Tema 16

Ambigüedad

Dr. Luis A. Pineda ISBN: 970-32-2972-7

Ambigüedad

- Si una gramática genera más de una estructura a partir de la misma raiz y con la misma cosecha (más de una estructura para la misma cadena), dicha gramática es ambigua
- Dos tipos de ambigüedad
 - En la gramática
 - En el lenguaje

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Ambigüedad

- Si una gramática es ambigua, posiblemente (no necesariamente) existe una gramática <u>no ambigua</u> que genere el mismo lenguaje
- Un lenguaje es inherentemente ambiguo si todas sus gramáticas son ambiguas
- ¡No existe un algoritmo que decida si una gramática es ambigua!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

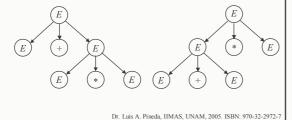
Una gramática ambigua

- Exp es una GLC
 - $G_{exp} = (\{E\}, \{+, *, (,), 1, ..., 9\}, E, P)$ donde $P = \{E \rightarrow E + E \mid E * E \mid (E) \mid 1 \mid ... \mid 9\}$
- Una expresión ambigua:
 - -E+E*E
- Dos derivaciones:
 - $E \Rightarrow E + E \Rightarrow E + E * E$
 - $E \Rightarrow E * E \Rightarrow E + E * E$
- ¡Son iguales!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

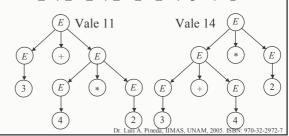
Una gramática ambigua

- La expresión final es la misma:
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$
- Pero las derivaciones son diferentes:
 - $-E \Rightarrow E + E \Rightarrow E + E * E$
 - $-E \Rightarrow E * E \Rightarrow E + E * E$

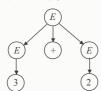

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Una gramática ambigua

- A cada derivación le corresponde una estructura sintáctica:
 - Derivaciones diferentes pueden generar la misma estructura (para la misma cadena)
 - La ambigüedad surge cuando derivaciones diferentes generan estructuras diferentes (para la misma cadena)


Una gramática ambigua

- La expresión final es la misma:
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$
- Sus estructuras sintácticas son diferentes:


Una gramática ambigua

- La diferencia es significativa:
 - $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow ^* 3 + 4 * 2$
 - $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow ^* 3 + 4 * 2$

¿De quién es el "defecto"?

- Derivaciones diferentes pueden tener la misma estructura:
 - $E \Rightarrow E + E \Rightarrow 3 + E \Rightarrow 3 + 2$
 - $E \Rightarrow E + E \Rightarrow E + 2 \Rightarrow 3 + 2$

 La ambigüedad surge cuando hay más de una estructura sintáctica para la misma expresión!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Gramáticas ambiguas

- Una CFG $G = (V, \Sigma, S, P)$ es ambigua si existe cuando menos una cadena w en Σ^* para la cual hay más de una árbol de parseo o estructura sintáctica, cada una de éstas con raiz S y cosecha w
- Si toda cadena en el lenguaje de la gramática tiene <u>cuando más</u> un árbol de parseo, la gramática <u>no es ambigua</u>

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Gramáticas ambiguas

• Si G es una GLC ambigua, tal que L = L(G) & existe una G_i no ambigua tal que $L = L(G_i)$, podemos eliminar la ambigüedad reemplazando a G por G_i (usando a G_i en vez de G)

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

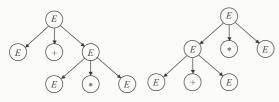
Eliminando la ambigüedad

- En general, no existe un algoritmo para eliminar la ambigüedad
- Hay *LLC* que sólo tienen gramáticas ambiguas!

