Conservation principles and action schemes in the synthesis of geometric concepts

Luis Pineda luis@leibniz.iimas.unam.mx http://leibniz.iimas.unam.mx/~luis Universidad Nacional Autónoma de México

Diagrammatic reasoning

Reasoning
Learning
Perception
Design and creativity
Theorem proving
Ubiquitous in science and engineering

Diagrammatic reasoning

- How diagrammatic knowledge is represented
- What kind of inferences are supported by diagrams
- How external representations participate in this process

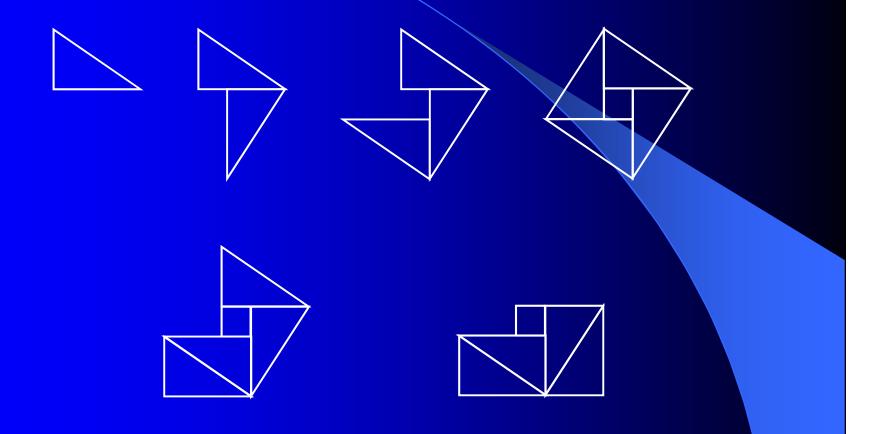
This is a problem in knowledge representation!

Some general questions about diagrams

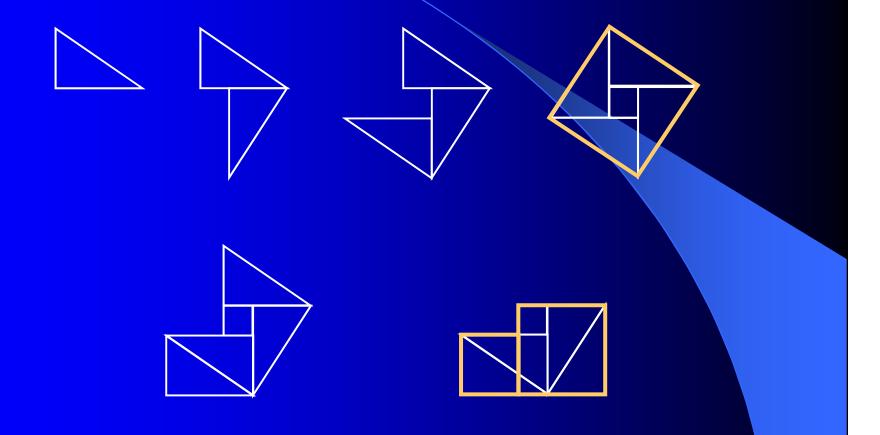
What is their expressive power
Why can they be interpreted so effectively
What is the relation between logic and diagrammatic reasoning

