) • Φ is regular expression (*RE*)

 - A variable, a italic capital letter (e.g. L), is a RE

- If E and F are RE then E + F is RE (union)
 If E and F are RE then EF is RE (concatenation)
- If E is a RE then E^* is a RE (closure)
- If *E* is a *RE* then (*E*) is a *RE* (introduction of parenthesis)
- Only the expressions constructed by a FINITE application of the rules in this definition are *RE* Dr. Luis Pineda, IMAS, UNAM & OSU-CIS, 2

An alternative formulation

- Basic constants (for a given Σ)
 - Φ is regular expression *RE*

 - A variable, a italic capital letter (e.g. L), is a RE
- Composition rules (parenthesis are obligatory):
 - If E and F are RE then (E + F) is RE (union)
 - If *E* and *F* are *RE* then (*EF*) is *RE* (concatenation)
 - If E is a RE then (E^*) is a RE (closure)
- Only the expressions constructed by a FINITE
- application of the rules in this definition are RE

The language of Regular Expressions

- Let RE the set of all regular expressions over Σ , R the set of regular languages and L an interpretation function from RE to R
- Interpretation of basic constants
- $L(\Phi)$ is Φ (i.e. the empty language)
- $L(\Lambda)$ is $\{\Lambda\}$ (i.e. the language with the empty string)
- If $a \in \Sigma$ then L(a) is $\{a\}$ {i.e. the language with $a\}$
- L(*L*) is any language
- Interpretation of composite expressions:
- L(E+F) is the union of L(E) and L(F)
- L(EF) or L(E.F) is the concatenation of L(E) and L(F)
- L((E)) is L(E) (i.e. the same language)

Examples				
RE	Language			
• Λ:	$\{\Lambda\}$			
• 0:	{0}			
• 001:	{001}			
• 0 + 1:	{0, 1}			
• 0 + 10 :	{0, 10}			
(1 + Λ)001:	$\{1, \Lambda\}\{001\}$			
$(110)^{*}(0+1):$	$\{110\}^*\{0,1\}$			
• 1*10:	$\{1\}^*\{10\}$			

	Examples				
	(10 + 111 +		{10, 111, 11010}*		
	$(0+10)^*((11)^*$	+ 001 + A):	$\{0, 10\}^* \{\{11\}^* \cup \{001, \Lambda\}\}$		
	01* + 1:	$\{0\}\{1\}^* \cup \{1\} = \{$	1, 0, 01, 011,, 0111}		
	(01)* + 1:	$\{01\}^* \cup \{1\} = \{1,\}$	Δ, 01, 0101,, 010101}		
	0 (1 [*] + 1):	$\{0\}\{\{1\}^* \cup \{1\}\}=$	= {0, 01, 011,, 0111}		
Note that: $0(1^* + 1) = 01^*$					
			Dr Luis Pineda IIMAS UNAM & OSU-CIS 200		

Precedence, parenthesis and ambiguity

- RE can apparently be ambiguous, but
- Parenthesis and precedence order eliminate ambiguity
- Also:
 - *RE* have a structure
 - Trees show the structure of *RE* explicitly!
 - An ambiguous expression have several possible structures
 - There is only one structure for every *RE*
- Looking at precedence rules and parenthesis, or at the structure of expressions, there is no ambiguity
- *RE* are NOT ambiguous!

Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Equality of Regular Expression

- Useful for simplifying expressions
- As we will see, useful for simplifying Automatas (with as few states as possible)

$$-1^{*}(1 + \Lambda) =$$

$$-1^*1^*=1^*$$

 $-0^*+1^*=1^*+0^*$

$$-(0^*1^*)^* = (0+1)^*$$

- $-(0+1)^*01(0+1)^*+1^*0^*=(0+1)^*$
- There is a general method (an algorithm) to decide whether two expressions define the same language

Luis Pineda, IIMAS, UNAM & OSU-CIS, 2

Simplifying RE

(r+s+rs+sr)

rs can be formed taking *r* and the *s*; similarly for *sr*, then:

 $(r+s+rs+sr)^* = (r+s)^*$

Simplifying RE $= r(r^*) + r^*$

Interpreting RE

- Consider the two regular expressions: $-r = 0^* + 1^*$ - s = 01* + 10* + 1*0 + (0*1)*
- A string corresponding to *r* but not to *s*
- A string corresponding to s but not to r
- A string corresponding to both *r* and *s* – Several obvious ones: Λ , 0, 1
- A string in $\{0, 1\}^*$ corresponding to neither *r* or *s*
- Any string of the form: $1^i 0^i$ for $i \ge 2$

Finding RE

- Give a regular expression for the following language:
- { $s \in \{a, b\}^*$: |s| is not divisible by 2} If |s| is divisible by 2
- its length is even (i.e. otherwise its length is odd)
- RE for strings of even length:
- Adding one symbol, either *a* or *b* (i.e. odd length strings): $-(aa+ab+ba+bb)^*(a+b)$

- Introducing abstraction:

Regular sets

- Languages built out:
- By means of:
- Concatenation - Closure (Kleen-star)
- Through a *finite* number of operations! - A regular expression is itself finite string!
- Formally, we don't allow ellipsis (...)
- The tree of the expression is finite too!
- The resulting set, a language, is subset of the power set of Σ^* (2^{Σ^*}:), which cannot even be counted!
- There are many, many, sets that are not regular!

