Session 6	Transition Function δ			
	Z	<i>p</i> j		p_1
The language accepted by a FA				
	а	p_{i}		p _k
	Σο	q_0		$q_{\rm n}$

Extended Transition Function

- δ allows to move from one state to the next on an input symbol
- δ provides a mean to refer or name the next state in terms of the current state and an input symbol: $-\delta(q,a) = p \qquad \delta(q,a) \qquad p$

Reference relation:

- to refer or name the next state in terms of the current state and *an input string*:
- $-\delta^*(q, x) = p$ The state we get to from a given state and an input string
- The extended transition function δ^* such a naming device!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

 $\delta^*(q, x)$

р

Extended Transition Function δ^*

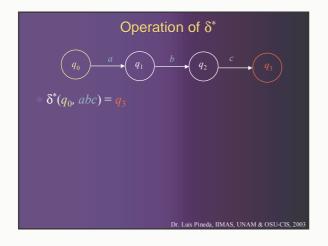
<i>x</i> ₁	p_{01}	 p_{n1}
$x_0 = \Lambda$	p_{00}	 $p_{\rm n0}$
$\sum^{\Sigma^*} Q$	q_0	 $q_{ m n}$

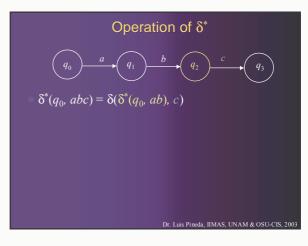
For any q of Q and $x \in \Sigma^*$, $\delta^*(q, x) = p$ Dr. Luis Pineda. IIMAS. UNAM & OSU-

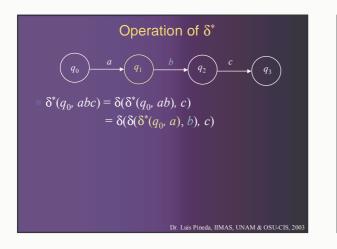
Formal definition of δ^{\ast}

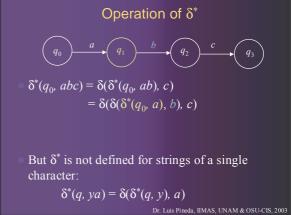
- Let M = $(Q, \Sigma, q_0, A, \delta)$ a FA
- We define the function $\delta^*: Q \ge \Sigma^* \to Q$ as follows:
 - For any $q \in Q$, $\delta^*(q, \Lambda) = q$
 - For any $q \in Q$ and any $y \in \Sigma^*$ and a symbol $a \in \Sigma$

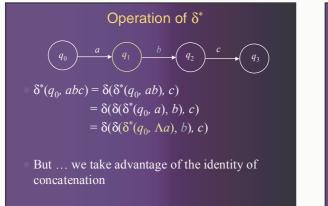
$$\delta^*(q, ya) = \delta(\delta^*(q, y), a)$$

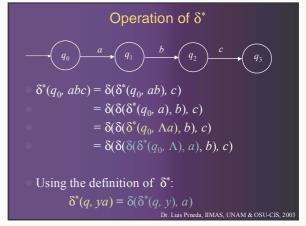


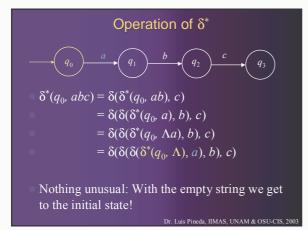


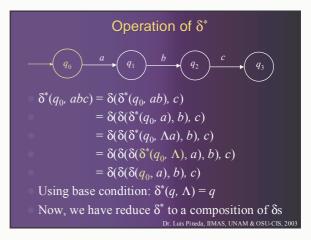


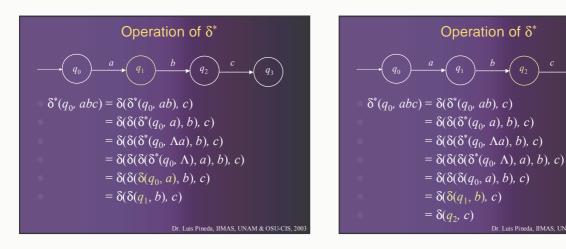


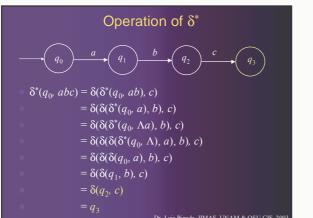


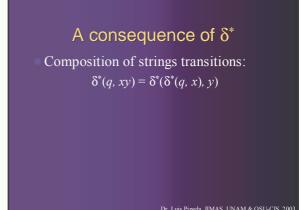












Acceptance by a FA

Let $M = (Q, \Sigma, q_0, A, \delta)$ be a FA $x \in \Sigma^*$ is *accepted* by M if $\delta^*(q_0, x) \in A$ If a string is not accepted, it is rejected by M The language *accepted* or *recognized* by M is the set $-\mathbf{L}(M) = \{x \in \Sigma^* \mid x \text{ is accepted by } M\}$ If L is any language over Σ , L is accepted, or recognized, by M if and only if $L = \mathbf{L}(M)$

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS

But ...

- The definition does not say that L is accepted by M if every string is accepted by M
- In this case, M could also accept other things!

Reject all strings in its complement

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

THEOREM:

A *L* language over the alphabet Σ is regular if and only if there is an FA with input alphabet Σ that accepts *L*

Kleene'sTheorem:

If this is true (and it is), regular expressions and FA are equivalent representations: if a *RE denotes* a language, there is a FA that accepts such a language!

