
1

Session 4

Examples and applications of

regular expressions

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Strings with an odd Number of 1’s
� Focusing on the first 1:

– We start with with 1: 0*10*

– Subtrings with a pair of 1’s and any number of 0’s: (10* 10*)*

– The concatenation: 0*10* (10* 10*)*

� Focusing on the first 1, but also in the second substring:

– 0*1 (0* 10* 10*)* 0*

� Focusing on the last 1:

– (0* 10* 1)* 0*10*

� Focusing on the 1 in the middle:

– 0*(10* 10*)* 1*(0* 10* 1) 0*

� But not:

– (10* 10*)* 10*

– We need to allow the initial 0’s, so: 0*(10* 10*)* 10*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Strings of length 6 or less
� A very concrete way:

– ΛΛΛΛ + 0 + 1 + 00 + 01 + 10 + 11 +…+ 111110 + 111111
� Lets try to do a little better:

– First, think of strings of length 6 exactly:

� (0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)

– Then, think of the exponential notation:

� (0 + 1)6

– Final, allow strings of length less than 6:

� (0 + 1 + ΛΛΛΛ)6

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Strings ending in 1 with no “00”

� L = {x ∈{0, 1}* | x ends with 1 and does not contain 00}
� No 0 can follow a 0: 0 is either at the end or followed by 1

� But x ends with 1

� So, x is either 1 or copies of 01: (1 + 01)*

– {1, 01, 11, 101, 011, 0101…}

� However, this does allow Λ, which does not end in 1 and
has no 00

– This can be fixed with: (1 + 01)*1

� But now, 01 is not in the language, so:

� (1 + 01)*(1 + 01)

� (1 + 01)+

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

The language of C identifiers

� Let’s l and d stand for letter and digit respectively

– l stands for a + b + …+ z + A + B + … + Z

– d stands for 0 + 1 + 2 + …+ 9

� An identifier in C is a string of length 1 or more

containing letters, digits and underscore (“_”):

(l + _)(l + d + _)*

� Examples:

– “cis625”, “cis_625”, “cis6_2_5”, “_625”

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Real Literals in Pascal

� Notation:

– l stands for a + b + …+ z + A + B + … + Z

– d stands for 0 + 1 + 2 + …+ 9

– s stands for “sign” (shorthand for ΛΛΛΛ + a + m, where a is
plus and m is minus)

– p stands for “point”

– E is a symbol of Σ

� Real literals: sd+(pd+ + pd+Esd+ + Esd+)

� Examples: +6.25, 6.25, -6.25E+2, 6.25E-2, -2E2

2

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Applications of Regular Expressions

� Provide a “picture” of a pattern that we want to

recognize

� They can be “compiled” into determinist

automata, which can be modeled to recognize

patterns in texts

� Two important applications:

– Lexical analyzers

– Texts search in Internet

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

UNIX Notation for RE
� Σ = The set of ASCII characters
� The grep command:

– Global (search for) Regular Expressions and Print

� Short hand definitions: Character classes

– The dot “.” stands for any character

– [a1a2…ak] stands for the RE: a1 + a2 +… + ak
� e.g. The characters used for comparison in C: [<>=!]

– [x-y] stand for range definitions:

� e.g. [A-Za-z0-9] stands for the set of all letters and digits

� A minus sign “–” is placed first or last (to avoid confusion):

[–+.0-9] is the set {-, +, . , 0…9}

– For reserved characters of UNIX, we use the backslash \

[0-9\.] is the set of digits and the dot (not any character)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

UNIX Notation for RE
� Meaning of UNIX operators

– | is used in place of +

– The operator ? means zero or one of: R? = Λ + R
– + means one or more: R+ = RR*

– The operator {n} means n copies of: R{5} = RRRRR

– * in UNIX has the usual meaning (not a superscript!)

� Also:

– [:digit:] stands for [0-9] (not necessarily in ASCII)

– [:alpha:] stands for [A-Za-z]

– [:alnum:] stands for [A-Za-z0-9]

� Operators precedence is as usual (with ?, + and {n} treated like *)

� UNIX extensions to name and refer to previous strings that have
matched a pattern (allowing to the recognition of non-regular
languages) are not considered here!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Lexical Analyzers
� Lexical analyzer: the part of a compiler that scans the
source code and identifies tokens (i.e. basic or atomic
symbols, or entries to the symbol’s table)

– Keywords

– Identifiers (names, variables, etc.)

� Lexical-analyzer generator:

– UNIX’s lex (flex in GNU)

– Accepts a list of regular expressions each followed by a
a bracketed piece of code, indicating what to do when
an instance of the token described by the RE is found

� Advantages:

– A high level description of a lexical analyzer

– Automatic generation of complicated code

– Easy to create and modify

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Example
� Partial input to the lex command:

Else {return(ELSE)}

[A-Za-z][A-Za-z0-9]* {code to Enter identifier

in Symbol table;

return(Id); }

>= {return(GE);}

= {return(QE);}

…integers, floating-point, character strings, etc.

� Conversion of regular expressions to an automata for

processing the corresponding strings

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Finding patterns in texts

� RE are useful for describing searches for

interesting patterns

� Descriptions of vaguely defined class of

patterns in texts

� Patters that are hard to define…

� Easy to specify and modify

3

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Example: Detecting addresses
in web-pages

� First: the street address (UNIX Notation)

– Street|St\.|Ave\.|Road|Rd\.

� Next: Name of the street

– [A-Z][a-z]* (e.g. Island)

� But… what about streets with two or more names?

– ’[A-Z][a-z]*([A-Z][a-z]*)*’ (e.g. Road Island Av.)

� Next: House numbers

– String of digits… probably followed by letters as in “123A Main
St.”

– [0-9]+[A-Z]?

� The full expression:

– ’[0-9]+[A-Z]? [A-Z][a-z]*([A-Z][a-z]*)*
(Street|St\.|Ave\.|Road|Rd\.)

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Example: Detecting addresses
in web-pages

� But what about

– Streets with a different name: “Boulevar”, “Place”,…

– Streets with ordinal abbreviations: 42nd St.

– Post-Office boxes or rural-delivery routes

– Streets names that do not end with “Street”, like El Camino Real
in Silicon Valley (Spanish name for The Royal Road)

� El Camino Real Road?

� 2000 El Camino Real

� It is really a knowledge engineering task!

� We can appreciate the power of Regular expressions

– Expressive

– Economical