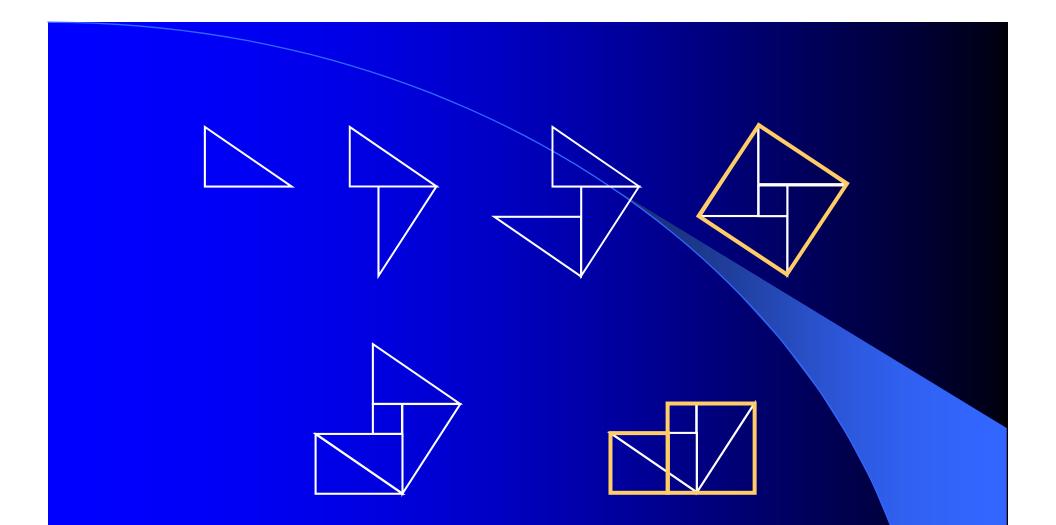
Theorem of Pythagoras

Bronowsky's proof



Bronowsky's proof





What are the mechanisms involved in this kind of reasoning?

A Challenge for Al

- Gelenter's GTP (late 50's): no account!
- Pineda (1989): The role of reinterpretations
- Barwise and Etchemendy: To illustrate heterogeneous reasoning (1990)
- Wang (1995): The need for generic descriptions
- Lindsay (1998): A demonstrator system
- Jamnik (1999): To illustrate a taxonomy of diagrammatic theorems

A Challenge for Al

• Pineda (2007):

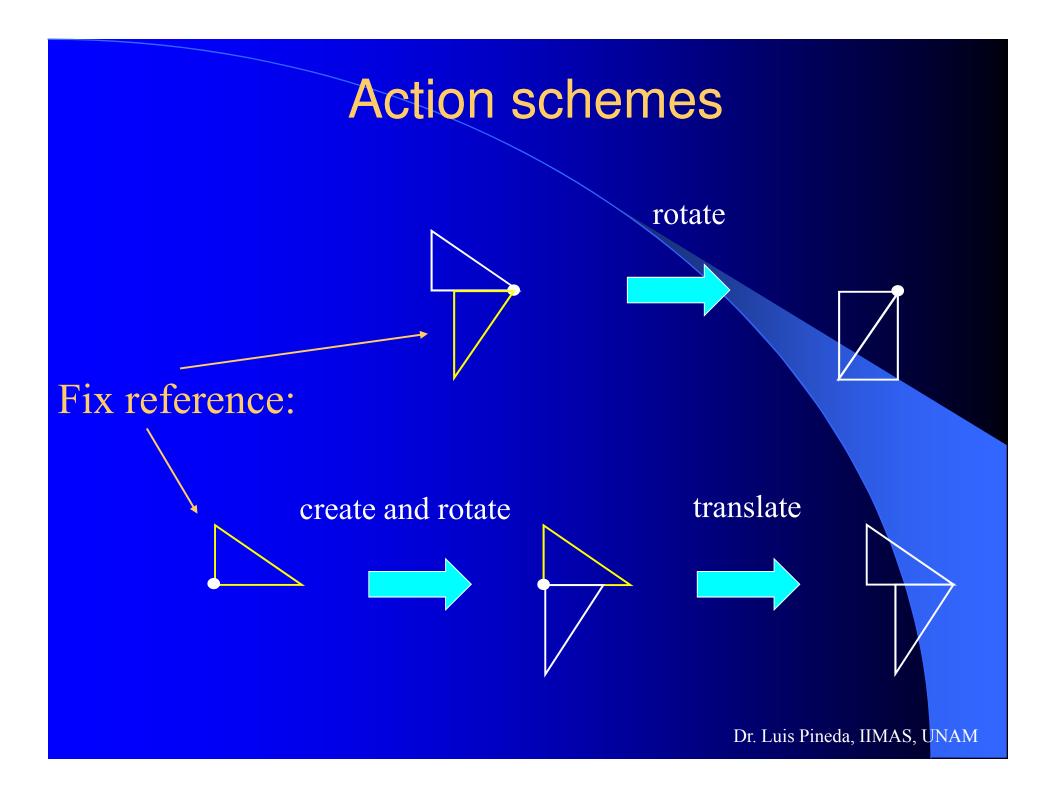
- A theory of diagrammatic reasoning
- A semi-automatic proof of the theorem of Pythagoras
- A semi-automatic proof of the theorem of the sum of the odds
- A prototype program

