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This book is about computational models of reasoning involving diagrams. A diagram is a 

form of visual representation, a kind of picture, but unlike sketches, color drawings and 

paintings, that emphasize qualitative aspects of the represented objects, diagrams focus 

more on structural and schematic aspects of objects and spatial states of affairs, and are 

used mostly for analysis and problem solving. Diagrams are very ubiquitous forms of 

representation and are present in mathematics, logic, physics, engineering, architecture, 

urban planning, and many other scientific disciplines and human practices. This topic can 

be studied from a philosophical, psychological, design and computational perspectives, 

among others1. In the present text, the subject is addressed from a computational 

perspective, and the focus is on computational models of diagrammatic reasoning 

implemented as Artificial Intelligence (AI) programs: programs that use diagrams in 

reasoning and problem solving task. On of the main motivation of the present text is to 

understand better the sense in which a computer program can represent a diagram (i.e. the 

external representation on a piece of paper) and reason and solve problems using such 

representation.  

 

As many objects of common experience, it is hard and perhaps not possible to provide a 

definition of what is a diagram in terms of necessary and sufficient conditions; diagrams are 

more like a family whose members are easily recognized when they are presented to us, and 

we introduce this kind of representations through a number of examples that can be 

regarded intuitively as “diagrams”. The paradigmatic case of diagrammatic reasoning has 
                                                           
1 An introductory survey of the issues involved in diagrammatic reasoning is provided in 

Chandrasekaran (1997). A more comprehensive view is the collection presented by Glasgow et al. 

(1995), and the subsequent conference and workshops Mainly the Diagrams conference, whose 

proceedings are published by Springer in the Lecture Notes on AI series, and also several AAAI 

and IJCAI workshops. 
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been with us since the Pythagoreans, whom already used diagrams to express and prove 

geometric and arithmetic theorems. The use of diagrams was also very influential in the 

history of mathematics, and the first body of mathematical knowledge was Euclid’s 

Elements (Heath, 1956), where the axiomatic method of proof was first introduced and 

diagrams were essential to express, produce and understand the proofs.  

 

As a first example of a diagrammatic reasoning process consider the following proof of the 

theorem of Pythagoras: 

 

 

 

 

 

 

 

 

Figure 1.1 The Theorem of Pythagoras 
 

This proof, presented by Bronowsky (1973), is based on an arbitrary right triangle, which is 

duplicated, rotated and translated three times, until a square on the hypotenuse of the right 

triangle emerges in the top-right diagram. In this figure there is also an emerging inner 

square whose side is the difference between the right sides of original triangle seed. In the 

bottom row, the left and right triangles of the upper part of the figure are rotated (counter 

clock-wise and clock-wise respectively) until a reflected L-shape figure appears in the 

bottom-right diagram. In this latter figure two adjacent squares can be visualized, one 

aligned to one right side of the seed right triangle and the other to the other right side of the 

seed. As the top-right and bottom-right figures have the same “tiles” and do not overlap, 

they also have the same area, so the theorem of Pythagoras holds. 

 

Once the theorem has been “seen”, the intuition that this is indeed a very general truth in 

geometry is very strong, and the diagrammatic sequence constitutes a diagrammatic proof. 
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The sequence relies on a particular seed right-triangle, with its particular size and 

orientation, and the place in which it is located in the plane; however, the intuition that the 

sequence is independent of this contingent choice is very strong, and that an equivalent 

sequence would have been produced if the seed with its size, orientation and position had 

been different. Although the diagrammatic argument is “pivoted” on a concrete object with 

contingent properties, the proof is so solid that its validity can hardly be denied. 

 

This proof illustrates several aspects of diagrammatic reasoning, and next we focus on five 

of them: the first is the actual constructive process that generates the proof. Here the 

question is what kind of generative scheme is required to produce the diagrammatic 

sequence; how can the problem space be defined and what is its size; what kind of 

inference scheme can control and guide the construction to a happy result. After all, this 

and similar proofs have been produced by people with very limited computational 

resources, like a pencil and a piece of paper, and it should be possible to make explicit the 

underlying constructive process. 

 

The second is what are the roles of reinterpretations and visualizations in the proof. 

Although the seed is a right triangle, two squares emerged in the two crucial states of the 

sequence, and their visualization is essential to realize the theorem and its proof. People can 

see the squares in the top-right diagram as soon as they appear, but the visualization of the 

two aligned squares in the right-bottom diagram is very hard, and yet it is the crucial 

inference that needs to be performed to realize the theorem and its proof. What kind of 

inference is this visualization and how can it be characterized are also questions that will be 

addressed by a theory of diagrammatic reasoning. 

 

The third aspect is the machinery that is needed to represent the diagrammatic knowledge. 

How can the basic triangles and the emerging squares can be represented and referred to? 

What is the nature of this reference: it is a concrete reference to the overt symbols 

appearing in the diagram or it is rather a generic reference to the whole class of equivalent 

diagrams constituting the proof. We also need to discuss what is the relation between the 

concrete nature of diagrams as external representations and their interpretation as a general 
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or abstract class representing the concept expressed by the theorem. All these questions 

have to do with the properties of visual representations with their underlying 

interpretations, which have to be addressed in a theory of diagrammatic reasoning as well. 

 

A fourth question is related to the concept of equality involved in the assertion of the 

theorem. How is it possible to assert that two configurations generated in a process of 

change have the same property. Are the triangles and squares in the different states of the 

sequence the same, despite that their geometric properties are different? How the identity of 

a geometric object is determined and preserved when the object undergoes a process of 

change. And also, how the equality between two general properties can be expressed and, 

furthermore, how can this be realized through a computational process. More generally, 

how can we reason about geometric change involving abstractions so effectively? 

 

The fifth question arising from this proof is how the diagram, the geometric shape or form 

on a piece of paper, is related to its interpretation in an arbitrary conceptual domain. 

Although the Theorem of Pythagoras is a geometry theorem establishing a relation between 

areas of squares, for instance, its importance relies to a great extent in its interpretation into 

the arithmetic as the well-know formula h2 = a2 + b2 that permits to measure distances. 

