

cadena	edo.	cinta	Stack	Tipo: movida	Conf.	Producción
aba	q_0	Λ	Z_0	0: (q ₁ , P)	(q_0, aba, Z_0)	
aba	q_1	Λ	P	1: (q ₁ , aPa)	(q_1, aba, PZ_0)	$P \rightarrow aPa$
aba	q_1	а	а	$2:(q_1,\Lambda)$	$(q_1, aba, aRaZ_0)$	
ba	q_1	Λ	P	1: (q ₁ , b)	(q_1, ba, PaZ_0)	$P \rightarrow b$
ba	q_1	b	b	2: (q ₁ , Λ)	(q_1, ba, baZ_0)	
а	q_1	а	а	$2:(q_1,\Lambda)$	(q_1, a, aZ_0)	
Λ	q_1	Λ	Z_0	$3:(q_2,Z_0)$	(q_1, Λ, Z_0)	
Λ	q_2	Λ	Z_0		(q_2, Λ, Z_0)	

Dr. Luis Pineda, IIMAS, 2010

cadena	edo.	in	Stack	Tipo: movida	Conf.	Producción
	cuo.					Troducció
aba	q_0	Λ	Z_0	$0: (q_1, P)$	$(q_0 aba, Z_0)$	
aba	q_1	Λ	P	1: (q ₁ , aPa)	(q_1, aba, PZ_0)	$P \rightarrow aPa$
aba	q_1	а	а	$2:(q_1,\Lambda)$	$(q_1, aba, aPaZ_0)$	
ba	q_1	Λ	P	1: (q ₁ , b)	(q_1, ba, PaZ_0)	$P \rightarrow b$
ba	q_1	b	b	2: (<i>q</i> ₁ , Λ)	(q_1, ba, baZ_0)	
а	q_1	а	а	$2:(q_1,\Lambda)$	(q_1, a, aZ_0)	
Λ	q_1	Λ	Z_0	$3:(q_2,Z_0)$	(q_1, Λ, Z_0)	
Λ	q_2	Λ	Z_0		(q_2, Λ, Z_0)	

Tabla de transición de Pal_{mark}

Id	Estado	Entrada	top del Stack	Movida	
1	q_0	а	Z_0	(q_0, aZ_0)	
2	q_0	b	Z_0	(q_0, bZ_0)	
3	q_0	a	а	(q ₀ , aa)	
4	q_0	b	а	(q_0, ba)	
5	q_0	а	b	(q ₀ , ab)	
6	q_0	b	b	(q_0, bb)	
7	q_0	с	Z_0	(q_1, Z_0)	
8	q_0	с	а	(q ₁ , a)	
9	q_0	c	b	(q_1, b)	
10	q_1	а	а	(q_1, Λ)	
11	q_1	b	b	(q_1, Λ)	
12	q_1	Λ	Z_0	(q_2, Z_0)	EΑ
	otras	combinac	iones	nada	
				Dr. Luis Pineda, IIMAS,	2010

Aceptando por stack vacío!

			_		
Id	Estado	Entrada	top del Stack	Movida	
1	q_0	а	Z_0	(q_0, aZ_0)	
2	q_0	b	Z_0	(q_0, bZ_0)	
3	q_0	а	а	(q ₀ , aa)	ĺ
4	q_0	b	а	(q0, ba)	
5	q_0	а	b	(q ₀ ,ab)	
6	q_0	b	b	(q_0, bb)	
7	q_0	с	Z_0	(q_1, Z_0)] `
8	q_0	с	а	(q ₁ , a)	
9	q_0	c	b	(q_1,b)	
10	q_1	а	а	(q_1, Λ)	
11	q_1	b	b	(q_1, Λ)	
12	q_1	Λ	Z_0	(q_1, Λ)	SV
	otras	combinac	iones	nada	
				Dr. Luis Pineda, IIMAS	2010

¡Usando variables para contar símbolos!