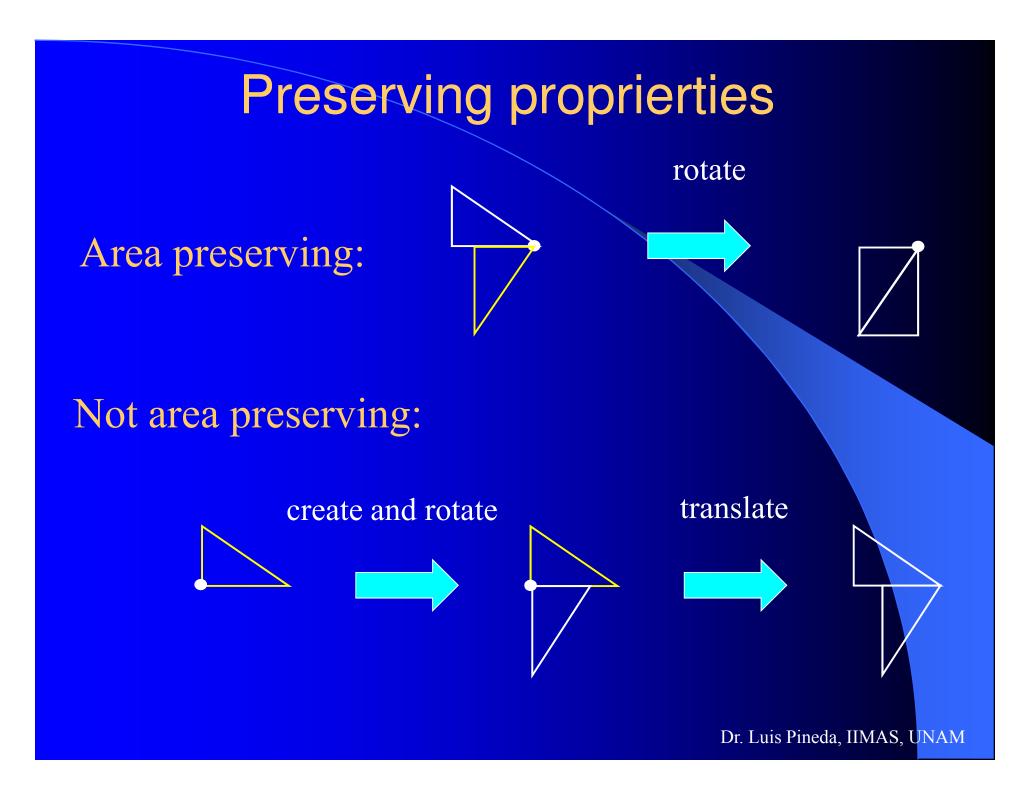
The theory...

Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation

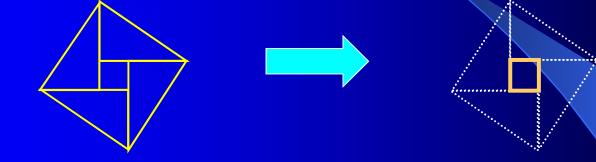
The theory...

Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation





A more complex action scheme



Not area preserving

Shape generation scheme

Heuristic's control and attention flow

The right-triangle seed

Application of scheme

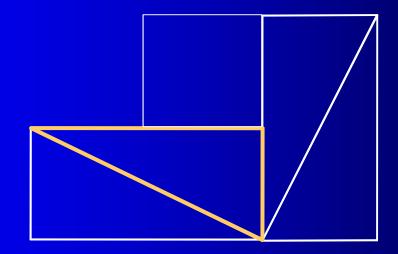
... and again!

