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Chapter 1

Diagrammatic Reasoning

This book is about computational models of reasoning involving diagrams. A diagram is a
form of visual representation, a kind of picture, but unlike sketches, color drawings and

paintings, that emphasize qualitative aspects of the represented objects, didgrams focus

external representation on a piece aper) and reason and solve problems using such

representation.

perience, it is hard and perhaps not possible to provide a
gram in terms of necessary and sufficient conditions; diagrams are
more like & dse members are easily recognized when they are presented to us, and
we introduce ind of representations through a number of examples that can be

regarded intuitively as “diagrams”. The paradigmatic case of diagrammatic reasoning has

' An introductory survey of the issues involved in diagrammatic reasoning is provided in
Chandrasekaran (1997). A more comprehensive view is the collection presented by Glasgow et al.
(1995), and the subsequent conference and workshops Mainly the Diagrams conference, whose
proceedings are published by Springer in the Lecture Notes on Al series, and also several AAAI
and IJCAI workshops.
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been with us since the Pythagoreans, whom already used diagrams to express and prove
geometric and arithmetic theorems. The use of diagrams was also very influential in the
history of mathematics, and the first body of mathematical knowledge was Euclid’s
Elements (Heath, 1956), where the axiomatic method of proof was first introduced and

diagrams were essential to express, produce and understand the proofs.

As a first example of a diagrammatic reasoning process consider the following proof of the

theorem of Pythagoras:

ythagoras

right triangles of the upper part of the figure are rotated (counter
vise respectively) until a reflected L-shape figure appears in the
bottom-right @ . In this latter figure two adjacent squares can be visualized, one
aligned to one right side of the seed right triangle and the other to the other right side of the
seed. As the top-right and bottom-right figures have the same “tiles” and do not overlap,

they also have the same area, so the theorem of Pythagoras holds.

Once the theorem has been “seen”, the intuition that this is indeed a very general truth in

geometry is very strong, and the diagrammatic sequence constitutes a diagrammatic proof.
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The sequence relies on a particular seed right-triangle, with its particular size and
orientation, and the place in which it is located in the plane; however, the intuition that the
sequence is independent of this contingent choice is very strong, and that an equivalent
sequence would have been produced if the seed with its size, orientation and position had
been different. Although the diagrammatic argument is “pivoted” on a concrete object with

contingent properties, the proof is so solid that its validity can hardly be denied.

This proof illustrates several aspects of diagrammatic reasoning, and next we focus on five

of them: the first is the actual constructive process that generates the Here the
question is what kind of generative scheme is required to prog i matic

sequence; how can the problem space be defined ang i hat kind of

resources, like a pencil and a piece of paper, and it shou gsible to make explicit the

underlying constructive process.

The second is what are the roles of] s and visualizations in the proof.

Although the seed is a right trian emerged in the two crucial states of the

»ottom diagram is very hard, and yet it is the crucial

ed to realize the theorem and its proof. What kind of
addressed'@yfa diagrammatic reasoning.

The third aspeet is the machinery that is needed to represent the diagrammatic knowledge.
How can the basic triangles and the emerging squares can be represented and referred to?
What is the nature of this reference: it is a concrete reference to the overt symbols
appearing in the diagram or it is rather a generic reference to the whole class of equivalent

diagrams constituting the proof. We also need to discuss what is the relation between the

concrete nature of diagrams as external representations and their interpretation as a general
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or abstract class representing the concept expressed by the theorem. All these questions
have to do with the properties of visual representations with their underlying

interpretations, which have to be addressed in a theory of diagrammatic reasoning as well.