			_	
Id	Estado	Entrada	top del Stack	Movida
1	q_0	а	Z_0	(q_0, AZ_0)
2	q_0	b	Z_0	(q_0, BZ_0)
3	q_0	а	A	(q_0, AA)
4	q_0	b	A	(q ₀ , BA)
5	q_0	а	В	(q_0,AB)
6	q_0	b	В	(q_0, BR)
7	q_0	с	Z_0	(q_1, Z_0)
8	q_0	с	A	(q_1, A)
9	q_0	с	В	(q_1, B)
10	q_1	а	A	(q_1, Λ)
11	q_1	b	В	(q_1, Λ)
12	q_1	Λ	Z_0	(q_1, Λ)
	Otras	combinac	iones	nada
				Dr. Luis Pineda, IIMAS, 2

La función de las producciones

- Por cada símbolo de la primera mitad de la cadena debe existir un símbolo en la segunda parte de la cadena que lo cancele
- Ley de la preservación de los símbolos: Los símbolos nunca se crean ni se destruyen, sólo se cancelan!
- La hipótesis de la movida por regla: Por cada movida hay una producción

Dr. Luis Pineda, IIMAS, 2010

Simulación top-down

• Las movidas:

Id	Estado	Entrada	Símbolo en el stack	Movida
1	q_0	а	Z_0	(q_0, AZ_0)
3	a ₀	а	A	(dr. AA)

- Si vemos una *a* (o una *b*) en la primera parte de la cadena, contamos el símbolo poniendo una variable en el stack; el descuento de la *a* correspondiente se logra con un pop en la segunda parte de la cadena!
- Desde el punto de vista de la generación, toda regla que introduce una *a* la cancela con una *A*:

$$Z_0 \rightarrow aAZ_0 \& A \rightarrow aAA$$

Dr. Luis Pineda, IIMAS, 2010

Simulación top-down

• Las movidas:

Id	Estado	Entrada	Símbolo en el stack	Movida
7	q_0	с	Z_0	(q_1, Z_0)
8	q_0	С	A	(χ_1, A)

- Si se ve una c, se consume y se cambia de estado para analizar la segunda parte de de la cadena!
- Para generar la c requieren reglas que introduzcan la c pero que permitan seguir expandiendo la cadena:

$$Z_0 \rightarrow cZ_0 \& A \rightarrow cA$$

Simulación top-down

• Las movidas:

Id	Estado	Entrada	Símbolo en Stack	Movida
10	q_1	а	A	(q_k, Λ)

- Si se ve una *a* (o una *b*) en la segunda parte de la cadena hay que popearla!
- Para generar una a necesitamos las siguientes reglas:

$$A \rightarrow a$$
 (i.e. $A \rightarrow a\Lambda$)

Dr. Luis Pineda, IIMAS, 2010

Simulación top-down

• Las movidas:

Id	Estado	Entrada	Símbolo en Stack		Movida
12	q_1	Λ	Z_0	1	$q_{\perp}\Lambda)$

- Si vemos Λ en la segunda parte, hay que aceptar (por stack vacío!)
- Para generar Λ necesitamos las siguientes reglas

$$Z_0 \to \Lambda$$
 (i.e. $Z_0 \to \Lambda\Lambda$)

Or. Luis Pineda, IIMAS, 201

Encontrar la gramática de un AP

- Convertir el AP que acepta por estado final en el AP correspondiente que acepta por stack vacío
- Proveer un conjunto de símbolos para las variables de *G* (i.e. Γ) :
 - Poner símbolos en stack en movidas de tipo l
 (i.e. pop el símbolo hasta arriba del stack & push lado derecho de la producción)
 - Consumir el símbolo de entrada & pop con movidas de tipo 2

Dr. Luis Pineda, IIMAS, 2010

Encontrar la gramática de un AP

- Encontrar la producción que corresponde a cada estado y movida del AR. La forma de estas producciones es: $A \rightarrow a\alpha$ donde:
 - -A es el símbolo hasta arriba del stack
 - -a es el símbolo en la cadena de entrada
 - α es la cadena que reemplaza al top del stack en la movida