However, this latter expression is not an arithmetic theorem, as there are an infinite number 

of triplets (h, a, b) that do not satisfy the relation, and indeed the expression is only true 

when the squares numbers represent the areas of the squares on the three sides of the same 

right-triangle. Hence, the arithmetic expression is only true under a representational 

mapping between the arithmetic and the geometry. Here, the questions of how the 

arithmetic expression is produced and how the representational mapping is established need 

to be answered. More generally, diagrams are commonly used to reason not about 

themselves but about their interpretation in other knowledge domains; mapping the domain 

concepts into the geometry facilitates greatly the reasoning process, and this is one reason 

why diagrams are so useful and effective representation and problem-solving devices. A 

theory of diagrammatic reasoning should also show how these kinds of representational 

mappings are established and used in reasoning and problem solving. 
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The Theorem of Pythagoras is a very interesting and challenging case study in 

diagrammatic reasoning; despite its simplicity and fundamental role in mathematics, and 

the fact that it is the main achievement in the second book of Euclid’s geometry as 

proposition 47 (Heath, 1956), there seems to be no proof of it derived from Hilbert’s 

axioms of geometry by a strict formal derivation through valid inference steps, within his 

program for the formalization of mathematics. Also, despite the effort in theorem proving 

in AI since the origins of this discipline in the 50s of the last century, there is not a theorem 

proving system capable to produce a fully automatic proof of the theorem of Pythagoras to 

the present date. The theorem is not even mentioned in the literature related to the first AI 

geometric theorem proving system developed by Gelenter in the late 50s (Gelernter, 1995). 

Later on, Pineda (1989) discussed the need to model visualizations and reinterpretations to 

carry on with this kind of proofs, and Barwise and Etchemendy used it illustrate 

heterogeneous reasoning (1990); the theorem was also discussed by Wang to illustrate the 

need to use generic descriptions in diagrammatic reasoning (1995), Jamnik used it to 

illustrate a taxonomy of diagrammatic theorems (1999) and Lindsay (1998) presented a 

demonstrator system that can verify different proofs of the theorem through constraint 

satisfaction; however, no formal proof procedure or theorem-proving system was offered in 

any of these investigations and non of these studies or systems provided a fully automatic 

proof of this theorem. This brings about the question of why diagrams are needed and what 

it the job that they do. This is one of the main concerns discussed in the present book. 

 

As a second example of diagrammatic reasoning consider an arithmetic theorem stating that 

the sum of n odd numbers is equal to the square of n; this is, 1 + 3 + … + 2n – 1 = n2. This 

theorem has a diagrammatic representation, as shown in Figure 1.2. This theorem is also 

due to the Pythagoreans who noticed that an odd number could be represented by an 

inverted L-shape, which they designed as a “gnomon”2. 

                                                           
2 “… But the ancient commentaries on the passage make the matter clearer still. Philoponus says: 

‘As a proof… the Pythagorean refer to what happens with the addition of numbers; for when the 

odd numbers are successively added to a square number they keep it square and equilateral… Odd 

numbers are accordingly called gnomons because, when added to what are already squares, they 

preserve the square form… Alexander has excellently said in explanation that the phrase ‘when 
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Figure 1.2 Theorem of the sum of the odds. 
 

As can be seen in the figure, a square of side n + 1, conformed by (n + 1)2 dots, can be 

construed as the union of a square of side n and a gnomon of side n + 1 with 2(n + 1) – 1 

dots, for an arbitrary parameter n. So, the union of n consecutive gnomons forms a square 

of area n2.  

 

The particular diagram in Figure 1.2 stands for a concrete instance of this theorem, and 

asserts that the union of the fourth square in the series with the fifth gnomon results in the 

fifth square. However, if a person sees an instance of the theorem, like Figure 1.2, and 

constructs the corresponding concept in his or her mind, and knows how to apply it, then 

the diagram is a representation of the theorem as a whole. In the same way that a single 

diagrammatic sequence in the case of the Theorem of Pythagoras stands for the general 

case, any particular instance of the diagram stands for the general case too. Here again, the 

visualization and generalization of the figure are very direct inferences, which once 

performed, the intuition that the theorem holds is very strong.  

 

These examples illustrates that one aspect of diagrammatic reasoning is that interpreting a 

diagram or a diagrammatic sequence is also constructing a concept in the mind of the 

interpreter. In addition, the concept is produced in a way that its truth can hardly be denied. 

So, one main goal of a diagrammatic reasoning theory is to model the synthesis of such 

concepts. Of course, we do not know what is the representational format of the human 

                                                           
gnomons are placed round’ means making a figure with the odd numbers… for it is practice with 

the Pythagoreans to represent things in figure’  ” (Heath, 1956, p. 359). 
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mind, and cannot represent the concepts expressed by diagrams in such unknown format, 

but we follow the AI working hypothesis that concepts can be represented in computers, 

and as the objects of computation are mathematical functions (i.e., Boolos and Jeffrey, 

1989), we represent concepts through mathematical functions. 

 

For instance, the interpretation of the diagram in Figure 1.2 is an inductive concept 

represented by the recursive geometric function sq(0) = 0  and sq(n + 1) = sq(n) + 2(n + 1) 

– 1 for n ≥ 0, where the term sq(n) corresponds to the square n and the term 2(n + 1) – 1 

corresponds to the gnomon n + 1; so, for n = 0, sq(1) = 1; for n = 1, sq(2) = 4, etc. The base 

of the induction rests on the observation that a gnomon of size 1 is also a square of size 1 

(for the parameter n = 1), which is formed through the union of a square of size 0 and the 

gnomon of side (and size) 1.  

 

Hence one challenge in diagrammatic reasoning is to produce this kind of functions out of 

the diagrams, and to identify the additional conceptual machinery involved in the synthetic 

process. It is also required to make sure that the function does represent the intended 

concept precisely, and that the function is correct. The intuition is that these functions and 

their properties can be derived from the diagrams in simply and straightforwardly, as least 

for people, but the computational process should be also simple. If the theorems are not 

known beforehand, diagrammatic reasoning is also a creative and discovery process. 