A fourth question is related to the concept of equality involved in the assertion of the

theorem. How is it possible to assert that two configurations generated in a process of

change have the same property. Are the triangles and squares in the different states of the

themselves but‘about their interpretation in other knowledge domains; mapping the domain
concepts into the geometry facilitates greatly the reasoning process, and this is one reason
why diagrams are so useful and effective representation and problem-solving devices. A
theory of diagrammatic reasoning should also show how these kinds of representational

mappings are established and used in reasoning and problem solving.
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The Theorem of Pythagoras is a very interesting and challenging case study in
diagrammatic reasoning; despite its simplicity and fundamental role in mathematics, and
the fact that it is the main achievement in the second book of Euclid’s geometry as
proposition 47 (Heath, 1956), there seems to be no proof of it derived from Hilbert’s
axioms of geometry by a strict formal derivation through valid inference steps, within his
program for the formalization of mathematics. Also, despite the effort in theorem proving

in Al since the origins of this discipline in the 50s of the last century, there is not a theorem

proving system capable to produce a fully automatic proof of the theorem o agoras to

the present date. The theorem is not even mentioned in the literature rela e first Al

proof of this theorem. This brings estion of why diagrams are needed and what
it the job that they do. Thi ain concerns discussed in the present book.

As a second atic reasoning consider an arithmetic theorem stating that
the sun s is equal to the square of n; thisis, 1 +3+ ... +2n—1 = n”. This
theorem [

a diagrapdmatic representation, as shown in Figure 1.2. This theorem is also

due to the Pythagéreans who noticed that an odd number could be represented by an

inverted L-shap€, which they designed as a “gnomon’”.

2 «__. But the ancient commentaries on the passage make the matter clearer still. Philoponus says:

‘As a proof... the Pythagorean refer to what happens with the addition of numbers; for when the
odd numbers are successively added to a square number they keep it square and equilateral... Odd
numbers are accordingly called gnomons because, when added to what are already squares, they

preserve the square form... Alexander has excellently said in explanation that the phrase ‘when
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Figure 1.2 Theorem of the sum of the odds.

As can be seen in the figure, a square of side n + 1, conformed by (n + ots, can be
construed as the union of a square of side n and a gnomon of side n z ith )—1

dots, for an arbitrary parameter n. So, the union of n congecutive dIM’s a square

of area n’.

The particular diagram in Figure 1.2 stands for a conc ¢ of this theorem, and
asserts that the union of the fourth square in th s, Wi ifth gnomon results in the
fifth square. However, if a person sees an_in§tang ¢ theorem, like Figure 1.2, and
constructs the corresponding concept i d, and knows how to apply it, then
the diagram is a representation of as a whole. In the same way that a single
diagrammatic sequence in the f the Theorem of Pythagoras stands for the general
case, any particular instancg stands for the general case too. Here again, the

es that one aspect of diagrammatic reasoning is that interpreting a
atic sequence is also constructing a concept in the mind of the
interpreter. In addition, the concept is produced in a way that its truth can hardly be denied.
So, one main goal of a diagrammatic reasoning theory is to model the synthesis of such

concepts. Of course, we do not know what is the representational format of the human

gnomons are placed round’ means making a figure with the odd numbers... for it is practice with

the Pythagoreans to represent things in figure’ ” (Heath, 1956, p. 359).
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mind, and cannot represent the concepts expressed by diagrams in such unknown format,
but we follow the AI working hypothesis that concepts can be represented in computers,
and as the objects of computation are mathematical functions (i.e., Boolos and Jeffrey,

1989), we represent concepts through mathematical functions.

For instance, the interpretation of the diagram in Figure 1.2 is an inductive concept
represented by the recursive geometric function s¢(0) =0 and sq(n + 1) = sq(n) + 2(n + 1)
n+1)—1

— 1 for n > 0, where the term sq(n) corresponds to the square n and the te
corresponds to the gnomon n + 1; so, for n =0, sq(1) = 1; for n =1, 59(2) . The base
of the induction rests on the observation that a gnomon of size 1 is alSotalisg size 1

size 0 and the

(for the parameter n = 1), which is formed through the quare of

gnomon of side (and size) 1.