Dr. Luis Pineda, IIMAS, 2010

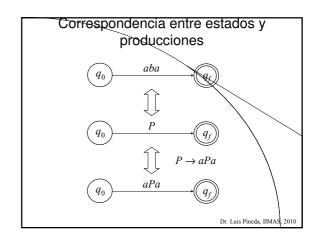
La gramática: versión 1

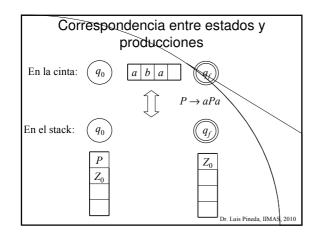
			`		
Id	Edo.	entrada	Stack	Movida	Producciones
1	q_0	а	Z_0	(q_0, AZ_0)	$Z_0 \rightarrow aAZ_0$
2	q_0	b	Z_0	(q_0, BZ_0)	$Z_0 \rightarrow bBZ_0$
3	q_0	а	A	(q_0, AA)	$A \rightarrow aAA$
4	q_0	b	A	(q_0, BA)	$A \rightarrow bBA$
5	q_0	а	В	(q_0, AB)	$B \rightarrow aAB$
6	q_0	b	В	(q_0, BB)	$B \rightarrow bBB$
7	q_0	c	Z_0	(q_1, Z_0)	$Z_0 \rightarrow c Z_0$
8	q_0	c	A	(q_1, A)	$A \rightarrow cA$
9	q_0	c	В	(q_1, B)	$B \rightarrow cB$
10	q_1	а	A	(q_1, Λ)	$A \rightarrow a\Lambda$
11	q_1	b	В	(q_1, Λ)	$B \rightarrow b\Lambda$
12	q_1	Λ	Z_0	(q_1, Λ)	$Z_0 \rightarrow \Lambda$
(Otras co	mbinacio	nes	nada	
					Dr. Luis Pineda, IIMAS,

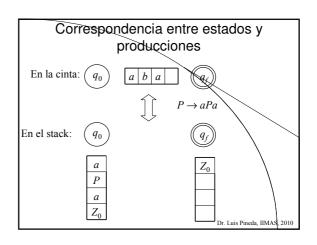
Una derivación más izquierda

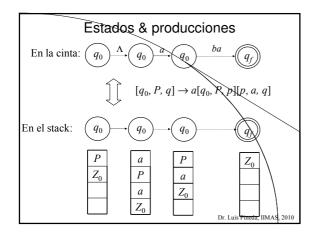
• Derivar *aca*:

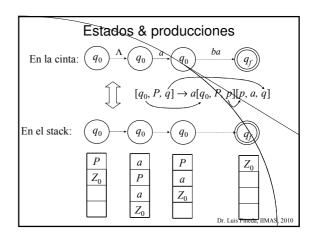
$$Z_0 \Rightarrow aAZ_0$$
$$\Rightarrow acAZ_0$$

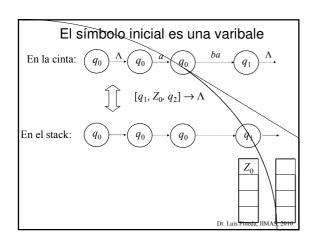

 $(por 1: Z_0 \rightarrow aAZ_0)$ $(por 8: A \rightarrow cA)$


 $\Rightarrow acaZ_0$


 $\Rightarrow aca\Lambda = aca$


 $(\text{por } 10: A \to a\Lambda)$ $(\text{por } 12: Z_0 \to \Lambda)$


Una derivación más izquierda • Pero está gramática sobre genera: $Z_0 \Rightarrow aAZ_0$ (por 1: $Z_0 \Rightarrow aAZ_0$) $\Rightarrow aaZ_0$ (por 10: $A \Rightarrow aA$) - pero aa no está en el lenguaje! - Y esto a pesar que aa no es aceptada por el AP: $(q_0, aa, Z_0) \Rightarrow (q_0, a, AZ_0)$ $\Rightarrow (q_0, A, AAZ_0)$ • A esta gramática algo le falta!



Previniendo la sobregeneración

- Las reglas de producción están ligadas a los estados
 - Regla 1: Transiciónes de q_0 hacia q_0

 - Rule 10: Transiciones de q_1 hacía q_1 Transiciones de q_0 a q_1 : movidas 7, 8 or 9

$$Z_0 \Rightarrow aAZ_0$$
 (por 1)

(eventualmente 7, 8 or 9) ...

 $\Rightarrow aaZ_0$

(por 10)

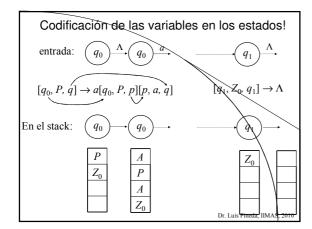
 $\Rightarrow aa\Lambda$

(por 12)

Previniendo la sobregeneración

– Transiciones de q_0 a q_1 : movidas 7, 8 or 9

 $Z_0 \Rightarrow aAZ_0$ (por 1) ...