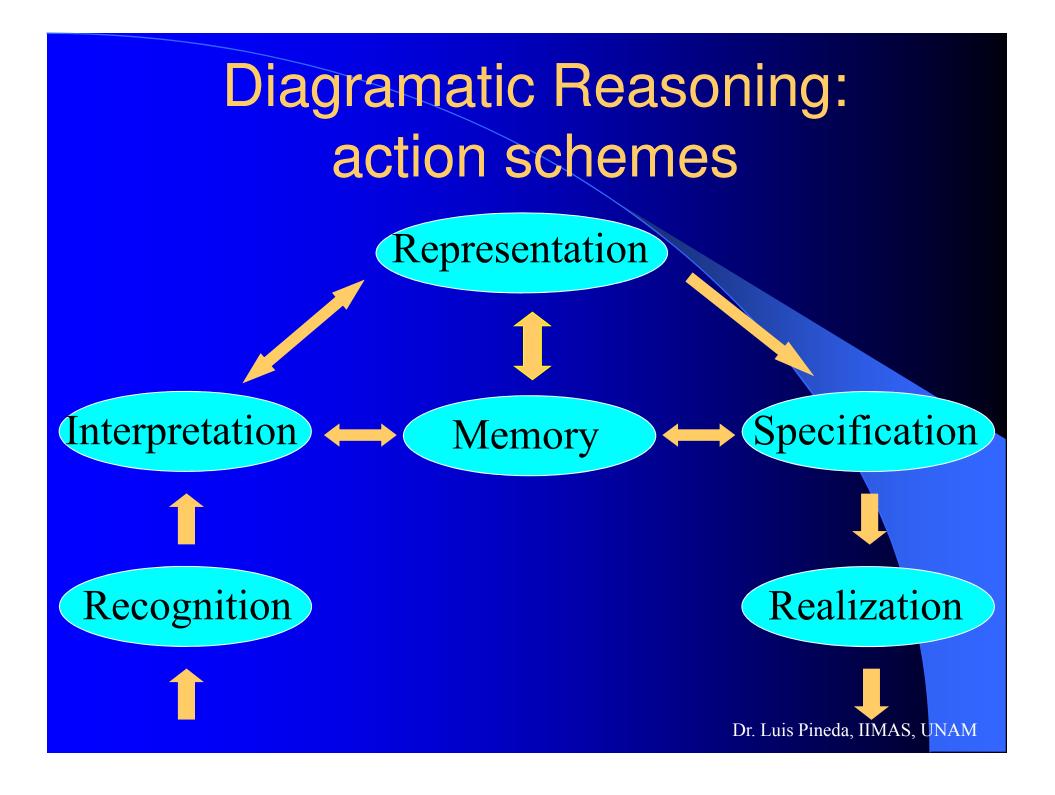
... A complex focus!

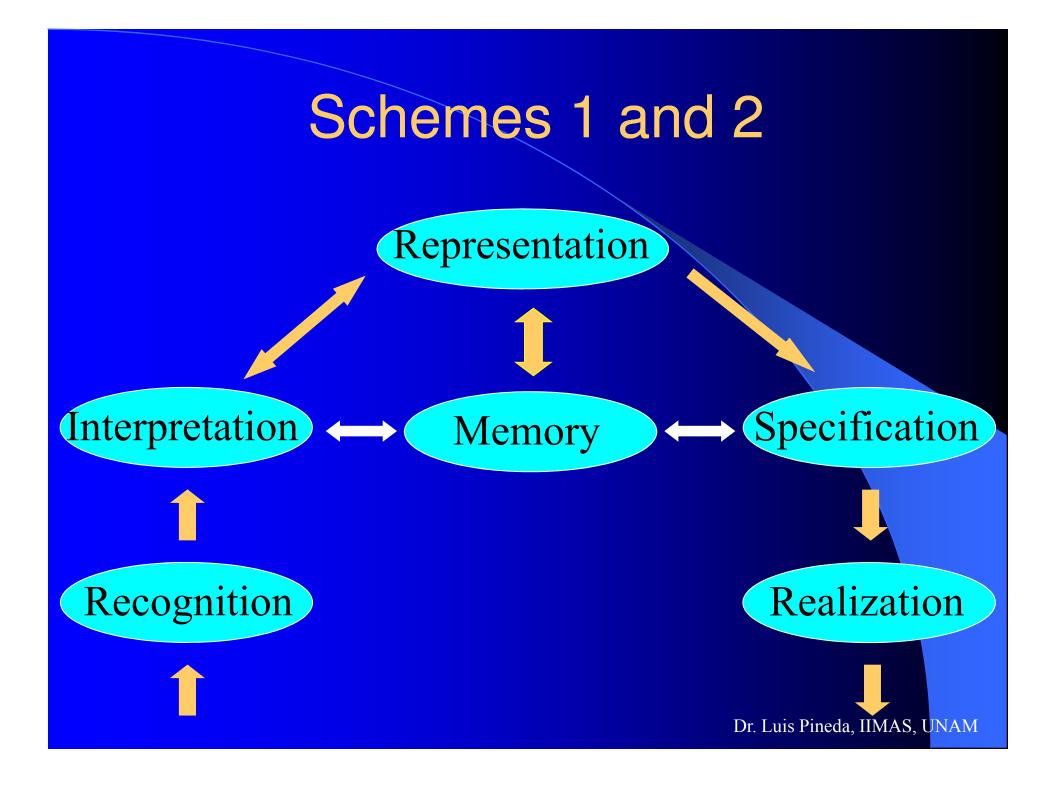
... Add internal square!