 

The recursive function above represents a geometric concept and the corresponding 

arithmetic theorem results from a mapping under which geometric squares represent square 

numbers and gnomons represent odd numbers. However, unlike the arithmetic expression 

of the Theorem of Pythagoras, which is only a contingent truth, the arithmetic interpretation 

of this theorem is also an arithmetic theorem, which can be proved by mathematical 

induction. So, there are two radically different proofs of this theorem: the diagrammatic 

one, that has a synthetic character, and the arithmetic one, that can be derived from 

arithmetic axioms and has an analytical character.  
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However, the theorem of Pythagoras and the theorem of the sum of the gnomons are very 

similar in many respects: both belong to the domain of the geometry and assert a relation 

between the areas, and the underlying processes of reasoning about the conservation of 

areas in different stages of a diagrammatic sequence or a diagrammatic interpretation state, 

the essential property stated by the theorems, seems to be quite alike; also, in both cases, 

geometric squares are interpreted as squares numbers, and the union of areas is interpreted 

as the arithmetic sum; all of this suggests that a theory of diagrammatic reasoning should be 

able to provide an account of both of these theorems within the same conceptual 

framework. 

 

As a third instance of a diagrammatic reasoning process consider the diagram in Figure 1.3, 

where a square is decomposed into its lower half rectangle and its upper two quadrants, but 

in addition, its top-right quadrant underlies the same decomposition process. This 

decomposition pattern can performed a finite number of steps, as shown in the diagram, but 

it can also carried out at infinitum, and the recurrent pattern can be captured through a 

geometric induction on the embedded squares.  

 

 

 

 

 

Figure 1.3 Induction decomposition of a square 
 

As in the previous example, this diagram represents an arithmetic theorem, which in this 

case is the infinite series: 

(1)      

€ 

1/2n =1
n=1

∞

∑  

The truth of this theorem can be visualized by decomposing the area of the base square 

(normalized to a square of size 1) as the fraction corresponding to the lower half and the 

two upper quarters: 1/21 + 1/22 + 1/22  = 1, and observing that the last quarter can be 

decomposed similarly as (1/21 + 1/22 + 1/22) × 1/22, which is 1/23 + 1/24 + 1/24, so the basic 
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sum is also decomposed as 1/21 + 1/22 + 1/23 + 1/24 + 1/24 = 1.This process can be carried 

out at infinitum and the decomposition represents the infinite series 1/21 + 1/22 +…+ 1/2n = 

1, so the theorem holds. 

 

According to the discussion above, the diagram expresses a concept, which can also be 

represented by a mathematical function. The structure of this theorem is similar to the 

theorem of the sum of the odds, and as a first approximation it can be captured by an 

analogous the recursive function s(1) = 0 and s(n + 1) = s(n) + 1/2n for n ≥ 1, which 

converges to 1 in the infinite. However, does this function really capture the sum in (1) or 

the infinite diagrammatic induction in Figure 1.3? This function can be used to compute the 

series, which approximates very quickly to the value of 1, but it does not seem to account 

for the fact that the computation only converges to this value when the parameter n is 

infinite. So, the present function does not capture the concept fully, and expresses less than 

the diagram and also than the theorem in (1). A theory of diagrammatic reasoning should 

provide the function representing the theorem precisely, and the construction method 

should guarantee that the function is indeed correct. Furthermore, the basic mechanisms 

through which the theorem of Pythagoras and the theorem of the sum of the odds should 

also be relevant to this latter theorem. 

 

Another aspect of diagrammatic reasoning is illustrated in Figure 1.4: the same diagram 

under a different but very similar decomposition expresses a different concept, and 

represents a different arithmetic theorem. Consider that the original square is decomposed 

instead into the union of a L-shape, formed by the quadrants in the lower row and the top-

left quadrant, and the top-right quadrant directly.  

 
Figure 1.4 An induction on the upper right corner 

This diagram represents the theorem: 

(2)      

€ 

3/22n =1
n=1

∞

∑  
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In this case, the area of the basic square is 3/22 + 1/22 = 1.  The first term corresponds to the 

two lower and the upper left quadrants, and the second to upper right quadrant. As before, 

the squares in this latter quadrant is decomposed by the recurrent pattern, as (3/22 + 1/22) × 

1/22, which is 3/24 + 1/24, so the basic sum is also decomposed as 3/22 + 3/24 + 1/24 = 1. 

The last term can undergo the same decomposition at infinitum and the diagram represents 

the theorem 3/22 + 3/24 + … + 3/22n = 1. 

 

As before, the geometric pattern can be represented through a recursive function, which at a 

first approximation is s(0) = 0  and s(n + 1) = s(n) + 3/22n for n ≥ 1, where the term s(n) 

represents the n-th L-shape and the term 3/22n represents the L-shape of the top-right 

quadrant in the same level. So, for n = 1, s(2) = 0 + 3/22; for n = 2, s(3) = 3/4 + 3/24 = 

15/16, s(4) = 63/64, etc. The function captures the accumulative sum, but as before it 

misses an important aspect of the theorem expressed by the diagram and the formula in (2); 

the missing property is again the conservation of area in every decomposition step, and also 

the fact that the series converges in the infinite to 1. The study of the underlying structure 

of this kind of theorems should produce the function representing the missing information, 

and the synthetic procedure should guarantee that the function is indeed correct. 

 

It has been argued by Jamnik (1999) and also by Foo (1999) that the first three theorems 

presented above are representative of three different classes of diagrammatic theorems: 

standard Euclidean proofs, exemplified by the theorem of Pythagoras (although using a 

different proof), theorems involving a finite induction on one parameter, exemplified with 

the theorem of the sum of the odds, and theorems involving an infinite recurrent patters, as 

theorems (1) and (2). Jamnik (1999) also presents a theory to model the reasoning process 

of theorems of the second kind (the sum of the odds), and Foo (1999) discusses theorem 

(1). However, although each example illustrates a different aspect of diagrammatic 

reasoning, there are several aspects the reasoning process that are common in all three 

examples; in particular, all five questions that were posed for the case of the theorem of 

Pythagoras are also relevant in the other cases, and the three examples involving an infinite 

diagrammatic recurrent pattern are very similar. So, a theory of diagrammatic reasoning 
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should be able to explain all three cases and their variants with the same underlying 

machinery. 

