

Descriptive power of RE and FA Basic RL - FA Inductively generated RL We can define individual FA, so far! But ee need to generate machines inductively!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Operations on FA

According to Kleen's Theorem:

- If L_1 and L_2 are both *RE* over Σ if and only if there are M_1 and M_2 accepting L_1 and L_2 Definition of *RL*: IF L_1 and L_2 are *RL*
- $-L_1 \cup L_2, L_1 L_2$ and L_1^* are also RL

Set operations on RL

- Intersection: $L_1 \cap L_2$ is a *RL* Difference: $L_1 L_2$ is a *RL*
- Is there a way to generate machines for these languages from M_1 and M_2 (the machines accepting L_1 and L_2 ?

Set operations on FA

- The case for $L_1 \cup L_2$
- Consider whether a string $x \in L_1 \cup L_2$
- It does if x belongs to either L_1 or L_2
- Let M_1 and M_2
 - $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ such that $L(M_1) = L_1$
 - $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ such that $L(M_2) = L_2$
- Process x with both M_1 and M_2
- If x is accepted by either M_1 or M_2 , it belongs to

Set operations on FA

- Process the string x simultaneously by M_1 and M_2
 - $-\delta_1^*(q_1, x) = p$
 - $-\delta_2^*(q_2, x) = q$
- The three machines:
- If $p \in A_1$ OR $q \in A_2$ then x is accepted by the union of M_1 and M_2
- If $p \in A_1$ AND $q \in A_2$ then x is accepted by the intersection of M_1 and M_2
- If $p \in A_1$ AND $q \notin A_2$ then x is accepted by the difference M_1 but not \overline{M}_2

Set operations on FA

- The process step by step:
 - $-\delta_1(p, a) = r$
 - $-\delta_2(q, a) = s$
- The composite machine can be though in terms of abstract pairs of states (p, q) on the symbol *a*:
 - It moves from state (p, q) to $(\delta_1(p, a), \delta_2(q, a))$

1

Example: Find the product FA Proof FA 1: accepts all strings that have a 0 Acceptance of M_1 and M_2 is defined in terms of δ_1^* and δ_2^* , and acceptance by M is defined in terms of δ^* : 01 - For $x \in \Sigma^*$ and $(p, q) \in Q$: $\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x))$ A string *x* is accepted by *M* if and only if $\delta^*((q_1, q_2), x) \in A$ (i.e. Takes *M* from the initial to an accepting state) A 2: accepts all strings that have a 1 This is true if and only if $(\delta_1^*(q_1, x), \delta_2^*(q_2, x)) \in A$ The set A is defined for case 1 as saying that $-\delta_1^*(q_1, x) \in A_1 \text{ OR } \delta_2^*(q_2, x) \in A_2$ - Similarly for the other two cases Dr. Luis Pi da, IIMAS, UNAM & OSU-CIS Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Find the	graph of	FA			
	Transit	Transition table on 0			
The initial state:	s	qs	qs		
$\rightarrow pr$ (ps)	r	qr	qr		
pr ps		p	q		
(qr) (qs)	Transit	Transition table on 1			
(qr) (qs)	S	ps	qs		
	r	ne	~~~		
	· · ·	ps	qs		

Find the Intersection	
If $\mathbf{A} = \{(p, q) \mid p \in A_1 \text{ AND } q \in A_2\}$	
then M accepts $L_1 \cap L_2$	
$-Q = \{pr, ps, qr, qs\}$	
$-A_1 = \{q\} \text{ AND } A_2 = \{s\}$	
then	
$-A = \{qs\}$	

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

If $A = \{(p, q) | p \in A_1 \text{ OR } q \in A_2\}$ then M accepts $L_1 \cup L_2$ $-Q = \{pr, ps, qr, qs\}$ $-A_1 = \{q\} \text{ OR } A_2 = \{s\}$ then $-A = \{ps, qr, qs\}$