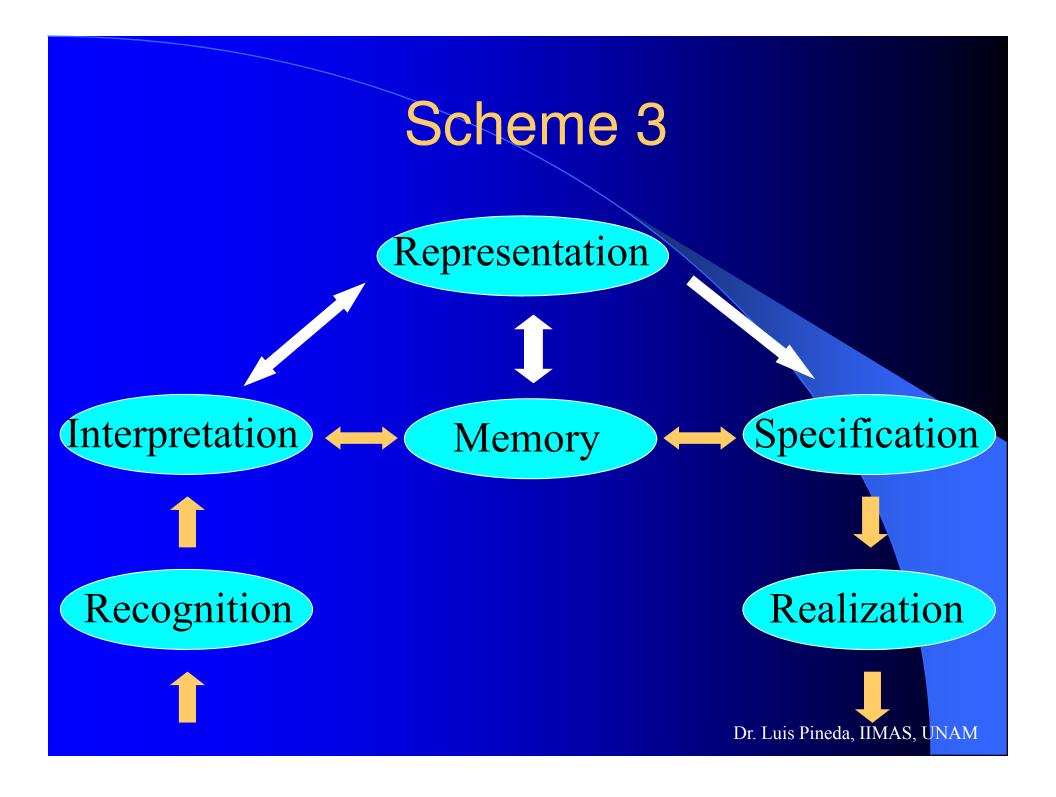
First area preserving transformation...

Second area preserving transformation





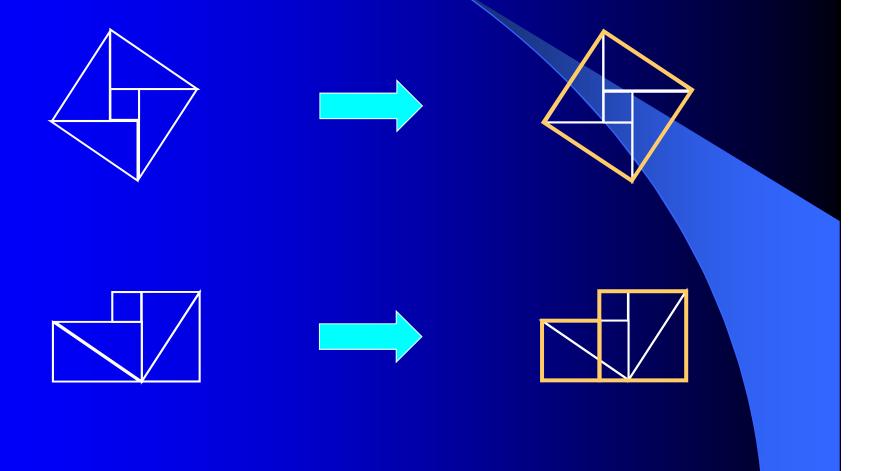




The theory...

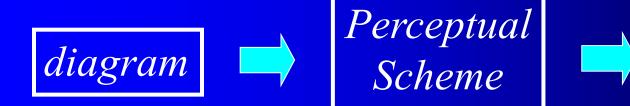
Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation

The *re*-interpretations and "emerging" objects



A change in the conceptual perspective!

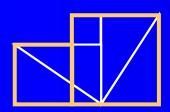
A problem of description...



