

Example 1: Strings ending with 0

- $L = \{0, 1\}^* \{0\}$
- $-\Lambda \not\in L$
- Whether a string is in L depends only on the last symbol
- Also, we can think in partitioning L^* in two sets of
- strings: those ending with "1" and those ending with "0"
- For our purpose, any string in either subset is equivalent!
- At every state we only need to distinguish the symbol that is currently being scanned!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

A machine to do this job

Example 2: Strings ending with 0X

- We do need four classes for strings of length 2
 - Strings ending in 00
- Strings ending in 01 (accepted if it is the end of the string!)

- For strings of length less than two:
 - Λ and 1 can be grouped with 11, because at least two next symbols are required to make such a string into the language
 - 0 is in the same case as 10: neither is in the language, but it can be once the next symbol is read, unless it is the end of the

Example 2: Strings ending with 0X

- So, we do need four classes:
 - Class *a*: The string is Λ and 1 or ends in 11
 - Class *b*: The string is 0 or ends in 10
 - Class c: Strings ending in 00
 - Class d: Strings ending in 01
- To identify a language, we need a FA with four states: one for each of these classes

Example 3: Strings ending with 11 $L = \{0, 1\}^* \{11\}$

- First hypothesis: four classes for strings of length 2
- However 00 and 10 do not need to be distinguished!
 - ...00 becomes 000 or 001
 - ...10 becomes 100 or 101
 - Neither is in the language, and ... 10 belong to the same class!

Example 3: Strings ending with 11

- Three classes

- •....00,10
- •...01
- •...11
- Also, the string 1 can be identified with 01
 - ...01 becomes 010 or 011
 - 1 becomes **10** or **11**

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Example 3: Strings ending with 11

- Three classes
 -00,1
 - •...01, I
 - •...11
- Also, Λ and 0 can be identified with all strings ending in 0: these require to read two additional symbols to be a part of the language

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Example 3: Strings ending with 11 – Three classes

-00,10, Λ and 0
- •...01, 1
- •...11
- Paraphrasing:
 - Class a: The string does not end in 1
 - Class b: The string is 1 or ends in 01
 - Class c: The strings ends in 11

Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Formal definition of FA

A *finite Automaton*, or *finite state machine* (FA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

- -Q is a finite set (of states)
- $-\Sigma$ is a finite alphabet of *input symbols*
- $-q_0 \in Q$ (the initial state)
- $-A \subseteq Q$ (the set of accepting states)
- $-\delta$ is a function from $Q \ge \Sigma$ into Q (the transition function)
- For any q of Q and $a \in \Sigma$, $\delta(q,a) = p$, where p is the state to which the FA moves if it is in q when receives the input a

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Three notations for FA

- Abstract description
- Transition table
- Transition diagram

		Tr	an	siti	on	tał	ole			
	1	1	01	11	01	11	01	11		
	0	0	00	10	00	10	00	10		
	\sum_{Q}	Λ	0	1	00	01	10	11		
The accepting state Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003										

	Transition table There are three equivalent states!									
	1	1	01	11	01	11	01	11		
	0	0	00	10	00	10	00	10		
	Σ / Q	Λ	0	1	00	01	10	11		
The string 1, and the strings ending in 01 and 11 are in the same class!										

1		01	11	01	11	01	11
0	0	00	10	00	10	00	10
Σ / Q	Λ	0	1	00	01	10	11

Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Transition table

1	В	В	В	В	В	В	В
0	0	00	10	00	10	00	10
\sum_{Q}	Λ	0	В	00	В	10	В

Updating the new name for 1, 01 and 11 in the table

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

	1	В	В	В	В	В			
	0	0	00	10	00	00			
	\sum_{Q}	Λ	0	В	00	10			
Getting rid of the redundant columns									

Transition table

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

				•	
on	siti	on	+0	h	
a	SIII	OH	la	O	
 ~				~	

1	В	В	В	В	В
0	0	00	10	00	00
\sum_{Q}	Λ	0	В	00	10

Now, the states 0, 00 and 10 look the same

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

	Tr	an	siti	on	tat	ble
1	В	В	В	В	В	

0	0	00	(10)	00	00
Σ / Q	Λ	0	В	00	(10)

0 and 00 are in the same class

But 10 is not, because it is the accepting state

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	В	В	В	В
ΣQ Λ A B A 10	0	А	А	10	A	A
	\sum_{Q}	Λ	А	В	А	(10)

Transition table

Renaming 0 and 00 as A

r. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Transition table

1	В	В	В
0	А	10	А
Σ / Q	А	В	(10)

Getting rid of the column for Λ
We have a minimal FA to recognize the language L = {0, 1}*{10}

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

The moral!

- FA can be reduced
- All the classes of strings need to be identified
- The minimal FA will have one state for each different class!
- These is a very important property of FA, that will be used for more than one purpose!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200