#### Session 9

#### NFA are FA: The subset construction

#### NFA are FA: the subset construction

- For any NFA  $M = (Q, \Sigma, q_0, A, \delta)$  accepting the language  $L \subseteq \Sigma^*$ , there is a FA  $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that accepts L
- Search algorithms illustrate how all branches of a nondeterministic path can be explore deterministically
- -M: NFA is an specification
- $-M_1$ : DFA is the implementation!
- Given an specification it is always possible to find an implementation (an algorithm) automatically!
- For all NFA there is an algorithm to find its equivalent DFA

 $\delta(q_0, 1) = \{q_1, q_2\}$  $\delta(q_0, 0) = \{q_4\}$ 

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20















#### The states of the subset construction

The the states (and names) of  $M_1$  are defined out of the states (and their names) of M:

- $M_1$  is defined as follows:
- The set of states of  $M_1$ :  $Q_1 = 2^Q$ ,
- The initial state of  $M_1$ :  $q_1 = \{q_0\}$
- If *M* has 5 states:
- Then,  $M_1$  has  $2^5 = 32$  possible states!

| If <i>M</i> has 5 states:             |                   | 0         | 1              |
|---------------------------------------|-------------------|-----------|----------------|
| – Then, $M_1$ has $2^5 = 32$ possible | $\rightarrow q_0$ | $\{q_4\}$ | $\{q_1, q_2\}$ |
| states!                               | $q_1$             | φ         | $\{q_0\}$      |
| - Fortunately we only needed 6!       | $q_2$             | φ         | $\{q_3\}$      |
|                                       | $q_3$             | $\{q_0\}$ | ¢              |
|                                       | $*q_4$            | φ         | ¢              |
| Dr. Luis Pine                         | da, IIMAS,        | UNAM & (  | OSU-CIS, 2003  |

#### The power set 2<sup>Q</sup>

No. the sets of n objects taken r at the time

$$C_r^n = \frac{n!}{r!(n-r)}$$

*M* has 5 states so, we have:

– The empty state: φ

- -5 states made of 1 state:  $\{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}$
- -10 states made of 2 states:  $\{q_0q_1\}, \{q_0q_2\}, \{q_0q_3\}, \dots$
- 10 states made of 3 states:  $\{q_0q_1q_2\}, \{q_0q_2q_3\}, \{q_0q_3q_4\}, \dots$
- -5 states made of 4 states:  $\{\overline{q_0q_1q_2}q_3\}, \{\overline{q_0q_1q_2q_4}\}, \dots$ 
  - Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003

### A binary code for the names of states in $M_1$

The state composed of  $q_1$  and  $q_2$ :

| States of M            | $q_0$ | $q_1$ | $q_2$ | $q_3$ | $q_4$ |
|------------------------|-------|-------|-------|-------|-------|
| Name of state in $M_1$ | 0     | 1     | 0     | 1     | 0     |

There  $2^{|Q|}$  possible states in  $M_1$  (32 in this case)

Each binary numeral from 0 to 31 corresponds to the name of one of these states

# The possible entries in $\delta_1$ : $q_0 q_1 q_2 q_3 q_4$ $q_0 q_1 q_2 q_3 q_4$ 01000 ie. 01011 is the state $0q_10q_3q_4 = q_1q_3q_4$ Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 20

| The                   | pos | ssib | le e | entries in              | ι δ <sub>1</sub> : |           |
|-----------------------|-----|------|------|-------------------------|--------------------|-----------|
| $q_0 q_1 q_2 q_3 q_4$ | 0   | 1    |      | $q_0 q_1 q_2 q_3 q_4$   | 0                  | 1         |
| 10000                 |     |      |      | 11000                   |                    |           |
| 10001                 |     |      |      | 11001                   |                    |           |
| 10010                 |     |      |      | 11010                   |                    |           |
| 10011                 |     |      |      | 11011                   |                    |           |
| 10100                 |     |      |      | 11100                   |                    |           |
| 10101                 |     |      |      | 11101                   |                    |           |
| 10111                 |     |      |      | 11110                   |                    |           |
| 10111                 |     |      |      | 11111                   |                    |           |
|                       |     |      | J Dr | . Luis Pineda, IIMAS, U | NAM & C            | SU-CIS, 2 |