Hence one challenge in diagrammatic reasoning is to pr@ ind of functions out of

concept precisely, and that the functio . Phe intuition is that these functions and
in simply and straightforwardly, as least
for people, but the computatio cess sHould be also simple. If the theorems are not
known beforehand, diagr g is also a creative and discovery process.

The recurg i epresents a geometric concept and the corresponding

s from a mapping under which geometric squares represent square

is also an arithmetic theorem, which can be proved by mathematical
induction. So, there are two radically different proofs of this theorem: the diagrammatic
one, that has a synthetic character, and the arithmetic one, that can be derived from

arithmetic axioms and has an analytical character.
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However, the theorem of Pythagoras and the theorem of the sum of the gnomons are very
similar in many respects: both belong to the domain of the geometry and assert a relation
between the areas, and the underlying processes of reasoning about the conservation of
areas in different stages of a diagrammatic sequence or a diagrammatic interpretation state,
the essential property stated by the theorems, seems to be quite alike; also, in both cases,
geometric squares are interpreted as squares numbers, and the union of areas is interpreted

as the arithmetic sum; all of this suggests that a theory of diagrammatic reasoning should be

able to provide an account of both of these theorems within the sa onceptual

framework.

in addition, its top-right quadrant underlies the sai
decomposition pattern can performed a finite number of
it can also carried out at infinitum, and the rgCu attern can be captured through a

geometric induction on the embedded squ

duction decomposition of a square

As in th ple, this diagram represents an arithmetic theorem, which in this

(1) Y12 =1

The truth of this theorem can be visualized by decomposing the area of the base square
(normalized to a square of size 1) as the fraction corresponding to the lower half and the
two upper quarters: 1/2' + 1/2* + 1/2*> = 1, and observing that the last quarter can be
decomposed similarly as (1/2' + 1/2* + 1/2%) x 1/2%, which is 1/2° + 1/2* + 1/2°, so the basic
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sum is also decomposed as 1/2' + 1/2% + 1/2° + 1/2* + 1/2* = 1.This process can be carried
out at infinitum and the decomposition represents the infinite series 1/2' + 1/2*+...+ 1/2" =

1, so the theorem holds.

According to the discussion above, the diagram expresses a concept, which can also be
represented by a mathematical function. The structure of this theorem is similar to the
theorem of the sum of the odds, and as a first approximation it can be captured by an

> 1, which

analogous the recursive function s(1) = 0 and s(n + 1) = s(n) + 1/2" for
converges to 1 in the infinite. However, does this function really capture in (1) or

the infinite diagrammatic induction in Figure 1.3? This function can } ute the

oc
series, which approximates very quickly to the value of Aybut it do gém to account
for the fact that the computation only converges to this V he’ parameter n is
infinite. So, the present function does not capture the coxy and expresses less than

the diagram and also than the theorem in (1). A theory matic reasoning should

provide the function representing the theore ly, and the construction method

p
IT, ermore, the basic mechanisms

nd the

should guarantee that the function is ind

through which the theorem of Pythago orem of the sum of the odds should

also be relevant to this latter theor

Another aspect of diagraz g is illustrated in Figure 1.4: the same diagram

under a different but lar decomposition expresses a different concept, and
eorem. Consider that the original square is decomposed
a L-shape, formed by the quadrants in the lower row and the top-

left quadra -right quadrant directly.

Figure 1.4 An induction on the upper right corner

This diagram represents the theorem:

) ¥ 327 =1
n=l1
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In this case, the area of the basic square is 3/2% + 1/2* = 1. The first term corresponds to the
two lower and the upper left quadrants, and the second to upper right quadrant. As before,
the squares in this latter quadrant is decomposed by the recurrent pattern, as (3/2* + 1/2%) x
1/22, which is 3/2% + 1/24, so the basic sum is also decomposed as 322+ 32+ 124 = 1.
The last term can undergo the same decomposition at infinitum and the diagram represents

the theorem 3/2% +3/2* + ... + 32" =1.