Eliminando la ambigüedad

- En la práctica y para algunas aplicaciones (e.g. definir *GLC* para lenguajes de programación), es posible eliminar la ambigüedad
- Para esto es necesario estudiar las causas de la ambigüedad (específicas para una gramática ambigua dada) y proporcionar una gramática alternativa no ambigua!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

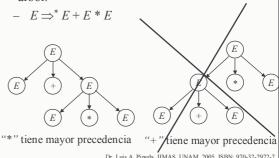

Causas de la ambigüedad

- Consideremos G_{exp} :
- Fuente 1:
 - La precedencia de los operadores no se respeta
- Fuente 2:
 - Una secuencia del mismo operadore se puede agrupar tanto por la izquierda como por la derecha
 - ¡Esto no afecta si el operador es asociativo!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

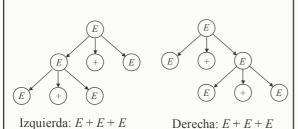
Una gramática ambigua

- La precedencia de operadores no se respeta:
 - $-E \Rightarrow^* E + E * E$
 - $-E \Rightarrow^* E + E * E$



"*" tiene mayor precedencia "+" tiene mayor precedencia

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-


Una gramática ambigua

• Forzar la precedencia: Nos quedamos con sólo un árbol:

Una gramática ambigua

- Agrupaciones arbitrarias de operadores con la misma precedencia:
 - $-E \Rightarrow^* E + E + E$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Una gramática ambigua

- Adoptamos una convención de agrupación (e.g. por la izquierda)

Eliminando la ambigüedad

- Para forzar la precedencia:
 - Usar diferentes tipos de variables para representar expresiones con el mismo grado de atracción
- Binding strength:
 - Factores
 - Término
 - Expresiones

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Eliminando la ambigüedad

- Considerar G_{exp} (adicionando id's):
 - $G_{exp} = (\{E, I\}, \{+, *, (,), a, b, 0, 1\}, E, P)$ donde $P = \{E \rightarrow E + E \mid E * E \mid (E) \mid I,$ $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1\}$
- ¿Cuáles son los factores, los términos y las expresiones en G_{exp} ?

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Factores

- Una expresión que no puede partirse por ningún operador adjacente:
 - Los identificadores:

$$a1+b00*aa10 \Rightarrow (a1+b0)(0*aa10)$$
?

 Expresiones entre paréntesis: Los paréntesis hacen a las expresiones que enciarran unidad coherentes indestructibles! Son el mecanismo sintáctico para crear factores!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Términos

• Una expresión que no puede partirse por el operador +:

✓
$$a1*a*b \Rightarrow (a1*a)*b$$

× $a1+a*b \Rightarrow (a1+a)*b$
 $a*b$ es un término!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

El grado de atracción

- Una cadena bien formada que puede partirse por un + o un * adjacente
- La suma de dos términos

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Forzando la precedencia

• Con las variables de precedencia podemos encontrar una gramática alternativa no ambigua para G_{exp} :

$$\begin{split} G_{exp-I} &= (\{E,\,T,\,F,\,I\},\,\{+,\,*,\,(,\,),\,a,\,b,\,0,\,1\},\,E,\,P) \\ \text{donde } P &= \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1, \\ F &\rightarrow I \mid (E) \\ T \rightarrow F \mid T * F \\ E \rightarrow T \mid E + T\} \end{split}$$

Eliminando la ambigüedad

 Las producciones se diseñana de forma tal que las variables con menor grado de atracción dominen a las variables con mayor grado de atracción (i.e. las expresiones aparecen más arriba que los términos, y estos más arriba que los factores, en el árbol de parseo).