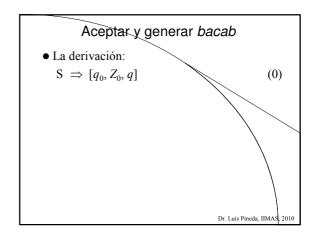

(eventualmente 7, 8 or 9)

 $\Rightarrow aaZ_0$ (por 10)

(por 12) $\Rightarrow aa\Lambda$

- La producción 10 sólo se puede usar después de las producciones 7, 8 o 9
- Para prevenir las sobregeneralización se requiere codificar a los estados como parte de las gramáticas del AP

	Las	s reç	glas	que sobreg	generan!	
Id	estado	Input	Stack	Movida	Producciones	Ì
1	q_0	а	Z_0	(q_0, AZ_0)	$Z_0 \rightarrow aAZ_0$	
2	q_0	b	Z_0	(q_0, BZ_0)	$Z_0 \rightarrow bBZ_0$	
3	q_0	а	A	(q_0, AA)	$A \rightarrow aAA$	
4	q_0	b	A	(q_0, BA)	$A \rightarrow bBA$	
5	q_0	а	В	(q_0, AB)	$B \rightarrow aAB$	
6	q_0	b	В	(q_0, BB)	$B \rightarrow bBB$	\setminus
7	q_0	c	Z_0	(q_1, Z_0)	$Z_0 \rightarrow cZ_0$	
8	q_0	c	A	(q_1, A)	$A \rightarrow cA$	
9	q_0	c	В	(q_1, B)	$B \rightarrow cB$	
10	q_1	а	A	(q_1, Λ)	$A \rightarrow a$	
11	q_1	b	В	(q_1, Λ)	$B \rightarrow b$	
12	q_1	Λ	Z_0	(q_1, Λ)	$Z_0 \rightarrow \Lambda$	
0	tras com	binacio	nes	nada		
					Dr. Luis Pineda, IIMAS,	20


		_	L	a grar	nática
Id	estado	entrada	Stack	movida	producciones
0					$S \rightarrow [q_0, Z_0, q]$
1	q_0	а	Z_0	(q_0, AZ_0)	$[q_0, Z_0, q] \rightarrow a[q_0, A, p][p, Z_0, q]$
2	q_0	b	Z_0	(q_0, BZ_0)	$[q_0, Z_0, q] \rightarrow b[q_0, B, p][p, Z_0, q]$
3	q_0	а	A	(q_0, AA)	$[q_0, A, q] \rightarrow q[q_0, A, p][p, A, q]$
4	q_0	b	A	(q_0, BA)	$[q_0, A, q] \rightarrow b[q_0, B, p][q, A, q]$
5	q_0	а	В	(q_0, AB)	$[q_0, B, q] \rightarrow a[q_0, X, p][p, B, q]$
6	q_0	b	В	(q_0, BB)	$[q_0, B, q] \rightarrow b[q_0, B, p][p, B, q]$
7	q_0	с	Z_0	(q_1, Z_0)	$[q_0, Z_0, q] \rightarrow c[q_1, Z_0, q]$
8	q_0	с	A	(q_1, A)	$[q_0, A, q] \rightarrow c[q_1, A, q]$
9	q_0	с	В	(q_1, B)	$[q_0, B, q] \rightarrow c[q_1, B, q]$
10	q_1	а	A	(q_1, Λ)	$[q_1, A, q_1] \rightarrow a$
11	q_1	b	В	(q_1, Λ)	$[q_1, B, q_1] \rightarrow b$
12	q_1	Λ	Z_0	(q_1, Λ)	$[q_1, Z_0, q_1] \rightarrow \Lambda$
	otras comb	inaciones	3	nada	Dr. Luis Pineda, IIMAS, 2010

Aceptar y generar bacab

• Las movidas:

as movidus.

$$(q_0, bacab, Z_0) \Rightarrow (q_0, acab, BZ_0)$$

 $\Rightarrow (q_0, cab, ABZ_0)$
 $\Rightarrow (q_1, ab, ABZ_0)$
 $\Rightarrow (q_1, b, BZ_0)$
 $\Rightarrow (q_1, \Lambda, Z_0)$
 $\Rightarrow (q_1, \Lambda, \Lambda)$

• La derivación: $S \Rightarrow [q_0, Z_0, q]$ (0) $\Rightarrow b[q_0, B, p][p, Z_0, q]$ (2)