As before, the geometric pattern can be represented through a recursive functi

first approximation is s(0) = 0 and s(n + 1) = s(n) + 3/2*" for n > 1, whér term s(n)

15/16, s(4) = 63/64, etc. The function captures the accumulative but as before it

, d the formula in (2);
ry degomposition step, and also

the missing property is again the conservation of area in &

represents the n-th L-shape and the term 3/2*" represents the L

quadrant in the same level. So, for n = 1, s(2) = 0 + 3/ 3/4 + 3/2% =

misses an important aspect of the theorem expressed by

the fact that the series converges in the infinit e study of the underlying structure

the thg f the odds, and theorems involving an infinite recurrent patters, as
theorems amnik (1999) also presents a theory to model the reasoning process
of theorems offthe’second kind (the sum of the odds), and Foo (1999) discusses theorem
(1). However,”although each example illustrates a different aspect of diagrammatic
reasoning, there are several aspects the reasoning process that are common in all three
examples; in particular, all five questions that were posed for the case of the theorem of
Pythagoras are also relevant in the other cases, and the three examples involving an infinite

diagrammatic recurrent pattern are very similar. So, a theory of diagrammatic reasoning
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should be able to explain all three cases and their variants with the same underlying

machinery.

Diagrams are also representational devices to support logical thinking supported through
diagrams, like Euler Circles or Venn Diagrams. This kind of reasoning has been the subject

of a considerable amount of work (e.g. Shin, 1995). In this latter case the inclusion,

intersection and disjointness of diagrammatic objects represent the corresponding set

re 1.5 Diagrammatic Syllogistic Reasoning

Unlike the previous examples, Figure 1.5 includes a number of textual labels to mark the
intended interpretation. This is also a common feature of diagrams. The texts are used here
to emphasize the identity of the diagrammatic symbols, but they would not be required if
the corresponding circles in the three figures were considered the same. In the three
previous examples, labels were not used because the relevant identity relations are
suggested by the diagrammatic context, but we could also add them, as it is often done.

However, the underlying question in relation to the labels in a theory of diagrammatic

Diagrams and Knowledge Representation Luis A. Pineda, IMAS, UNAM, México, 2011.



Chapter 1: Diagrammatic Reasoning 12

reasoning is how the identity of symbols is established in a diagrammatic sequence or in
different diagrammatic interpretation states, and how such identity relation is used in the
reasoning process. When this is clear the labels can be used to highlight the identity
relations, and to name properties and relations, although they are somehow subsidiary

facilities for the communication process.

In all previous examples a diagram is interpreted as an arithmetic or logical theorem, and

the reasoning involved has a formal character in the sense that the the follows

necessarily from the premises, and diagrams involve “valid reasoning” in logical or

properties (or lack of properties) are il tance, by the kind of diagrams used

rices for non-verbal reasoning (Raven &

thinking”, as illustrated 1

an
o[/

Figure 1.6 Visual Thinking

The solution of this kind of problems seem to depend on the ability of constructing a spatial

abstraction from the example diagrams, that needs to be satisfied by the solution, which is
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also expressed as a diagram directly. In Figure 1.6, the top row is constituted by a sequence
of three up-right squares divided in their quadrants and there is a dot in a quadrant in each
square, which shifts in a clock-wise direction from quadrant to quadrant along the
sequence. The same pattern is presented in the second row, but with circles instead of
squares, and with circle slides instead of quadrants, and the lower row repeats the pattern
on the upper row but with the squares tilted, but with its last figure missing, and the

solution of the problem consists on synthesizing this last figure. The first and second

columns conform also to a pattern, and the third one should also conform tofstich pattern

too, when it is completed with the synthesis of the bottom figure, which is e solution

of the problem. In addition the solutions for rows and colu be same,

constraining further the properties of the solution.

