Session 8

Nondeterministic Finite Automata

Nondeterministic FA

- Motivation
- Concept of non-determinism
- Definition of NFA
- Extended Transition Function for NFA
- Acceptance by a NFA

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Concept of non-determinism

- An FA is not deterministic if there is more than one next state for any state on the same input symbol
- We can think of it in several ways:
 - As *n* DFAs running in parallel, each one taking care of a given path
 - As a automata that "guesses" the next state when it has a choice
 - As an abstract specification of a computation, regardless the actual details of the algorithm or machine that performs the computation
 - Non-determinism allows to think disjunctively about FA! Dr. Luis Pineda, IIMAS, UNAM & OSU-

Nondeterminism and abstraction

- Computations on tree-structures are nondeterministic
- Search strategies serialize the non-deterministic paths
- A declarative specification allow us to see whether a given condition is satisfied, independently of a concrete computation
- Non-determinism allows us to express disjunctive abstraction
- Provides the abstraction import of the union operator in *RE*

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Definition of NFA

- A non-deterministic *finite Automaton* (NFA) is a 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$, where
 - -Q is a finite set (of states)
 - $-\Sigma$ is a finite alphabet
 - $-q_0 \in Q$ (the initial state)
 - $-A \subseteq Q$ (the set of accepting states)
 - *A* transition function:
 - $\delta: Q \ge \Sigma \to 2^Q$
- The only difference between DAF y NFA is the type δ

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

Transition function

- Transition function for DFA: $\delta: Q \times \Sigma \rightarrow Q$
- Transition function for NFA: $\delta: Q \ge \Sigma \rightarrow 2^Q$
- The type of the range of δ is a set of states!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

Formally, $\delta^*(q_0, 11)$ is:
$\delta^*(q_0, 11)$ has the form $\delta^*(q_0, y_a)$
$\int \delta^*(q, \Lambda) = \{q\}$
Def. of $\delta^* - \begin{cases} \delta^*(q, ya) = \bigcup_{r \in \delta^*(q, y)} \delta(r, a) \\ \\ \end{cases}$
$\overbrace{(q_0)} r \in \delta^*(q_0, \Lambda) = \{q_0\}$
$1 - \delta^*(q_0, \Lambda 1) = \delta(q_0, 1) = \{q_1, q_2\}$
$\left(\begin{array}{c} q_1 \end{array} ight) \left(\begin{array}{c} q_2 \end{array} ight) \; r \in \; \delta^*(q_0, \; \Lambda 1) = \{q_1, q_2\}$
$1 \longrightarrow \delta^*(q_0, \Lambda 11) = \delta(q_1, 1) \cup \delta(q_2, 1)$
$\begin{pmatrix} q_0 \\ \\ \end{pmatrix} \qquad \begin{pmatrix} q_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