 

Diagrams are also representational devices to support logical thinking supported through 

diagrams, like Euler Circles or Venn Diagrams. This kind of reasoning has been the subject 

of a considerable amount of work (e.g. Shin, 1995). In this latter case the inclusion, 

intersection and disjointness of diagrammatic objects represent the corresponding set 

relations. This kind of representation is used to support valid reasoning quite 

straightforwardly. For instance, in syllogistic reasoning each premise can be represented by 

a diagram, and the conclusion by their superposition. This is illustrated in Figure 1.5 where 

a diagram represents the premise All A are B, another All B are C, and the conclusion can 

be read directly from their superposition. Here again, concrete diagrammatic objects, the 

circles in this case, represent general classes, and the geometrical relations between them 

represent the general relation between classes. This kind of representation faces also the 

problem of representing logical negation, where marks like crosses or textures may be 

interpreted as stating that corresponding region has an empty extension.  

 

 
 

Figure 1.5 Diagrammatic Syllogistic Reasoning 
 

Unlike the previous examples, Figure 1.5 includes a number of textual labels to mark the 

intended interpretation. This is also a common feature of diagrams. The texts are used here 

to emphasize the identity of the diagrammatic symbols, but they would not be required if 

the corresponding circles in the three figures were considered the same. In the three 

previous examples, labels were not used because the relevant identity relations are 

suggested by the diagrammatic context, but we could also add them, as it is often done. 

However, the underlying question in relation to the labels in a theory of diagrammatic 
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reasoning is how the identity of symbols is established in a diagrammatic sequence or in 

different diagrammatic interpretation states, and how such identity relation is used in the 

reasoning process. When this is clear the labels can be used to highlight the identity 

relations, and to name properties and relations, although they are somehow subsidiary 

facilities for the communication process. 

 

In all previous examples a diagram is interpreted as an arithmetic or logical theorem, and 

the reasoning involved has a formal character in the sense that the theorem follows 

necessarily from the premises, and diagrams involve “valid reasoning” in a strong logical or 

mathematical sense. However, unlike logical schemes involving deductive inference, that 

has an analytical character, diagrammatic reasoning seems to have a strong synthetic 

orientation involving a visual constructive process which guaranties implicitly the 

“validity” of the solution. In these kinds of scenarios “the conclusion” is not a logical 

consequence of “the premises” and the problem can be best thought as a case of pragmatic 

inference.  Furthermore, there are settings involving no interpretation of the diagram into a 

conceptual domain, and the reasoning task has a pure spatial character. These latter 

properties (or lack of properties) are illustrated, for instance, by the kind of diagrams used 

in intelligence tests, like Raven’s Progressive Matrices for non-verbal reasoning (Raven & 

Raven, 2008), where diagrams are used to express and solve problems through “visual 

thinking”, as illustrated in Figure 1.6. 

 

 
 

Figure 1.6 Visual Thinking 
 

The solution of this kind of problems seem to depend on the ability of constructing a spatial 

abstraction from the example diagrams, that needs to be satisfied by the solution, which is 
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also expressed as a diagram directly. In Figure 1.6, the top row is constituted by a sequence 

of three up-right squares divided in their quadrants and there is a dot in a quadrant in each 

square, which shifts in a clock-wise direction from quadrant to quadrant along the 

sequence. The same pattern is presented in the second row, but with circles instead of 

squares, and with circle slides instead of quadrants, and the lower row repeats the pattern 

on the upper row but with the squares tilted, but with its last figure missing, and the 

solution of the problem consists on synthesizing this last figure. The first and second 

columns conform also to a pattern, and the third one should also conform to such pattern 

too, when it is completed with the synthesis of the bottom figure, which is also the solution 

of the problem. In addition the solutions for rows and columns must be the same, 

constraining further the properties of the solution. 

 

One way to think about this problem is by “reading” the rows and columns as descriptions, 

abstracting over shapes (i.e., squares and circles) and orientations (i.e., upright and tilted) 

and the position of the dot (i.e., static, shifted). The hard part of solving the problem seems 

to be to induce such descriptions from the visual information, as the construction or 

verification of the solution seems to be a direct inference once such descriptions are in 

place. This suggests that a theory of diagrammatic reasoning should also explain how this 

kind of spatial abstractions can be constructed and applied in problem solving, and how the 

space is represented and reasoned about in a more informal and qualitative setting. These 

kinds of problems have been modeled in analogical reasoning and inductive structural 

learning in AI (e.g., Levet et al, 2007, 2010; Hegmann, 2011, among others), and illustrate 

that diagrammatic reasoning involves not only deductive, but also inductive and abductive 

inferences strategies. 

 

A theory of diagrammatic reasoning should also explain other kinds of reasoning schemes 

supported by diagrams. Tables or tabular representations, for instance, are very effective 

devices to structure and present relational information, and relational databases are tabular 

structures that are used very efficiently for storing and accessing larges amounts of 

information, and can be thought of as diagrammatic representations too. Visual languages 

in which a vocabulary of symbols with a set of geometric properties and relations are given 
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conventional interpretations for expressing knowledge in a direct and efficient way are also 

diagrammatic forms of representations, and should be studied within the same conceptual 

and methodological framework. 

 

This brief summary illustrates a range of phenomena and problems posed by the use of 

diagrams in inference and problem solving. The present text is an attempt to gain a deeper 

understanding of these problems from the AI perspective, but taken into account relevant 

insights from diverse related disciplines, like computer science, philosophy, psychology 

and even some aspects about the representation of images that come from the 

neurosciences. The present reflection is presented from the perspective of a computational 

theory of diagrammatic reasoning that has been developed over the last years, and a 

computer program named Pitágoras that implements the representational and inferential 

machinery postulated by the theory (Pineda, 2007), and also from the perspective of a 

system for the diagrammatic representation of functions and abstractions, the system F 

(Pineda, 2011), which illustrate diagrammatic reasoning in which a memory buffer 

represents the diagram, and inference corresponds to operations performed on the buffer 

directly. These and a number of case studies are presented in detail along the text. In the 

present theory the computational objects correspond directly to the diagrammatic objects 

with their interpretations, and the inferences are quite direct and natural, reflecting why 

diagrammatic inference seem to be “easy” and useful in learning and problem solving. 