One way to think about this problem is by “reading” thefows a mns as descriptions,

abstracting over shapes (i.e., squares and circles) and o i.e., upright and tilted)
and the position of the dot (i.e., static, shifted). £he part of solving the problem seems

to be to induce such descriptions from S ation, as the construction or

verification of the solution seems to direct rence once such descriptions are in

ic reasoning should also explain how this

A theory of diagrammatic reasoning should also explain other kinds of reasoning schemes
supported by diagrams. Tables or tabular representations, for instance, are very effective
devices to structure and present relational information, and relational databases are tabular
structures that are used very efficiently for storing and accessing larges amounts of
information, and can be thought of as diagrammatic representations too. Visual languages

in which a vocabulary of symbols with a set of geometric properties and relations are given
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conventional interpretations for expressing knowledge in a direct and efficient way are also
diagrammatic forms of representations, and should be studied within the same conceptual

and methodological framework.

This brief summary illustrates a range of phenomena and problems posed by the use of
diagrams in inference and problem solving. The present text is an attempt to gain a deeper

understanding of these problems from the Al perspective, but taken into account relevant

insights from diverse related disciplines, like computer science, philosop sychology

and even some aspects about the representation of images that from the
neurosciences. The present reflection is presented from the perspecti co ational

theory of diagrammatic reasoning that has been devel®y years, and a

present theory the computational
with their interpretations, and
diagrammatic inference s
One strong uch work in diagrammatic reasoning is that the process
which is central to the task, and that it is a case of “visual
thinking™. suggests that diagrams, the external representations, are represented
“internally” aS@imdges in the mind, which are the objects of thought directly. However,
images are only accessible through introspection, and the very idea that there are “images”
was strongly challenged early in the XX Century in analytical philosophy and positivism,
in psychological behaviorism, and later on in the original presentation of Al, which had a
strong “mental” and “symbolic” orientation (Turing, 1950); in these quarters it was held
that knowledge has to be expressed through descriptions of a rather linguistic character, and

this became a central tenet in knowledge representation in AI. However, the appearance of
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cognitive psychology and the discovery of imagistic phenomena, like mental rotation
(Shepard and Metzler, 1971; Shepard and Cooper, 1982) and Kosslyn’s imagery program
(1983), permitted to articulate a new notion of image that can be the subject of empirical
research, and has been extensively investigated in cognitive psychology, neuropsychology
and the neurosciences (Kosslyn, 2006). The opposition between the descriptionalists and
the imagery views gave rise to the so-called “imagery debate” (Tye, 1991). The nature of
this debate and its implications for diagrammatic reasoning is the subject of Chapter 2.

There it is argued that there is indeed a place for images and visualfthinking in

diagrammatic reasoning and knowledge representation more generally.

belong to the plane of expression at the so-called symbol level, and that the knowledge that

is expressed by the two kind of symbolic structures has an equal status at the knowledge

level, which corresponds to the interpretation of symbolic structures in people’s heads.

The relation between the two representational formats is further discussed in Chapter 4,

where the issue of the identity of diagrammatic symbols and their depictions in
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diagrammatic sequences is analyzed. It is first argued that diagrammatic symbols that bear
the same depiction can have different geometrical properties in different diagrammatic
states, and that diagrams need to be thought of as intensional representation, as opposed to
extensional systems that obey Leibniz Law. Intensionality in diagrams comes from the
separation of the issues related to the objects identity from the issues related to their
geometric properties, and also from the knowledge of the space that is represented through

geometric algorithms. In this setting a diagrammatic sequence is thought of as a single

diagram at the intensional level, where each diagram in the sequence co onds to a

different extensional state. The distinction between the intensional and e jonal levels

satisfaction in computer graphics. It is also shown dition and deletion of

diagrammatic symbols in diagrammatic sequences pre new diagrams, and a

plane were novel an interesting relations occur, like the
riangles and squares in the diagrammatic sequence expressing the
Pythagorean ioh. This chapter is concluded with the notion of “image” that emerges
from the discussion: a dual object that, on the one hand, is imprinted in a buffer, which
contains extensional information, but on the other, is interpreted in relation to an
intensional perspective, which is represented through intensional descriptions. In this sense,
the image is an intensional object right at the interface between perception and thought.