#### NFA are FA: the subset construction

The set of states of  $M_1$ :  $Q_1 = 2^Q$ ,

- The initial state of  $M_1$ :  $q_1 = \{q_0\}$
- The set of accepting states of  $M_1$ :

– All states whose name has the pattern XXXX1 have a  $q_4$ , and are accepting states

# The NFA M:

|                   | 0         | 1              |
|-------------------|-----------|----------------|
| $\rightarrow q_0$ | $\{q_4\}$ | $\{q_1, q_2\}$ |
| $q_1$             | ¢         | $\{q_0\}$      |
| $q_2$             | φ         | $\{q_3\}$      |
| $q_3$             | $\{q_0\}$ | φ              |
| $*q_4$            | ¢         | φ              |



|                                                                   | De | finition | 0 | $f \delta_1$      |             |                |
|-------------------------------------------------------------------|----|----------|---|-------------------|-------------|----------------|
| $q_0 q_1 q_2 q_3 q_4$                                             | 0  | 1        |   |                   |             |                |
| 00000                                                             |    |          |   |                   | 0           | 1              |
| $\rightarrow 10000$                                               |    |          |   | $\rightarrow q_0$ | $\{q_{4}\}$ | $\{q_1, q_2\}$ |
|                                                                   |    |          |   | $q_1$             | ¢           | $\{q_0\}$      |
|                                                                   |    |          |   | $q_2$             | ¢           | $\{q_3\}$      |
|                                                                   |    |          |   | $q_3$             | $\{q_0\}$   | ¢              |
|                                                                   |    |          |   | $*q_4$            | ¢           | φ              |
| $00000 = \phi, q_0 = 10000, q_1 = 01000 \text{ and } q_4 = 00001$ |    |          |   |                   |             |                |

|                                    | De    | finitior | n of a        | δ <sub>1</sub>        |           |                |
|------------------------------------|-------|----------|---------------|-----------------------|-----------|----------------|
| $q_0 q_1 q_2 q_3 q_4$              | 0     | 1        |               |                       |           |                |
| 00000                              |       |          |               |                       | 0         | 1              |
| $\rightarrow 10000$                | 00001 | 01100    | $\rightarrow$ | $q_0$                 | $\{q_4\}$ | $\{q_1, q_2\}$ |
|                                    |       |          |               | $q_1$                 | φ         | $\{q_0\}$      |
|                                    |       |          |               | <i>q</i> <sub>2</sub> | φ         | $\{q_3\}$      |
|                                    |       |          | 4             | <i>q</i> 3            | $\{q_0\}$ | ¢              |
|                                    |       |          | *             | $q_4$                 | ¢         | ¢              |
| $δ_1(10000, 0)$<br>$δ_1(10000, 1)$ |       |          |               |                       |           |                |

uis Pineda. IIMAS. UNAM & OSU-CIS. 200

| De    | finition | of $\delta_1$     |
|-------|----------|-------------------|
| 0     | 1        |                   |
|       |          |                   |
| 00001 | 01100    | $\rightarrow q_0$ |
| ¢     | ¢        | $q_1$             |
|       |          | $q_2$             |
|       |          | $q_3$             |
|       |          | *q4               |
|       | 0        |                   |

|   | . 01              |           |                |
|---|-------------------|-----------|----------------|
| I |                   | 0         | 1              |
|   | $\rightarrow q_0$ | $\{q_4\}$ | $\{q_1, q_2\}$ |
|   | $q_1$             | ¢         | $\{q_0\}$      |
|   | $q_2$             | φ         | $\{q_3\}$      |
|   | $q_3$             | $\{q_0\}$ | φ              |
|   | $*q_4$            | ¢         | φ              |

 $\delta_1(00001, 0) = \delta(q_4, 0) = \phi$  $\delta_1(00001, 1) = \delta(q_1, 1) = \phi$ 

Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003



| $q_0 q_1 q_2 q_3 q_4$ | 0     | 1     |                   |           |              |
|-----------------------|-------|-------|-------------------|-----------|--------------|
| 00000                 | φ     | φ     |                   | 0         | 1            |
| $\rightarrow 10000$   | 00001 | 01100 | $\rightarrow q_0$ | $\{q_4\}$ | $\{q_1, q\}$ |
| *00001                | φ     | φ     | $q_1$             | φ         | $\{q_0\}$    |
|                       | ¢     | 10010 | $q_2$             | ¢         | $\{q_3\}$    |
|                       |       |       | $q_3$             | $\{q_0\}$ | φ            |
|                       |       |       | *q4               | ¢         | ¢            |

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200

| D | efir | nition | of | $\delta_1$ |
|---|------|--------|----|------------|
|   |      |        |    |            |

| $q_0 q_1 q_2 q_3 q_4$ | 0     | 1     |                   |     |
|-----------------------|-------|-------|-------------------|-----|
| 00000                 | φ     | φ     |                   |     |
| $\rightarrow 10000$   | 00001 | 01100 | $\rightarrow q_0$ | {0  |
| *00001                | φ     | φ     | $q_1$             |     |
| 01100                 | φ     | 10010 | $q_2$             |     |
| 10010                 | 10001 | 01100 | $q_3$             | -{0 |
|                       |       |       | *q_               |     |

 $\begin{aligned} &\delta_{1}(10010, 0) = \delta(q_{0}, 0) \\ &\delta_{1}(10010, 1) = \delta(q_{0}, 1) \\ & 0 \\ &\delta_{1}(10010, 1) = \delta(q_{0}, 1) \\ & 0 \\ &\delta_{1}(10010, 1) = \delta(q_{0}, 1) \\ & 0 \\ &\delta_{1}(10010, 1) \\ & 0 \\ & \delta_{1}(10010, 1) \\ & \delta_{1}(1000, 1) \\ & \delta_{1}(1$ 

1  $\{q_1, q_2\}$ 

 $q_{4}$ 

¢

 $q_0$ 

| Definition of δ <sub>1</sub> |       |       |                   |  |  |  |
|------------------------------|-------|-------|-------------------|--|--|--|
| $q_0 q_1 q_2 q_3 q_4$        | 0     | 1     |                   |  |  |  |
| 00000                        | φ     | φ     |                   |  |  |  |
| $\rightarrow 10000$          | 00001 | 01100 | $\rightarrow q_0$ |  |  |  |
| *00001                       | φ     | φ     | $q_1$             |  |  |  |
| 01100                        | φ     | 10010 | $q_2$             |  |  |  |
| 10010                        | 10001 | 01100 | $q_3$             |  |  |  |
| *10001                       | 00001 | 01100 | $*q_A$            |  |  |  |

$$\begin{split} &\delta_1(10001, 0) = \delta(q_0, 0) \ \cup \ \delta(q_4, 0) = \{q_4\} \\ &\delta_1(10001, 1) = \delta(q_0, 1) \ \cup \ \delta(q_4, 1) = \{q_1, q_2\} \end{split}$$

 $\{q_4\}$ 

ø

 $\{q_1, q_2\}$ 

φ

|                                   | De    | finition | I O | $f \delta_1$      |           |                |
|-----------------------------------|-------|----------|-----|-------------------|-----------|----------------|
| $q_0 q_1 q_2 q_3 q_4$             | 0     | 1        |     |                   |           |                |
| 00000                             | φ     | ф        |     |                   | 0         | 1              |
| $\rightarrow 10000$               | 00001 | 01100    |     | $\rightarrow q_0$ | $\{q_4\}$ | $\{q_1, q_2\}$ |
| *00001                            | φ     | φ        |     | $q_1$             | ¢         | $\{q_0\}$      |
| 01100                             | φ     | 10010    |     | $q_2$             | ¢         | $\{q_3\}$      |
| 10010                             | 10001 | 01100    |     | $q_3$             | $\{q_0\}$ | ¢              |
| *10001                            | 00001 | 01100    |     | $*q_4$            | ¢         | ¢              |
| We get closure: There are no more |       |          |     |                   |           |                |

possible transitions!