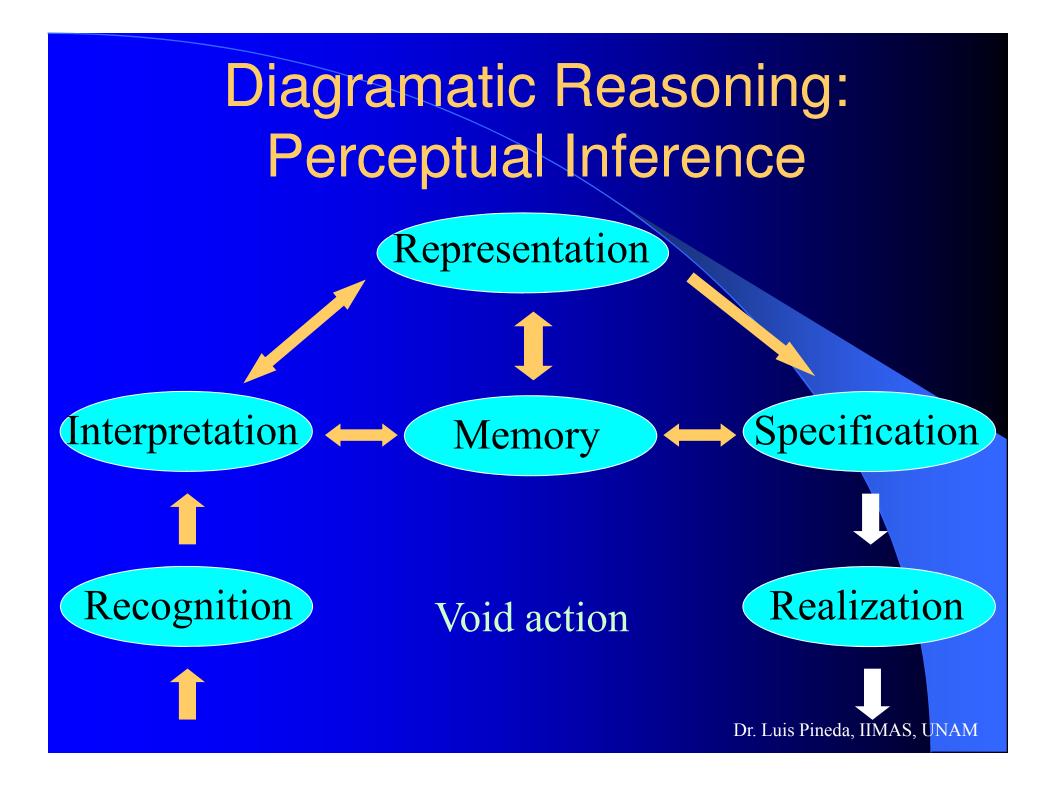
A perceptual inference?

We need the relevant description

A square on the hypotenuse of a right-triangle



The union of a square on a right side of a right triangle and a square on the other right side of the same right triangle



The theory...

Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation

Concepts

- Concepts (i.e. knowlegde objects) can be represented in computers
- Turing Machines campute functions
- So, concepts are represented through functions
- The challange is to find such functions
- In the present case, the functions representing geometric and arithmetic concepts that are expressed through diagrams!

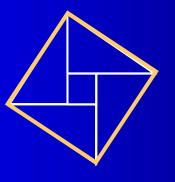
Geometric description machinery

- A geometric signature to refer to geometric objects, properties and relations
- The functional abstractor operator to express geometric concepts
- A geometric descriptor operator to refer to (contextually dependent) emerging objects:

 $T \leq f$

-If f(A) is true (T <= f) = T where T is a term of any geometric sort which contains (possible) variables in f

Generic description

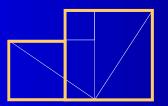


- Description: $y \le f_1$
- where:

 $f_1 = \lambda x \lambda y.right_triang(x) \& square(y) \& side(hipotenuse(x), y)$

Generic description

• Diagram:



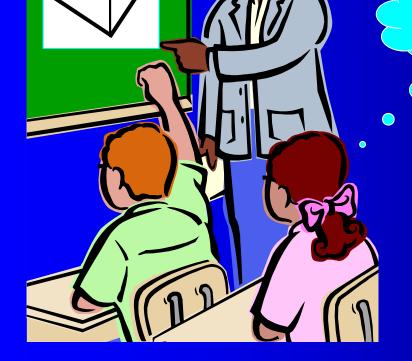
- Description:
 - $union(y, z) \leq f_2$

where:

 $f_2 = \lambda x \lambda y \lambda z.right_triang(x) \& square(y) \& square(z) \& side(side_a(x), y) \& side(side_b(x), z)$