This notion of image offers a perspective to the imagery debate, and also to the opposition
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between propositions and direct representations in Al, and also permits to integrate much

work developed within diagrammatic reasoning in Al in a coherent way.

The discussion in chapters 2 to 4 provides a summary of issues that arise in diagrammatic
reasoning, form different disciplines and methodological frameworks, and provides a wider
understanding of the underlying issues that arise in diagrammatic reasoning. On the basis of

these considerations, a model for diagrammatic reasoning is introduced in Chapter 5. In this

representation relation is designated as a “representations sfates the interpretation

of diagrammatic symbols, properties and relations_i atend€d interpretation domain.

representation \geldtion. An inverse interpretation function that assesses whether a
proposition is expressed by the diagram is also defined, and the system supports direct
inference through this latter device. The DRS model is related to the notion of image
developed in Chapter 4, and when these are taking together, it is possible to identify three
main settings of diagrammatic reasoning systems in Al, which are named systems Type-1,
Type-2 and Type-3, depending on whether the diagram is represented computationally

through descriptions, though a memory buffer or both respectively, and some representative
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systems of each kind are briefly discussed. The model is illustrated with a diagrammatic
system called Graflog for dynamic definition of visual languages (Pineda, 1989), which is a

system of Type-1.

Systems of Type-2 are illustrated in Chapter 6 with the system F' for the diagrammatic
representation of mathematical functions and abstractions with finite domain and range

(Pineda, 2011) where abstractions defined as sets of functions sharing a set of values for

some of their arguments, and the representation captures such internal rela In this

system the diagram D is a table in which horizontal and vertical dimensio esponding
to the function’s and abstraction’s domain and range respectivelyf# e ation [/

on relation @

arguments in functions and abstractions, and the opers; set Q are functional

abstraction, that produce composite abstractions, 2 edfiction, that decompose

s started by Reiter (1980). The representation can also be viewed as
an associative ory that is accessed or indexed by its own content (e.g., Kosslyn, 2006,
pp. 46), where’the abstraction operation corresponds to memory register and reduction to
memory recall. The system is also analogous the A-calculus for the representation of
functions, where abstractions in the system F correspond to A-expressions, and abstraction
and reduction correspond to A-abstraction and f-reduction. The discussion suggests that

there is a trade-off between the expressivity of the representational system and the extent to

which abstraction and reduction are reversible; also the entropy of an abstraction is related
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to the computational cost of inference, as abstractions with low entropy capture the internal
relations between the objects included in the abstraction, and the cost of inference is
reduced accordingly. The system also suggests that the use of good abstractions facilitates
inference and problem solving, in opposition to the so-called knowledge representation
trade-off, which states that abstract thinking involves highly expressible representational

language, but the cost of inference goes in hand with the expressivity of the representation

(Levesque and Brachman, 1985), and there is a compromise between expressivity and

osition of the
trade off between expressiveness and reversibility, wher€y i is preserved,
abstraction and reduction are reversible, but there is ns/in the expression of

incomplete information and the interaction between t § in abstraction. The A-

pretation / of the diagram D in relation to an interpretation
is illustrated with the system Graflog too, in which knowledge
could be © ough language in addition to the diagram. In this setting, direct
inference is e ded within logical deduction, and the system supported a form of direct
inference in & simple and systematic way. The model is illustrated further with a
heterogeneous reasoning problem presented within the context of the Hyperproof program
(Barwise and Etchemendy, 1994). Unlike the basic model where the representation relation
@ is fully specified, and direct inference is supported directly, this latter kind of problems
underspecified @ and both linguistic and diagrammatic knowledge can be under specified

too, and this is a case of reasoning with incomplete information and constraints too. Hence,

Diagrams and Knowledge Representation Luis A. Pineda, IMAS, UNAM, México, 2011.



