Session 4

Examples and applications
regular expressions

Strings of length 6 or less

Strings with an odd Number of 1's
Focusing on the first 1:
— We start with with 1: 0710"
— Subtrings with a pair of 1’s and any number of 0’s: (10" 10%)*
— The concatenation: 010 (10 107)"
Focusing on the first 1, but also in the second substring:
~071(0710°107)" 0"
Focusing on the last 1:

Focusing on the 1 in the middle:
— 07(10710")" 1707107 1) 0~
But not:

- (107107)" 10"

— We need to allow the initial 0’s, so
Dr. Luis Pineda, IMAS, UNAM &

Strings ending in 1 with no “00”

L= {x 0{0, 1}" | x ends with 1 and does not contain 00}
No 0 can follow a 0: 0 is either at the end or followed by 1

A very concrete way:
~-AN+0+1+00+01+10+11+...+111110+ 111111
Lets try to do a little better: But x ends with 1 |
So, x is either 1 or copies of 01: (1 +01)*
- {1,01,11,101, 011, 0101...}
However, this does allow /\, which does not end in 1 and
has no 00

o (0 +1)6 — This can be fixed with: (1 + 01)*1
— Final, allow strings of length less than 6:

— First, think of strings of length 6 exactly:
o (0+ 1)(0+ 1)(0+ 1)(0 + 1)(0 + 1)(0 + 1)
— Then, think of the exponential notation:

But now, 01 is not in the language, so:
o (0+1+A)° o (1+01)"(1+01)
o(1+01)*

Dr. Luis Pineda, IIMAS, UNAM & OS 03 Dr. Luis Pineda, IIMAS, UNAM & O

The language of C identifiers Real Literals in Pascal

Let’s / and d stand for letter and digit respectively Notation:

—Istands fora+b+...t+ z+A+B+..+7Z
—dstands for0 +1+2+...+9

An identifier in C is a string of length 1 or more
containing letters, digits and underscore (“_"):

 CAD it D
Examples:

Dr. Luis Pineda, IIMA!

— [stands fora+b+...t+ z +A+B+..+Z
—dstands for0 +1+2+...+9

— s stands for “sign” (shorthand for A + a + m, where a is
plus and m is minus)

— p stands for “point”

— E is a symbol of =

Real literals: sd*(pd™ + pd"Esd” + Esd™)
Examples: +6.25, 6.25, -6.25E+2, 6.25E-2,

Dr. Luis Pineda, IIMAS, UNAM &

Applications of Regular Expressions

Provide a “picture” of a pattern that we want to
recognize

They can be “compiled” into determinist
automata, which can be modeled to recognize
patterns in texts

Two important applications:
— Lexical analyzers
— Texts search in Internet

Dr. Luis Pineda, IIMAS, UNAM & O

UNIX Notation for RE

Meaning of UNIX operators
— | is used in place of +
— The operator ? means zero or one of: R? = A\ + R
+ means one or more: R+ = RR"
The operator {#} means n copies R{5} = RRRRR
in UNIX has the usual meaning (not a superscript!)
Alst
— [:digit:] stands for [0-9] (not necessarily in ASCII)
— [:alpha:] stands for [A-Za-z]
— [:alnum:] stands for [A-Za-z0-9]
Operators precedence is as usual (with ?, + and {n} treated like *)

UNIX extensions to name and refer to previous strings that have
matched a pattern (allowing to the recognition o regular
languages) are not considered here!

Dr. Luis Pineda, IMAS, UNAM & OS

Example

Partial input to the /ex command:

Else {return(ELSE)}

[A-Za-z][A-Za-z0-9]* {code to Enter identifier
in Symbol table;
return(Id); }
{return(GE);}
{return(QE);}

egers, floating-point, character strings, etc.

Conversion of regular expressions to an automata for
processing the corresponding strings

Dr. Luis Pineda, IIMAS, UNAM & OS

UNIX Notation for RE

2 = The set of ASCII characters
The grep command:
— Global (search for) Regular Exp jons and Print
Short hand definitions: Character classes
— The dot *.”” stands for any character
- [a,a,...a,] stands for the RE: a, + a, +
o e.g. The characters used fo
— [x-y] stand for range definitions:
e e.g. [A-Za-z0-9] stands for the set of all letters and di
» A minus sign “-" is placed first or last (to avoid cor
[+.0-9] is the set {-, +, . f
— For reserved characters N

[0-9\.] is the set of digits and the dot (not any character)
Dr. Luis Pineda, IMAS, UNAM & OSU-CIS, 2003

Lexical Analyzers

Lexical analyzer: the part of a iler that scans the
source code and identif okens (i.e. basic or atomic
symbols, or entries to the symbol’s table)
— Keywords
— Identifiers (names, variables, etc.)
Lexical-analyzer generator:
— UNIX’s lex (flex in GNU)
pts a list of regular expressions each followed by a
a bracketed piece of code, indicating what to do when
an instance of the token described by the RE is found

Advantages:
— A high level description of a lexical analyzer
— Automatic generation of plicated code

— Easy to create and modify
Dr. Luis Pineda, IMAS, UNAM & OSU-CIS, 2003

Finding patterns in texts

RE are useful for describing searches for
interesting patterns

Descriptions of vaguely defined class of
patterns in texts

Patters that are hard to define...
Easy to specify and modify

Dr. Luis Pineda, IIMAS, UNAM & OS

Example: Detecting addresses
in web-pages

First: the street address (UNIX Notation)

— Street|St\.|Ave\.[Road|Rd\.

Next: Name of the street

— [A-Z][a-z]* (e.g. Island)

But... what about streets with two or more names?

— "[A-Z][a-z]*([A-Z][a-Zz]*)*" (e.g Road Island Av.)
Next: House numbers

— String of digits... probably followed by letters as in “123A Main
St.”

full expression:
- [A-Z][a-z]*([A-Z][a-Z]*)*
(Street|St\.|Ave\.|Road|Rd\.)

Dr. Luis Pineda, IMAS, UNAM & OS

Example: Detecting addresses
in web-pages

But what about
— Streets with a different name: “Boulevar”, “Place”,...
— Streets with ordinal abbreviations: 42nd St.
— Post-Office boxes or rural-delivery routes
— Streets names that do not end with “Street”, like £/ Camino Real
in Silicon Valley (Spanish name for The Royal Road)
o El Camino Real Road?
» 2000 El Camino Real
It is really a knowledge engineering task!
We can appreciate the power of Regular expressions
— Expressive
— Economical

Dr. Luis Pineda, IIMAS, UNAM & OS

