National University of Mexico

October 18th 2002 Computational models of thinking Phil Johnson-Laird Princeton University

phil@princeton.edu www.princeton.edu/~psych/PsychSite/~phil.html

GOALS OF THE TALK

- How do humans think and reason?
- Illustrate role of computer models in development of theories.
- Interdisciplinary nature of cognitive science: logic, linguistics, computer science & AI, experimental psychology, and neuroscience.

AN ALTERNATIVE TO TURING TEST

- Turing said: Don't ask can machines think, but ask can you distinguish between machine and human?
- Cognitive science: develop a theory of thinking, test it experimentally, and implement it in a computer model.
- *What* is computed? *How* is it computed? *Where* in the brain is it computed?

AN INFERENCE

- A man: 'Does this train go to Ickenham?'
- Phil knew:
- If the train goes to Uxbridge then it goes to Ickenham. [from Map]
- The train goes to Uxbridge.
- ... The train goes to Ickenham.
- Phil: 'Yes!' [Doors closed.]

ANOTHER INFERENCE

Some engineers knew:

- If the experiment is to continue then the turbines must be rotating fast enough
- The turbines are not rotating fast enough.

They went ahead with the experiment. [Chernobyl disaster]

TWO FORMS OF INFERENCE

- If there's a square then there's a triangle. There's a square. What follows? Therefore, there's a triangle [17 out of 19]
- If there's a square then there's a triangle. There's not a triangle. Therefore, there's not a square [9 out of 19] "Nothing follows." [9 out of 19]

WHY LOGIC CANNOT BE A THEORY OF REASONING

- People draw their own conclusions from premises (with systematic biases).
- They say "nothing follows" from such premises: *It is raining. 3 is a prime.*
- From any set of premises, logic implies infinitely many valid conclusions, e.g.:
- It is raining and 3 is a prime, or it is sunny.

No sane person makes such an inference.

THEORY OF MENTAL LOGIC

- Mind equipped with formal rules of inference (of which we are unaware).
- Example of proof:

If a square then a triangle.

Not a triangle.

- 1. Suppose: a square.
- 2. : a triangle (modus ponens: if p then q; p; : q)
- 3. \therefore a triangle & not a triangle (conjunction)
- 4. : *Not* a square (reductio ad absurdum)

Example from Rips, L.J. (1994) The Psychology of Proof. MIT Press

EFFECTS OF CONTENT

- •If Bill is in Rio then he is not in Sweden. He is in Sweden. What follows? Enhances: ∴ He is not in Rio. (92%)
- If Bill is in Brazil then he is not in Rio. He is in Rio. What follows? Impedes: ∴ He is not in Brazil. (34%)
 Moral: mind does not use formal rules.

Results from J-L & Byrne, R.M.J. (2002) Conditionals: a theory of meaning, pragmatics, and inference, *Psychological Review*, 109, 646-6

THEORY OF MENTAL MODELS

- People envisage possibilities: each mental model represents a possibility.
- Mental models represent only what is true. The principle of 'truth'.
- An inference is **valid** *iff* it holds in all models of the premises.
- Counterexamples show that inference is **invalid**: a possibility in which premises hold but conclusion doesn't. J-L (2001) Mental models and deduction. <u>Trends in Cognitive Science</u>, 5, 434-442.

COMPUTER IMPLEMENTATION

- COMMON LISP (lists, arrays)
- Stage 1: Parse sentence + compositional semantics.

Stage 2: Check relation between sentence and current models: valid or inconsistent.

Stage 3: Else update existing set of models.

• Four levels of expertise, from novice to AI.

J-L & Savary, F. (1999) Illusory inferences: a novel class of erroneous deductions. Cognition, 71, 191-229. Program in public domain.

COMPOSITIONAL SEMANTICS

- Meaning of an expression depends on meaning of its parts and their syntactic interrelations – Frege (1892), Tarski (1936).
- Each syntactic rule has a corresponding semantic rule (Montague, 1974); standard in design of compilers, but the programming language, CHLF-5, was an exception.
- As parser uses a rule to analyze the syntax of a constituent, it calls the corresponding semantic rule to build interpretation.