Chapter 1: Diagrammatic Reasoning 20

the solution focuses in the determination of the representation relation using diagrammatic
and linguistic knowledge, as once this relation is available the original problem is solved
through direct inference. This is achieved by model construction through abstraction
operations using the system F. The use of both descriptions and a memory buffer into an
integrated reasoning systems is already a case of a system Type-3, which incorporates the
properties of systems Type-1 and Type-2. The present case study suggests the architecture

of a system of Type-3 that could solve heterogeneous reasoning problems in a fully

between memory inference and logical inference, and provides additional

trade-off between expressiveness and the reversibility of abstraction

In Chapter 8 the question of whether diagrammatic representati ess unrestricted

abstractions like theorems and proofs is explored f this the concept of

in the interprefation function and the representation relation too. The analysis of the
representational keys used in Graflog, Hyperproof and the system F shows that these
systems are indeed LARS. The chapter is concluded with a discussion on the conditions
that have to be met for a DRS to be a UARS. This is the case if the diagram is interpreted as
a generic geometric object, which is further interpreted as a generic description in the

application domain, where the relation between both generic objects is stated as a
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representational keys. If all representational keys of a DRS meet such condition the system

is a UARS.

The machinery to express generic diagrammatic descriptions is introduced in Chapter 9. In
this chapter a geometric representational language for the representation of basic and
emergent diagrammatic objects, as well as its interpreter program, is presented (Pineda,

2007). The language is defined in terms of a signature of geometric symbols of different

types, with their associated constructor and selector operators, and diagra ic objects

are represented through geometric abstract data types. In this language dicate and
function symbols have an associated geometric algorithm that g ly the

adiagrammatic

right triangle i¥’true if the squares conform to the Pythagorean relation and false otherwise;

this is, the function representing the concept of the theorem computes whether an arbitrary
configuration is included within its extension, and this corresponds to the knowledge that
one has when he or she knows the theorem. Finally, the geometric representational
language stands at a very good compromise between expressiveness and reversibility. The

language is expressed through the A-calculus, and abstraction and reduction are reversible,
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so logical inference is sound, but the geometric algorithms associated to geometric
predicates and function symbols do take into account the spatial interactions between
diagrammatic objects, with the subsequent entropy reduction, and the system has high
expressiveness, good computational properties, and is still information preserving. In the
same way that memory and logical inference interact in the solution of complex problems,
with the corresponding entropy reduction, as illustrated in Chapters 6 and 7, the present
geometric language shows how logical and visual inference interact too, which the

additional entropy reduction provided by the knowledge of the space which isf@mbedded in

perception.

primal sketch,/or an alternative representation at this level of processing. Rather, the

discussion is centered on a number of aspects that have to be taken into account in the
selection of the relevant extensional information and the construction of the relevant
intensional view. In particular it is shown that an intensional description corresponding to
the image can be concrete, but can be generic or abstract too, and that the decision of which

view is produced does not depend on the external diagram, but on the perspective that is
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taken by the interpreter the extensional versus intensional dimension. In this chapter is also
discussed whether there is a role of the memory buffer in the production of descriptions, in
particular of emergent objects, and whether the realization of the corresponding objects
involves imagery operations. It is argued that this is indeed the case. The chapter is
concluded with an analysis of dispute between the British Empiricist Locke and Berkley
about whether an image can express a geometric abstraction, as held by Locke, or whether

it needs to have a concrete interpretation (Tye, 1991). It is shown that according the present

theory, Locke was right.