r = 01100

# The resulting DFA

| $q_0 q_1 q_2 q_3 q_4$ | Names<br>FA       | 0     | 1     |
|-----------------------|-------------------|-------|-------|
| 00000                 | S                 | ¢     | φ     |
| →10000                | $\rightarrow q_0$ | 00001 | 01100 |
| *00001                | *p                | φ     | φ     |
| 01100                 | r                 | φ     | 10010 |
| 10010                 | t                 | 10001 | 01100 |
| *10001                | *и                | 00001 | 01100 |

Renaming the states

| Renaming the states!                         |                   |                  |            |  |
|----------------------------------------------|-------------------|------------------|------------|--|
| 2 <sub>2</sub> q <sub>3</sub> q <sub>4</sub> | Names<br>FA       | 0                | 1          |  |
| 000                                          | S                 | $s = \phi$       | $s = \phi$ |  |
| 000                                          | $\rightarrow q_0$ | <i>p</i> = 00001 | r = 01100  |  |
| 001                                          | *p                | $s = \phi$       | $s = \phi$ |  |
| 100                                          | r                 | $\phi = s$       | t = 10010  |  |

u = 10001

p = 00001

 $\rightarrow 10$ 

\*10001

# Renaming the states!

| $q_0 q_1 q_2 q_3 q_4$ | Names<br>FA       | 0 | 1 |
|-----------------------|-------------------|---|---|
| 00000                 | S                 | S | s |
| $\rightarrow 10000$   | $\rightarrow q_0$ | р | r |
| *00001                | *p                | S | S |
| 01100                 | r                 | S | t |
| 10010                 | t                 | и | r |
| *10001                | *u                | р | r |

| Renaming the states!                         | The equivalent DFA!                                    |
|----------------------------------------------|--------------------------------------------------------|
| Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 2003 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



# NFA are FA

 $M_1$  accepts the same language as M follows from the fact that for any  $x \in \Sigma^*$ 

$$\delta_1^*(q_1, x) = \delta^*(q_0, x)$$

This is proved by induction!

Dr. Luis Pineda, IIMAS, UNAM & OSU-CIS, 200



$$\delta_{1}^{*}(q_{1}, x) = \delta^{*}(q_{0}, x)$$
The base case: If  $x = \Lambda$ 

$$\delta_{1}^{*}(q_{1}, x) = \delta_{1}^{*}(q_{1}, \Lambda)$$

$$= q_{1} \quad (by \text{ definition of } \delta_{1}^{*})$$

$$= \{q_{0}\} \quad (by \text{ definition of } q_{1})$$

$$= \delta^{*}(q_{0}, \Lambda) \quad (by. \text{ def. of } \delta^{*})$$

$$= \delta^{*}(q_{0}, x)$$
Dr. Luis Pineda, IMAS, UNAM & OSU-CIS, 2003

| The induction hypothesis:<br>$\delta_1^*(q_1, x) = \delta^*(q_0, x)$                        |                                                                                                                         |                                                                                                                                                                      |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| We wish to prove that for any $a \in \Sigma$ ,<br>$\delta_1^*(q_1, xa) = \delta^*(q_0, xa)$ |                                                                                                                         |                                                                                                                                                                      |  |  |
| 1 (21)                                                                                      | $= \delta_1(\delta_1^*(q_1, x), a)$ $= \delta_1(\delta^*(q_0, x), a)$ $= \bigcup_{r \in \delta^*(q_0, x)} \delta(r, a)$ | <ul> <li>(by definition of δ<sub>i</sub><sup>*</sup>)</li> <li>(by the induction hypothesis)</li> <li>(by def. of δ<sub>1</sub>: the subset construction)</li> </ul> |  |  |
|                                                                                             | $=\delta^*(q_0,xa)$ (by                                                                                                 | ,                                                                                                                                                                    |  |  |