 

One strong intuition underlying much work in diagrammatic reasoning is that the process 

has a visual component, which is central to the task, and that it is a case of “visual 

thinking”. This in turn suggests that diagrams, the external representations, are represented 

“internally” as images in the mind, which are the objects of thought directly. However, 

images are only accessible through introspection, and the very idea that there are “images” 

was strongly challenged early in the XX Century in analytical philosophy and positivism, 

in psychological behaviorism, and later on in the original presentation of AI, which had a 

strong “mental” and “symbolic” orientation (Turing, 1950); in these quarters it was held 

that knowledge has to be expressed through descriptions of a rather linguistic character, and 

this became a central tenet in knowledge representation in AI. However, the appearance of 
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cognitive psychology and the discovery of imagistic phenomena, like mental rotation 

(Shepard and Metzler, 1971; Shepard and Cooper, 1982) and Kosslyn’s imagery program 

(1983), permitted to articulate a new notion of image that can be the subject of empirical 

research, and has been extensively investigated in cognitive psychology, neuropsychology 

and the neurosciences (Kosslyn, 2006). The opposition between the descriptionalists and 

the imagery views gave rise to the so-called “imagery debate” (Tye, 1991).  The nature of 

this debate and its implications for diagrammatic reasoning is the subject of Chapter 2. 

There it is argued that there is indeed a place for images and visual thinking in 

diagrammatic reasoning and knowledge representation more generally. 

 

The imagery debate has also a counterpart debate in AI, where there is an opposition 

between propositional or Fregean representations, that correspond to descriptions, versus 

analogical representations, which correspond roughly to images. This is the subject of 

Chapter 3. There, the difference between the two formats is reviewed from a computational 

perspective. It is shown that analogs, which are also called “direct representations”, support 

“direct inference”, in which the conclusion is “read” directly from the representation, as 

opposed to the corresponding inference in descriptions or logical formats, where the 

conclusion follows from the application of a valid inference scheme. It is also illustrated 

that in diagrammatic inference, questions about content are translated into questions about 

the representational format, and that direct inference takes advantage of the spatial 

properties of the format to produce the answers quite efficiently. In this chapter it is also 

discussed whether diagrammatic information can be expressed to descriptions, and what 

conditions should be meet to carry on with the translation. The discussion is also placed in 

relation to a hierarchy of levels of representation proposed by Newell (1981), and it is 

argued that although diagrams and descriptions are different representational formats, both 

belong to the plane of expression at the so-called symbol level, and that the knowledge that 

is expressed by the two kind of symbolic structures has an equal status at the knowledge 

level, which corresponds to the interpretation of symbolic structures in people’s heads. 

 

The relation between the two representational formats is further discussed in Chapter 4, 

where the issue of the identity of diagrammatic symbols and their depictions in 
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diagrammatic sequences is analyzed. It is first argued that diagrammatic symbols that bear 

the same depiction can have different geometrical properties in different diagrammatic 

states, and that diagrams need to be thought of as intensional representation, as opposed to 

extensional systems that obey Leibniz Law. Intensionality in diagrams comes from the 

separation of the issues related to the objects identity from the issues related to their 

geometric properties, and also from the knowledge of the space that is represented through 

geometric algorithms. In this setting a diagrammatic sequence is thought of as a single 

diagram at the intensional level, where each diagram in the sequence corresponds to a 

different extensional state. The distinction between the intensional and extensional levels 

permits to model a class of diagrammatic constraint satisfaction problems by direct 

interpretation process, instead of complex numerical computations traditionally used to 

solve this kind of problems. This is illustrated with a well-known example of constraint 

satisfaction in computer graphics. It is also shown that the addition and deletion of 

diagrammatic symbols in diagrammatic sequences produces new diagrams, and a 

diagrammatic sequence is thought of as a sequence of intensional objects, where each 

object can have several extensional states. The intensionality of diagrams is also supported 

by reinterpretations and visualizations, and it is shown that an image corresponds to an 

interpretation of the overt extensional information from a particular perceptual perspective 

that is represented through intensional descriptions, and that the reinterpretation of a 

particular diagram, like the bottom right diagram in Figure 1.1 renders a different diagram. 

Diagrammatic sequences and reinterpretations interact in complex ways in diagrammatic 

reasoning, and reinterpretations define a parallel plane to the overt diagrammatic sequence, 

and it is within this plane were novel an interesting relations occur, like the 

reinterpretations of the triangles and squares in the diagrammatic sequence expressing the 

Pythagorean relation. This chapter is concluded with the notion of “image” that emerges 

from the discussion: a dual object that, on the one hand, is imprinted in a buffer, which 

contains extensional information, but on the other, is interpreted in relation to an 

intensional perspective, which is represented through intensional descriptions. In this sense, 

the image is an intensional object right at the interface between perception and thought. 

This notion of image offers a perspective to the imagery debate, and also to the opposition 
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between propositions and direct representations in AI, and also permits to integrate much 

work developed within diagrammatic reasoning in AI in a coherent way.  

 

The discussion in chapters 2 to 4 provides a summary of issues that arise in diagrammatic 

reasoning, form different disciplines and methodological frameworks, and provides a wider 

understanding of the underlying issues that arise in diagrammatic reasoning. On the basis of 

these considerations, a model for diagrammatic reasoning is introduced in Chapter 5. In this 

model, a diagrammatic reasoning system (DRS) is defined as a 4-tuple <D, I, Φ, Ω>, where 

D is a diagram or a diagrammatic sequence, the external representation proper, I its 

interpretation, Φ a representation relation that associates diagrammatic structures in D with 

their corresponding interpretations in I, and Ω is a set of operations on diagrams. The 

nature of the representation relation is discussed in detail. In particular, every entry in the 

representation relation is designated as a “representational key” that states the interpretation 

of diagrammatic symbols, properties and relations in the intended interpretation domain. 