- RE are declarative representations
- FA are procedural representations

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Distinguishing strings

Let *L* be a language in Σ^* , and $x \in \Sigma^*$

Let L/x a set of strings such that:

 $-L/x = \{z \in \Sigma^* \mid xz \in L\}$

Two strings x and y are distinguishable with respect to L if $-L/x \neq L/y$

Any string z such that $xz \in L$ and $yz \notin L$ or vice versa, is said to distinguish x and y with respect to L

If L/x = L/y, x and y are indistinguishable (or equivalent) with respect to L

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

Distinguishing strings

To show that x and y are distinguishable with respect to L

- Find z such that $xz \in L$ BUT $yz \notin L$ OR
- Find z such that $yz \in L$ BUT $xz \notin L$
- So z is in L/x or L/y but not in the other!
- Example:
- $-L = \{w \mid |w| \text{ is even}\}$
- Any string z of an even length will distinguish the strings of even length in L, from the strings of odd length, not in L
- $-L/x = \{z \in \Sigma^* \mid xz \in L\}$
- i.e. If $|\mathbf{x}|$ is odd, then $|\mathbf{x}\mathbf{z}|$ is also odd ($|\mathbf{z}|$ is even), and $x\mathbf{z} \notin L$

Distinguishing strings

Lemma:

- Suppose $L \subseteq \Sigma^*$ and $M = (Q, \Sigma, q_0, A, \delta)$ is a FA recognizing L.
- -If x and y are two strings in Σ^* that are distinguishable with respect to L, then

 $\delta^*(q_0, xz) \neq \delta^*(q_0, yz)$

– One is state is accepting but not the other!

Dr. Luis Pineda. IIMAS. UNAM & OSU-CIS. 20

Proof of lemma

One is accepting, but not the other:

 $-\delta^*(q_0, xz) \neq \delta^*(q_0, yz)$

The state δ^* takes us from q_0 on xz and on yz are: $-\delta^*(q_0, xz) = \delta^*(\delta^*(q_0, x), z)$

 $-\delta^*(a_0, vz) = \delta^*(\delta^*(a_0, v), z)$

- But if z is a distinguishing string:
- $-\delta^*(\delta^*(q_0, x), z) \neq \delta^*(\delta^*(q_0, y),$

```
Then
```

 $- \, \delta^*(q_0, x) \neq \delta^*(q_0, y)$

This is: x and y take M from q_0 to different states!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

THEOREM

- Suppose $L \subseteq \Sigma^*$ and for some *n*, there are *n* strings in Σ^* , any two of which are distinguishable with respect to *L*.
- Then, every FA recognizing *L* must have at least *n* states.

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

- Suppose $x_1, x_2, ..., x_n$ are *n* strings, any two of which are distinguishable with respect to *L*
- Then, if $M = (Q, \Sigma, q_0, A, \delta)$ is any FA with fewer than *n* states then, by the pigeonhole principle, the states
- $-\delta^*(a_0, \mathbf{r})$
- $-\delta^*(q_0, x_2)$
-
- $-\delta^*(q_0, x_n)$
- are not all distinct, so
- For some $i \neq j$, $\delta^*(q_0, x_i) = \delta^*(q_0, x_i)$
- But since x_i and x_i are distinguishable with respect to L,
- it follows from the lemma that M cannot recognize L

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Showing languages not to be regular!

- The theorem about distinguishing strings offers a potential way to show that a language is not regular
- If there is an infinite number of strings, any two distinguishable with respect to *L*, any FA accepting *L* must have an infinite number of states
- But this is what a FA is not allowed to have!
- So, no FA can accept a language consisting of an infinite set of distinguishable strings!

A language that cannot be accepted by a FA

The language *pal* over $\Sigma = \{0, 1\}$ cannot be accepted by a FA and therefore is not regular

- Palindrome: *madamimadam*
- Palindromes: Λ, 0, 1, 0110, 11011
- Proof: We show that any two strings x and y in $\{0, 1\}^*$ are distinguishable with respect to *pal*

y and let
$$z = x^r$$
 (e.g. if $x = 0101 y = x^r$ which is a pal: (e.g. $z = x^r = 1010$)

$$xz = 01011010$$

$$-$$
 But *yz* is not

Then xz =

 $-z = x^r$ distinguishes x from y

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

A language that cannot be accepted by a FA

- Case 2: $|x| \neq |y|$ and assume |x| < |y| (e.g. $x = 010 \ y = 10101$)

 - Any z of the form z = ww²x^x satisfies xz ∈ pal
 Consider that: xz = xww²x^x (e.g. xPx^x = 010P010)

 - Let's chose w = 10
- But
- $yz = y_1y_2z = y_1y_2ww^{x}x^{x}$ ($z = ww^{x}x^{x}$ distinguishes x from y (e.g. 101011001010)

Distinguishing strings

How many different classes are there in a language? For $L = \{w \mid |w| \text{ is even}\}$ we need just one z

- any z of even length will do for all strings in the language!
- In this language there are just two classes
- For the language *pal* of all palindromes over $\Sigma = \{0, 1\}$
- we need a different z for each palindrome
- there is an infinite number of palindromes
- There is an infinite number of classes!

If there are n classes of strings, we need n z's to distinguish them!