Diagrams and descriptions

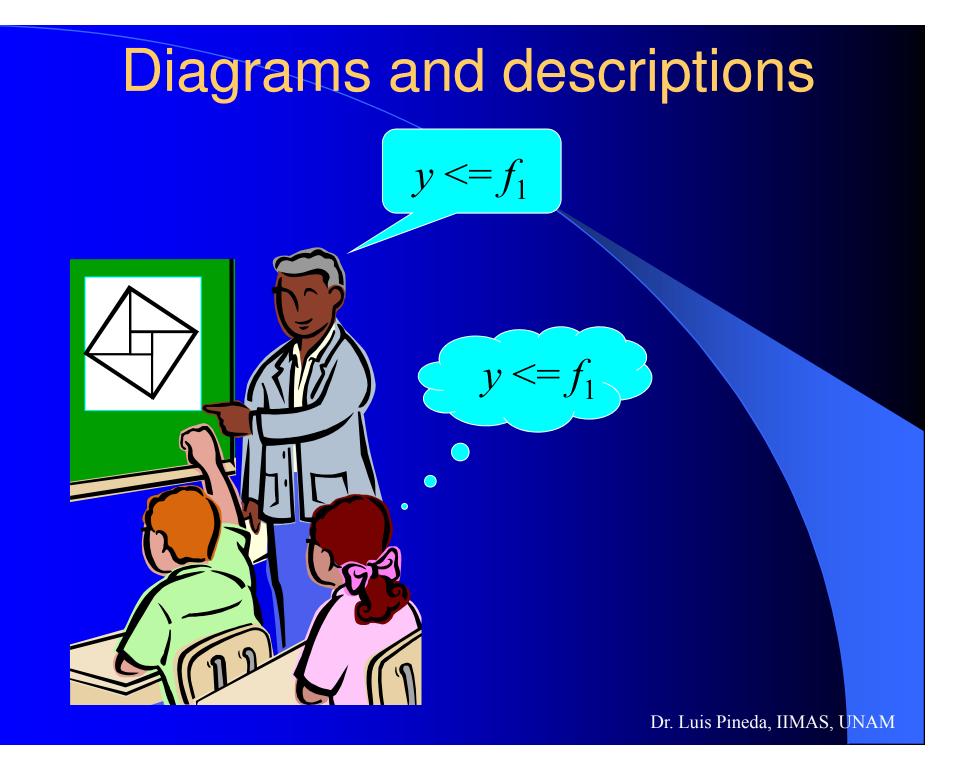
A square on the hypotenuse of a right-triangle



Descriptions as internal Representations?

Diagrams and descriptions

A square on the hypotenuse of a right-triangle



Functions represent meanings!

A square on the hypotenuse of a right-triangle

Meaning

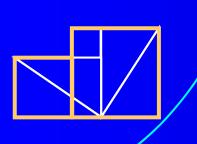
 $y \le f_1$ represents a generic concept!

The theory...

Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation

We need to state a property holds for different diagrams...

<u>Area of</u> a square on the hypotenuse of a right-triangle



<u>Area of the union of a square on a</u> right side of a right triangle and a square on the other right side of the same right triangle

This is a relation between generic descriptions...

Conservation principles

- Generalized concept of equality for geometrical properties
- <u>Global</u> principle of conservation of area:

 $\lambda P \lambda Q(area(P) = area(Q))$

rotate

• The application of the principle is granted if the action scheme producing the transformation preserves the conservation property

• Structured principle of conservation of area: $\lambda P \lambda Q \lambda x (area(P(x)) = area(Q(x))$

P and *Q* are generic descriptions of geometrical objects or configurations *x* is a generic reference object

 An interpretation act (under the appropriate conditions) is represented by a functional application operation!

Synthesis of geometric concepts

$\lambda P \lambda Q \lambda x(area(P(x)) = area(Q(x))(y <= f_1)$

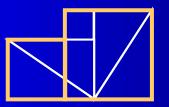
Synthesis of geometric concepts

$\lambda Q\lambda x(area(y \le f_1(x)) = area(Q(x)))$

$\lambda Q\lambda x(area(y \le f_1(x)) = area(Q(x))(union(y, z) \le f_2)$

The application is permitted if the the diagram is modified by an area preserving (sequence of) transformation

Synthesis of geometric concepts



$\lambda x(area(y \le f_1(x)) = area(union(y, z) \le f_2(x))$

The function representing the geometric concept of the Theorem of Pythagoras!