For instance, a representational key in relation the diagrammatic sequence in Figure 1.1 

states that squares in the diagram are interpreted as squares numbers in the arithmetic and 

that the geometric union between areas is interpreted as the arithmetic addition. A derived 

representation key states that the geometric proposition “the area of a square on the 

hypotenuse of a right triangle is the same as the union of the areas of the squares on its right 

sides” is interpreted as the famous arithmetic expression h2 = a2 + b2. Interpretations are 

computed compositionality by an interpretation function that maps diagrammatic structures 

into expressions representing their interpretations in relation to the representation relation. 

The model permits to define the expressivity of a diagrammatic system as the totality of 

propositions expressed by a diagram in relation to the interpretation function and the 

representation relation. An inverse interpretation function that assesses whether a 

proposition is expressed by the diagram is also defined, and the system supports direct 

inference through this latter device. The DRS model is related to the notion of image 

developed in Chapter 4, and when these are taking together, it is possible to identify three 

main settings of diagrammatic reasoning systems in AI, which are named systems Type-1, 

Type-2 and Type-3, depending on whether the diagram is represented computationally 

through descriptions, though a memory buffer or both respectively, and some representative 
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systems of each kind are briefly discussed. The model is illustrated with a diagrammatic 

system called Graflog for dynamic definition of visual languages (Pineda, 1989), which is a 

system of Type-1.  

 

Systems of Type-2 are illustrated in Chapter 6 with the system F for the diagrammatic 

representation of mathematical functions and abstractions with finite domain and range 

(Pineda, 2011) where abstractions defined as sets of functions sharing a set of values for 

some of their arguments, and the representation captures such internal relation.  In this 

system the diagram D is a table in which horizontal and vertical dimensions corresponding 

to the function’s and abstraction’s domain and range respectively, the Interpretation I 

corresponds to the knowledge of such mathematical objects, the representation relation Φ 

establishes that marks in the table’s cells correspond to the assignments of values to the 

arguments in functions and abstractions, and the operations in the set Ω are functional 

abstraction, that produce composite abstractions, and reduction, that decompose 

abstractions into their constituent parts. The degree of structure of an abstraction or its 

informative content is captured with a definition of abstraction’s entropy, which is also 

given. The representational format permits to express incomplete information and 

constraints, and the definitions of the abstraction and reduction operations with the 

corresponding entropy are extended for this latter case. The system is illustrated with the 

representation of a conceptual hierarchy including incomplete information and constraints, 

where generalizations and exceptions are captured in a simple and systematic way. The 

system suggests that extending a representation with a new proposition is a case of 

abstraction, as an alternative to logical formulations using non-monotonic deduction, in the 

tradition of default logics started by Reiter (1980). The representation can also be viewed as 

an associative memory that is accessed or indexed by its own content (e.g., Kosslyn, 2006, 

pp. 46), where the abstraction operation corresponds to memory register and reduction to 

memory recall. The system is also analogous the λ-calculus for the representation of 

functions, where abstractions in the system F correspond to λ-expressions, and abstraction 

and reduction correspond to λ-abstraction and β-reduction. The discussion suggests that 

there is a trade-off between the expressivity of the representational system and the extent to 

which abstraction and reduction are reversible; also the entropy of an abstraction is related 
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to the computational cost of inference, as abstractions with low entropy capture the internal 

relations between the objects included in the abstraction, and the cost of inference is 

reduced accordingly. The system also suggests that the use of good abstractions facilitates 

inference and problem solving, in opposition to the so-called knowledge representation 

trade-off, which states that abstract thinking involves highly expressible representational 

language, but the cost of inference goes in hand with the expressivity of the representation 

(Levesque and Brachman, 1985), and there is a compromise between expressivity and 

tractability. However, this opposition is dissolved when the knowledge representation 

trade-off is placed in relation to the more fundamental computational trade-off between 

expressiveness and reversibility. The knowledge representation trade-off is defined in 

relation to the λ-calculus and logical languages, which stand at a particular position of the 

trade off between expressiveness and reversibility, where information is preserved, 

abstraction and reduction are reversible, but there is a limitation in the expression of 

incomplete information and the interaction between the objects in abstraction. The λ-

calculus and Turing Machines are equivalent, as well as to other representational formats 

like recursive functions and abacus computable function (Bools and Jeffreys, 1989), which 

stand at the same position in this latter trade-off. However, the system F shows that there 

are alternative positions in this trade-off with interesting properties and applications. 

 

In Chaper 7 a model for heterogeneous reasoning with diagrammatic and propositional 

representations is presented. This extends the basic DRS system model with a logical 

theory T that enriches the interpretation I of the diagram D in relation to an interpretation 

relation Φ. The extension is illustrated with the system Graflog too, in which knowledge 

could be expressed through language in addition to the diagram. In this setting, direct 

inference is embedded within logical deduction, and the system supported a form of direct 

inference in a simple and systematic way. The model is illustrated further with a 

heterogeneous reasoning problem presented within the context of the Hyperproof program 

(Barwise and Etchemendy, 1994). Unlike the basic model where the representation relation 

Φ is fully specified, and direct inference is supported directly, this latter kind of problems 

underspecified Φ and both linguistic and diagrammatic knowledge can be under specified 

too, and this is a case of reasoning with incomplete information and constraints too. Hence, 
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the solution focuses in the determination of the representation relation using diagrammatic 

and linguistic knowledge, as once this relation is available the original problem is solved 

through direct inference. This is achieved by model construction through abstraction 

operations using the system F. The use of both descriptions and a memory buffer into an 

integrated reasoning systems is already a case of a system Type-3, which incorporates the 

properties of systems Type-1 and Type-2. The present case study suggests the architecture 

of a system of Type-3 that could solve heterogeneous reasoning problems in a fully 

automatic way. Finally, the present discussion illustrates the interweaved interaction 

between memory inference and logical inference, and provides additional evidence for the 

trade-off between expressiveness and the reversibility of abstraction and reduction.  