In Chapter 11 the diagrammatic generative machinery involved ion of

developed in context of the Graflog (Pineda, 1993) a
Pitagoras system (Pineda, 2007) is discussed. This s
notion of action schemes (Piaget, 1970), whi , riorized patterns of perceptual

behavior that play an important role in play yMation, and the generative rules in

the scheme. The application of an action scheme also involves an
inference ¥ e focus and actee, which permits to modeled how the attention is
shifted during agrammatic sequence and the problem solving process. Action schemes
are generic and’their definition is independent of the positions, size and orientations of the
objects involved in the scheme. In addition, although the problem space may be quite
large, the focus and actee selection process provides good heuristics to constraint the
search. The machinery is illustrated with the diagrammatic sequence in Figure 1.1, which
can be produced with three action schemes, in addition to a basic scheme that introduces

the triangle seed, upon which the whole sequence is produced. However, the generative
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machinery does not produce the emerging squares in the sequence, as these are the product
of reinterpretations, and solution of the problem resides in a further problem space that
interacts but is parallel to the space where the overt sequence is produced. This plane is also

illustrated with the squares that emerge in the theorem of Pythagoras.

The generation of a diagrammatic sequence proceeds in tandem with the synthesis of a

representation of the concept expressed by the diagram. If the diagram expresses a

the first is purely spatial and geometric and functions i
theorems proper, and the second is a conceptual plan he interpretation of the
diagram is expressed. The former plane is repregent: ith the geometric language, and the
latter with a declarative language, which 4 nal language. The synthesis of

these functions in both planes is refe 0 as di mmatic derivation and the study of

these derivations is the subject The capacity to establish judgments of
equality presupposes that there i a genefal concept of equality, form which particular
equalities can be derived" to the two semantic planes in diagrammatic
derivations are such generalized eguality concepts, which in the present theory are referred
to as consg nCip ese are also inspired in part in the corresponding notions
his mental development theory, where a conservation principle is
to assess whether a property of an abject is preserved in a process
of change. Consés¥ation principles are themselves functions, which are also expresses in
the system’s fepresentational languages, and can be applied and evaluated by the
corresponding interpreter program. Conservation principles can be global or structured, and
in this latter case their application is relative to an argument that remains constant in the
change process, which is referred to as the focus. As changes are produced by action
schemes, conservation principles and action schemes are related through the focus, which is

the same object. In a valid diagrammatic derivation the action scheme must preserve the
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property associated to the corresponding conservation principle, and this restriction
guarantees that the synthesized theorems and proofs are also valid. The process is also
illustrated with the theorem of Pythagoras where the product in the first plane is a
geometric Boolean function whose arguments are a right triangle and three squares which is
true if these four objects stand in the Pythagorean relation and false otherwise, while the
product in the second plane is a Boolean arithmetic function of three numerical arguments,

which is true if the square of the first is equal to the sum of the squares of the last two. This

latter condition is meet if the three squares numbers constitute a Pythagor riplet, and

this is the case if these numbers represent the three geometric squares and in the
Pythagorean relation respectively.
In Chapter 13 the machinery of conservation principles and is extended to

the inductive case, and the theorems and proofs in Fig and 1.4 are studied in

the inductive step are produce i ifference in the diagram, but these two basic
functions need to be appli

independent of the spac

how the ] be applied to logical diagrams, and also to the visual analogies of
Raven’s test. ew of images as intensional objects with a dual aspect as descriptions
and as the conttnt of a memory buffer and imagery is reviewed on the light of the overall
theory and the main case studies. This notion is the basis for the taxonomy of diagrammatic
system in Al, and systems Type-1, Type-2 and Type-3 are reviewed in the overall
perspective, and the way in which direct inference in the three settings is also discussed. In

particular, is discussed the requirements for the full automation of systems of Type-3.
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The discussion is the turned to the more general questions about the expressive power of
diagrams and graphical representation more generally, and why diagrams are so ubiquitous
and effective in reasoning and problem solving, and also in learning, design and creativity.
This is related to the trade-off between expressivity and reversibility of abstraction and
reduction. Diagrams can express incomplete information and constraints very effectively,
and also the interactions between the objects within abstractions. This is reflected in both

memory inference and perceptual inference, which are involved in diagrammatic reasoning

in addition to logical inference, which has a deductive character. Memo ference is

illustrated with the system F where abstractions capture the interacti tween the

functions that share the same values for subset of their arguments

solving.
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