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Generar: a + a * a

• Las producciones:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

$$F \rightarrow I \mid (E)$$

$$T \rightarrow F \mid (T * F)$$

 $E \rightarrow T \mid E + T \}$

• La derivación:

$$E \Rightarrow$$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Generar: a + a * a

• Las producciones:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$
$$F \rightarrow I \mid (E)$$

$$T \to F \mid (T * F)$$

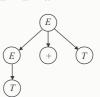
$$E \to T \mid E + T \mid \}$$

• La derivación:

$$E \Rightarrow E + T$$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

Generar: a + a * a


Las producciones:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

$$F \to I \mid (E)$$
$$T \to F \mid (T * F)$$

 $E \rightarrow T \mid E + T \mid$ La derivación:

$$E \Rightarrow E + T$$
$$\Rightarrow T + T$$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-

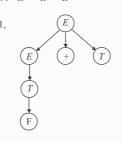
Generar: a + a * a

• Las producciones:

$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

$$F \rightarrow I \mid (E)$$

$$T \to F \mid (T * F)$$


$$E \rightarrow T \mid E + T \}$$

La derivación:

$$E \Longrightarrow E + T$$

$$\Rightarrow T+T$$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-7

Generar: a + a * a

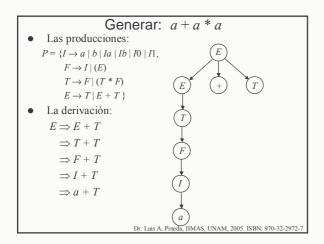
Las producciones:

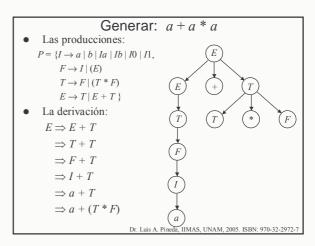
$$P = \{I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

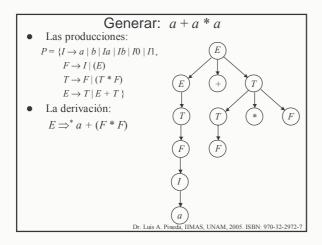
$$F \rightarrow I \mid (E)$$

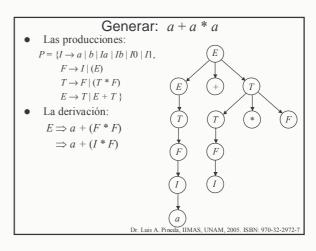
$$T \to F \mid (T * F)$$

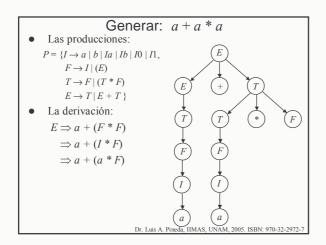
$$E \to T \mid E + T$$

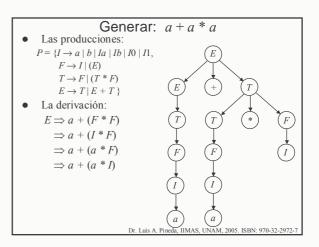

La derivación:

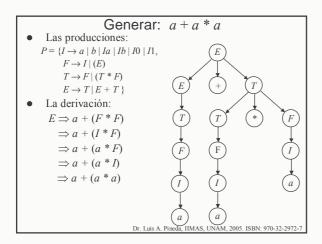

$$E \Longrightarrow E + T$$

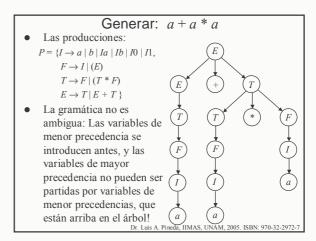

$$\Rightarrow T + T$$

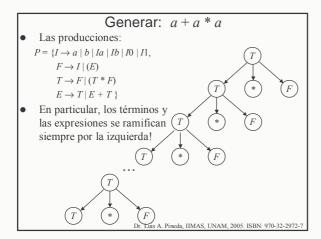

$$\Rightarrow F + T$$
$$\Rightarrow I + T$$

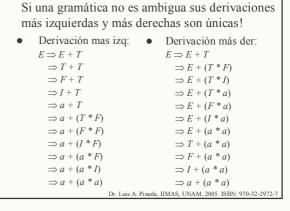












Gramáticas no ambiguas

Ambigüedad y derivaciones más izquieras

- Derivación más izq: $E \Longrightarrow E + T$ $\Rightarrow T + T$ $\Rightarrow F + T$ $\Rightarrow I + T$
 - $\Rightarrow a + T$ $\Rightarrow a + (T * F)$
 - $\Rightarrow a + (F * F)$ $\Rightarrow a + (I * F)$
 - $\Rightarrow a + (a * F)$ $\Rightarrow a + (a * I)$
 - $\Rightarrow a + (a * a)$
- Teorema: Para toda gramática G = (V, T, S, P)& cadenas w en T^* , wtiene dos árboles de parseo distintos si y sólo si tiene dos derivaciones más izquierdas a partir de S
- Prueba: si no fuera el caso una variable más izquierda se podría expandir en más de una

forma! neda, IIMAS, UNAM, 2005. ISBN: 970-32-29

Ambigüedad Inherente

- Un lenguaje L es inherentemente ambiguo si todas sus gramáticas son ambiguas; si existe cuando menos una gramática no ambigua para L, L no es ambiguo.
 - El lenguaje de las expresiones no es ambiguo
 - Las expresiones regulares no son ambiguas

Ambigüedad Inherente

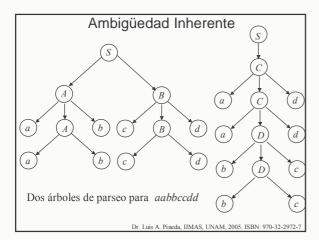
• Ejemplo de un lenguaje inherentemente ambiguo:

$$L = \{a^{n}b^{n}c^{m}d^{m} \mid n \ge 1, m \ge 1\} \cup \{a^{n}b^{m}c^{m}d^{n} \mid n \ge 1, m \ge 1\}$$

• L es un LLC:

$$\begin{array}{lll} S \rightarrow AB \mid C \\ & A \rightarrow aAb \mid ab & C \rightarrow aCd \mid aDd \\ & B \rightarrow cBd \mid cd & D \rightarrow bDc \mid bc \end{array}$$

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972


Ambigüedad Inherente

L es un LLC:

$$S \rightarrow AB \mid C$$

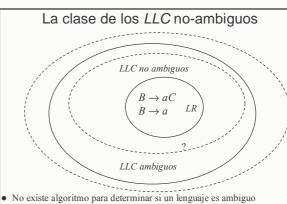
 $A \rightarrow aAb \mid ab$ $C \rightarrow aCd \mid aDd$
 $B \rightarrow cBd \mid cd$ $D \rightarrow bDc \mid bc$

- La gramática es ambigua: hay cadenas con más de una derivación más izquierda:
 - Considere: aabbccdd (m = n = 2)
 - S ⇒ AB ⇒ aAbB ⇒ aabbB ⇒ aabbcBd ⇒ aabbccdd
 - S ⇒ C ⇒ aCd ⇒ aaDdd ⇒ aabDcdd ⇒ aabbccdd

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972

Ambigüedad Inherente

- El lenguaje:
 - $L = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\} \cup$ $\{a^nb^mc^md^n \mid n \ge 1, m \ge 1\}$
- La gramática
 - $S \rightarrow AB \mid C$


$$A \rightarrow aAb \mid ab$$
 $C \rightarrow aCd \mid aDd$
 $B \rightarrow cCd \mid cd$ $D \rightarrow bDc \mid bc$

- ¿Por qué todas las gramáticas para este lenguaje son ambiguas?
- Considere cualquier cadena con m = n
- ¡Siempre habrá dos derivaciones para estas cadenas!

Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972

Ambigüedad Inherente

- ¿Qué cambios podríamos hacer en la gramática?
- El problema: La disjunción (de nuevo!)
 - No hay otro mecanismo para contar el mismo número de a's & b's, y al mismo tiempo, para contar el mismo número de a's & d's
 - Lo mismo para contar las c's & d's &, al mismo tiempo, las b's & c's

- No hay manera de decidir si un lenguaje es inherentemente ambiguo! Dr. Luis A. Pineda, IIMAS, UNAM, 2005. ISBN: 970-32-2972-