 

In Chapter 8 the question of whether diagrammatic representations can express unrestricted 

abstractions like theorems and proofs is explored further. For this the concept of 

“abstraction” is discussed from different perspectives, and an operational criterion to state 

the expressiveness of a representation is presented, along the lines of the theory of the 

graphical specificity (Stenning and Oberlander, 1995). According to this theory the 

expressiveness of a representational system depends on the form of the representational 

keys included in the representation relation. The theory distinguishes three main kinds of 

systems in relation to the amount of abstraction that can be expressed, which are called 

Minimal Abstraction, Limited Abstraction or Unlimited Abstraction Representational 

Systems (MARS, LARS and UARS respectively). This theory also states that diagrams, 

and graphical representations more generally are LARS, with the consequence that 

diagrams cannot express theorems and proofs after all. However, the theory of graphical 

specificity is restricted to extensional systems, and tthe space of abstractions is much larger 

when intensional representations are considered. Hence, intensional information is included 

in the interpretation function and the representation relation too. The analysis of the 

representational keys used in Graflog, Hyperproof and the system F shows that these 

systems are indeed LARS.  The chapter is concluded with a discussion on the conditions 

that have to be met for a DRS to be a UARS. This is the case if the diagram is interpreted as 

a generic geometric object, which is further interpreted as a generic description in the 

application domain, where the relation between both generic objects is stated as a 
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representational keys. If all representational keys of a DRS meet such condition the system 

is a UARS. 

 

The machinery to express generic diagrammatic descriptions is introduced in Chapter 9. In 

this chapter a geometric representational language for the representation of basic and 

emergent diagrammatic objects, as well as its interpreter program, is presented (Pineda, 

2007). The language is defined in terms of a signature of geometric symbols of different 

types, with their associated constructor and selector operators, and diagrammatic objects 

are represented through geometric abstract data types. In this language all predicate and 

function symbols have an associated geometric algorithm that computes directly the 

corresponding geometric property or relation. The system is intensional and a diagrammatic 

sequence is a sequence intensional objects, where each object can have several extensional 

states. In this way, the identity of diagrammatic objects is preserved along a diagrammatic 

proof. This basic machinery permits the representation of basic diagrammatic symbols and 

configurations. The language also includes the functional abstraction and functional 

application operators, permitting the expression of geometric abstractions or geometric 

concepts, which are represented as geometric functions. The application of these functions 

to geometric configurations of the appropriate types through the geometric interpreter 

renders whether such configurations are within the extension of the corresponding 

concepts. The language also includes a geometric description operator that permits the 

representation of emergent objects in relation to the geometric contexts in which these 

emerge, and geometric contexts are in turn represented through a geometric Boolean 

function. The geometric description operator permits to represent, for instance, the generic 

geometric squares that emerge in the Pythagorean proof. The theorem of Pythagoras is 

represented as a geometric function, and its application to three geometric squares and a 

right triangle is true if the squares conform to the Pythagorean relation and false otherwise; 

this is, the function representing the concept of the theorem computes whether an arbitrary 

configuration is included within its extension, and this corresponds to the knowledge that 

one has when he or she knows the theorem. Finally, the geometric representational 

language stands at a very good compromise between expressiveness and reversibility. The 

language is expressed through the λ-calculus, and abstraction and reduction are reversible, 
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so logical inference is sound, but the geometric algorithms associated to geometric 

predicates and function symbols do take into account the spatial interactions between 

diagrammatic objects, with the subsequent entropy reduction, and the system has high 

expressiveness, good computational properties, and is still information preserving. In the 

same way that memory and logical inference interact in the solution of complex problems, 

with the corresponding entropy reduction, as illustrated in Chapters 6 and 7, the present 

geometric language shows how logical and visual inference interact too, which the 

additional entropy reduction provided by the knowledge of the space which is embedded in 

perception. 

 

There is also a further question of how the diagram is interpreted as a concrete or a generic 

description. The analysis of the phenomena related to the recognition and perceptual 

interpretation of the external representation is the subject of Chapter 10. This level of 

interpretation is referred to as perceptual inference. The discussion is approached according 

to the concept of image developed in Chapter 4, in which the image corresponds to an 

intensional description of the buffer’s content, from a particular interpretation perspective. 

The input to perceptual inference consists of the primal sketch (Marr, 1982), where in 

imprints are already characterized in terms of the most salient features like corners, joints 

and edges, which is extensional information. However, such information can be organized 

from different ways or views, and each view corresponds to an extensional characterization 

of the buffer’s content. The perceptual inference process involves the selection of the 

appropriate view and its promotion to the intensional level. Here again, there are different 

possible intensional views for the same extensional information, and each of these views 

corresponds to an image. The discussion shows that this is not a problem of images 

processing or low level recognition, as the input to perceptual inference is already the 

primal sketch, or an alternative representation at this level of processing. Rather, the 

discussion is centered on a number of aspects that have to be taken into account in the 

selection of the relevant extensional information and the construction of the relevant 

intensional view. In particular it is shown that an intensional description corresponding to 

the image can be concrete, but can be generic or abstract too, and that the decision of which 

view is produced does not depend on the external diagram, but on the perspective that is 
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taken by the interpreter the extensional versus intensional dimension. In this chapter is also 

discussed whether there is a role of the memory buffer in the production of descriptions, in 

particular of emergent objects, and whether the realization of the corresponding objects 

involves imagery operations. It is argued that this is indeed the case. The chapter is 

concluded with an analysis of dispute between the British Empiricist Locke and Berkley 

about whether an image can express a geometric abstraction, as held by Locke, or whether 

it needs to have a concrete interpretation (Tye, 1991). It is shown that according the present 

theory, Locke was right. 

 

In Chapter 11 the diagrammatic generative machinery involved in the production of 

diagrammatic sequences is presented. Diagrammatic sequences can be modeled with 

generative systems of different sorts (e.g., Stinny, 1975, 2006) and a particular system 

developed in context of the Graflog  (Pineda, 1993) and its extension and refining in the 

Pitágoras system (Pineda, 2007) is discussed. This system is also inspired by Piaget’s 

notion of action schemes (Piaget, 1970), which are interiorized patterns of perceptual 

behavior that play an important role in playing and imagination, and the generative rules in 

the present theory are called action schemes too. Diagrammatic sequences are intensional, 

and the identity of the objects in the sequence is preserved by the application of the scheme. 