Aceptar y generar bacab

Producción 2: $[q_0, Z_0, q] \rightarrow b[q_0, B, p][p, Z_0, q]$

Aceptar y generar bacab

• La derivación: $S \Rightarrow [q_0, Z_0, q] \qquad (0)$ $\Rightarrow b[q_0, B, p][p, Z_0, q] \qquad (2)$ $\Rightarrow ba[q_0, A, r][r, B, p][p, Z_0, q] \qquad (5)$ Producción 5: $[q_0, B, q] \rightarrow a[q_0, A, p][p, B, q]$

Aceptar y generar bacab

• La derivación:

$$S \Rightarrow [q_0, Z_0, q] \tag{0}$$

$$\Rightarrow b[q_0, B, p][p, Z_0, q] \tag{2}$$

$$\Rightarrow ba[q_0, A, r][r, B, p][p, Z_0, q]$$
 (5)

$$\Rightarrow bac[q_1, A, r][r, B, p][p, Z_0, q] \quad (8)$$

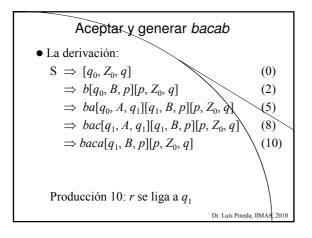
Producción 8: $[q_0, A, q] \rightarrow c[q_1, A, q]$

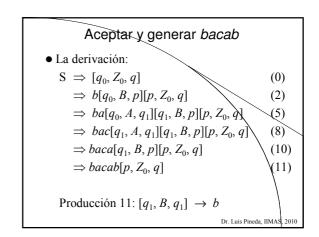
Dr. Luis Pineda, IIMAS, 2010

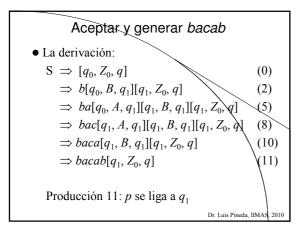
Aceptar y generar bacab

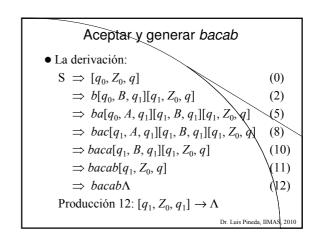
• La derivación:

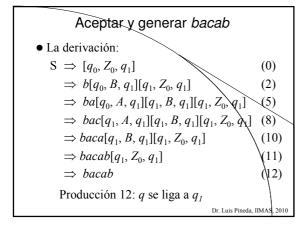
$$S \Rightarrow [q_0, Z_0, q] \tag{0}$$

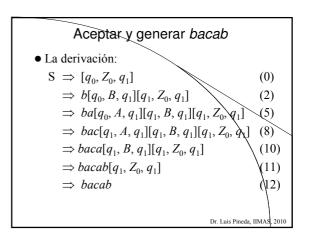

$$\Rightarrow b[q_0, B, p][p, Z_0, q]$$
 (2)

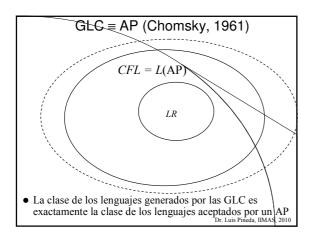

$$\Rightarrow ba[q_0, A, r][r, B, p][p, Z_0, q]$$
 (5)


$$\Rightarrow bac[q_1, A, r][r, B, p][p, Z_0, q] \qquad (8)$$


$$\Rightarrow baca[r, B, p][p, Z_0, q]$$
 (10)


Producción 10: $[q_1, A, q_1] \rightarrow a$




AP & GLC

- ✓ Existe un AP M tal que L(M) = L(G) para toda GLC G
- ✓ Exite una CFG G tal que L(G) = L(M) para todo AP M
- El conjunto de todos los *LLC* generados por las GLC (ambiguas o no ambiguas) es el conjunto de todos los *LLC* aceptados por los AP.

Dr. Luis Pineda, IIMAS, 2010

AP & GLC

- ✓ Existe un AP M tal que L(M) = L(G) para toda GLC G
- ✓ Exite una CFG G tal que $L(G) \neq L(M)$ para todo AP M
- ✓El conjunto de todos los *LLC* generados por las GLC (ambiguas o no ambiguas) es el conjunto de todos los *LLC* aceptados por los AP.