SENTENTIAL CONNECTIVES						
Connective Interpretation as set of possibilities						
A and B.	а	b				
A or B, not both.	а	¬b	['¬' is negation]			
	¬ a	b				
If A then B.	а	b				
-	¬ a	b				
	¬ a	¬ b				
But, A and B can be sentences containing						
connectives. Expert level of program: AI.						

MENTAL MODELS					
Connective	Mental models				
A and B.	а	b			
A or B, not both.	a	b			
If A then B.	a 	b . ← implicit model			
• Represent what is true, not what is false.					

MENTAL MODELS FOR:						
If A then B or else if not A then B						
 Program at lowest level of expertise: 						
True						
If A then B: a b						
or [not both]						
if not A then $B: \neg a$ b						
Or of the two sets of possibilities:-						
a b						
$\neg a b$						

AN ILLUSORY INFERENCE

If there is an ace in the hand then there is a king or else if there isn't an ace in the hand then there is a king.

There is an ace in the hand.

What follows?

Nearly everyone says: there is a king.

J-L & Savary, F. (1999) Illusory inferences: a novel class of erroneous deductions. Cognition, 71, 191-229. Program in public domain.

AN ANALYSIS						
• If ace then king or else if not ace then king.						
• <u>Mental models</u> <u>AI m</u>		nodels				
ace	king	ace	¬ king			
¬ ace	king	¬ ace	¬ king			
• There is an ace.						
• Mental model		<u>AI m</u>	AI model			
ace	king	ace	¬ king			

A VARIANT

• Only one of the following two assertions is true about cards in a hand:

If ace then king.

If not ace then king.

- The following is definitely true: *There's an ace.*
- What follows?

ANOTHER SORTWWWOF ILLUSION

• Only one of the following assertions is true about a particular hand of cards:

There is a king or an ace, or both. There is a queen or an ace, or both. There is a jack or a ten, or both.

Is it possible that there is an ace in the hand?

• 99% of Princeton students: "Yes".

From Goldvarg, Y., & J-L (2000) Illusions in modal reasoning. <u>Memory & Cognition</u>, 28, 282-294.

AN INFERENCE FOR A JURY

- The victim was stabbed to death in a cinema.
- The suspect was on an express train to New York city at the time of the stabbing.
- What conclusion would you draw?

INDUCTIVE INFERENCES Suspect is innocent Spatial manipulations: Cinema in train I Train through cinema Action at a distance: Accomplice Automatic devices ESP Post-hypnotic suggestion Knife in seat Radio-controlled robot

AN INFERENCE

- More than half the people in the room speak Spanish.
 - More than half the people in the room speak English.

Does it follow that more than half the people in the room speak Spanish and English?

• Even 7 year-olds say: "No".

COUNTEREXAMPLES

• Reasoners use counterexamples, i.e., model or diagram of possibility consistent with premises but not with conclusion:

BRAIN IMAGING

- Functional magnetic resonance imaging (fMRI) reveals active regions of brain.
- Comprehension depends on left-hemisphere.
- Reasoning depends on right-hemisphere (nonlinguistic regions, which may mediate spatial processes).
- Study compared reasoning with, and without, search for counterexamples & mental math. Kroger, J., Cohen, J.D., and J-L (2002) A double dissociation between logic and mathematics. Under submission.

WHAT, HOW, WHERE?

- What is computed in reasoning? conclusion that holds in set of possibilities consistent with premises.
- How? Compositional semantics yields *mental* models of premises. Induction uses general knowledge.
- Where? Comprehension in left hemisphere; significant right hemisphere activity for reasoning.

CONCLUSIONS

- Humans think and reason by manipulating mental models.
- Computer implementation of theories: prevents theorists assuming too much. can yield surprising predictions (illusions).
- Cognitive science is interdisciplinary: takes ideas from theory of computability, logic, compiler design, linguistics, and many other disciplines.