Action schemes can be global and modify a diagrammatic object as a whole, or structured, 

where an object is composed by a number of parts, and the scheme can manipulate such 

parts locally. Actions schemes are relative to a context in which these can be applied, and 

also to a focus object, which is a fixed reference for the change, and an actee which is the 

object that is modified by the scheme. The application of an action scheme also involves an 

inference to determine the focus and actee, which permits to modeled how the attention is 

shifted during the diagrammatic sequence and the problem solving process. Action schemes 

are generic and their definition is independent of the positions, size and orientations of the 

objects involved in the scheme.  In addition, although the problem space may be quite 

large, the focus and actee selection process provides good heuristics to constraint the 

search. The machinery is illustrated with the diagrammatic sequence in Figure 1.1, which 

can be produced with three action schemes, in addition to a basic scheme that introduces 

the triangle seed, upon which the whole sequence is produced. However, the generative 



Chapter 1: Diagrammatic Reasoning   
 

Diagrams and Knowledge Representation   Luis A. Pineda, IIMAS, UNAM, México, 2011. 

24 

machinery does not produce the emerging squares in the sequence, as these are the product 

of reinterpretations, and solution of the problem resides in a further problem space that 

interacts but is parallel to the space where the overt sequence is produced. This plane is also 

illustrated with the squares that emerge in the theorem of Pythagoras. 

 

The generation of a diagrammatic sequence proceeds in tandem with the synthesis of a 

representation of the concept expressed by the diagram. If the diagram expresses a 

diagrammatic theorem or its proof, the concept of the theorem corresponds to the 

knowledge that one has when he or she known the theorem. In the present formulation, 

concepts are represented by Boolean functions, such that when applied to individual objects 

of the proper sort return the value of true or false depending on whether the argument 

belongs to the extension of the concept. There are also two semantic planes of expression: 

the first is purely spatial and geometric and functions in this plane represent the geometric 

theorems proper, and the second is a conceptual plane where the interpretation of the 

diagram is expressed. The former plane is represented with the geometric language, and the 

latter with a declarative language, which is also a functional language. The synthesis of 

these functions in both planes is referred to as diagrammatic derivation and the study of 

these derivations is the subject of Chapter 12. The capacity to establish judgments of 

equality presupposes that there is also a general concept of equality, form which particular 

equalities can be derived. The inputs to the two semantic planes in diagrammatic 

derivations are such generalized equality concepts, which in the present theory are referred 

to as conservation principles. These are also inspired in part in the corresponding notions 

developed by Piaget in his mental development theory, where a conservation principle is 

the knowledge required to assess whether a property of an abject is preserved in a process 

of change. Conservation principles are themselves functions, which are also expresses in 

the system’s representational languages, and can be applied and evaluated by the 

corresponding interpreter program. Conservation principles can be global or structured, and 

in this latter case their application is relative to an argument that remains constant in the 

change process, which is referred to as the focus. As changes are produced by action 

schemes, conservation principles and action schemes are related through the focus, which is 

the same object. In a valid diagrammatic derivation the action scheme must preserve the 
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property associated to the corresponding conservation principle, and this restriction 

guarantees that the synthesized theorems and proofs are also valid. The process is also 

illustrated with the theorem of Pythagoras where the product in the first plane is a 

geometric Boolean function whose arguments are a right triangle and three squares which is 

true if these four objects stand in the Pythagorean relation and false otherwise, while the 

product in the second plane is a Boolean arithmetic function of three numerical arguments, 

which is true if the square of the first is equal to the sum of the squares of the last two. This 

latter condition is meet if the three squares numbers constitute a Pythagorean triplet, and 

this is the case if these numbers represent the three geometric squares that stand in the 

Pythagorean relation respectively. 

 

In Chapter 13 the machinery of conservation principles and action schemes is extended to 

the inductive case, and the theorems and proofs in Figures 1.2, 1.3 and 1.4 are studied in 

detail. It is shown how the geometric relations are synthesized and represented in the 

geometric and arithmetic languages respectively. In this latter case, both geometric and 

their corresponding arithmetic theorems are represented through recursive functions, with 

proceed from the initial base case in the case of the theorem of gnomons, or converge to a 

limiting infinitesimal square in the latter two theorems. It is shown that the base case and 

the inductive step are produced by direct inference in the diagram, but these two basic 

functions need to be applied to the concept of induction, which is a pure abstraction that is 

independent of the space. 

 

The overall discussion of the theory is presented in Chapter 14. First it is briefly discussed 

how the machinery can be applied to logical diagrams, and also to the visual analogies of 

Raven’s test. The view of images as intensional objects with a dual aspect as descriptions 

and as the content of a memory buffer and imagery is reviewed on the light of the overall 

theory and the main case studies. This notion is the basis for the taxonomy of diagrammatic 

system in AI, and systems Type-1, Type-2 and Type-3 are reviewed in the overall 

perspective, and the way in which direct inference in the three settings is also discussed. In 

particular, is discussed the requirements for the full automation of systems of Type-3. 
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The discussion is the turned to the more general questions about the expressive power of 

diagrams and graphical representation more generally, and why diagrams are so ubiquitous 

and effective in reasoning and problem solving, and also in learning, design and creativity. 

This is related to the trade-off between expressivity and reversibility of abstraction and 

reduction. Diagrams can express incomplete information and constraints very effectively, 

and also the interactions between the objects within abstractions. This is reflected in both 

memory inference and perceptual inference, which are involved in diagrammatic reasoning 

in addition to logical inference, which has a deductive character. Memory inference is 

illustrated with the system F where abstractions capture the interactions between the 

functions that share the same values for subset of their arguments, with the subsequent 

entropy reduction, as illustrated in Chapters 6 and 7. On the other hand, concepts and 

geometric descriptions involved in spatial inference have an associated geometry associated 

to them, and geometric computations do take into account the interactions between the 

objects in the space, reducing the entropy of the representation, as illustrated by the 

Pitágoras systems. In both memory and perception, the interactions are considered, the 

entropy is reduced and inference, and the inferential cost is reduced accordingly. Finally, 

logical, perceptual and memory inference interact systematically in reasoning and problem 

solving. 

 

 