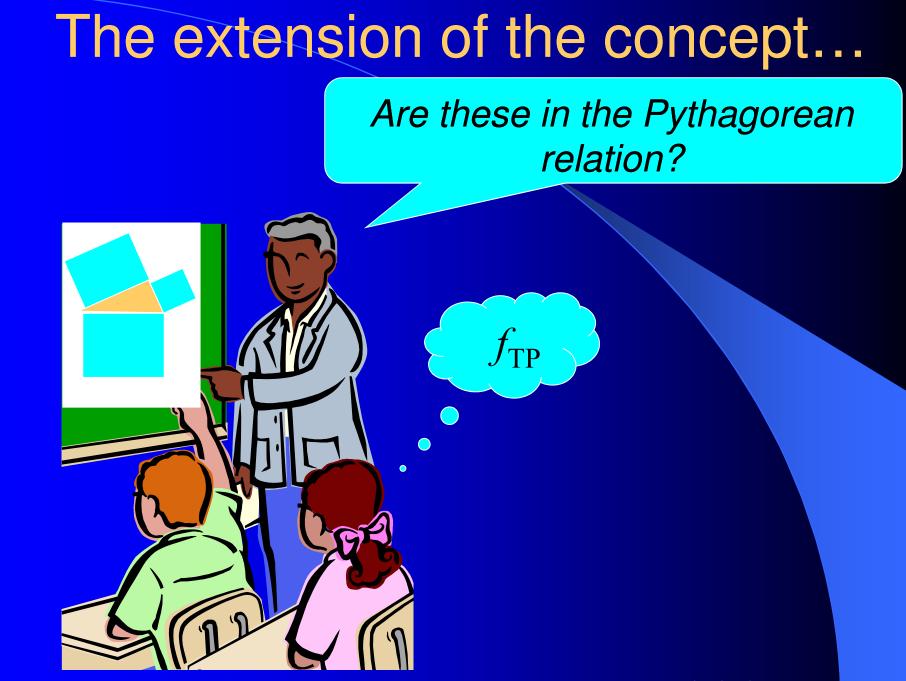
The geometric concept

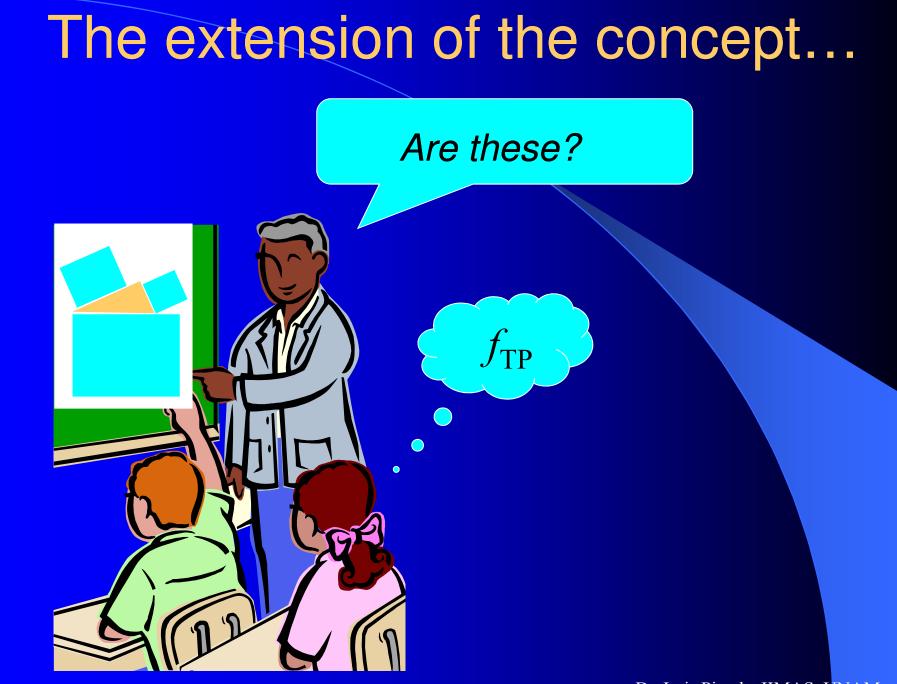
 $f_{\text{TP}} = \lambda x (area((w \le f_1)(x)) = area((union(y, z) \le f_2)(x)))$

Where:

 $f_1 = \lambda x \lambda y.right_triang(x) \& square(y) \& side(hipotenuse(x), y)$

 $f_2 = \lambda x \lambda y \lambda z.right_triang(x) \& square(y) \& square(z) \& side(side_a(x), y) \& side(side_b(x), z)$





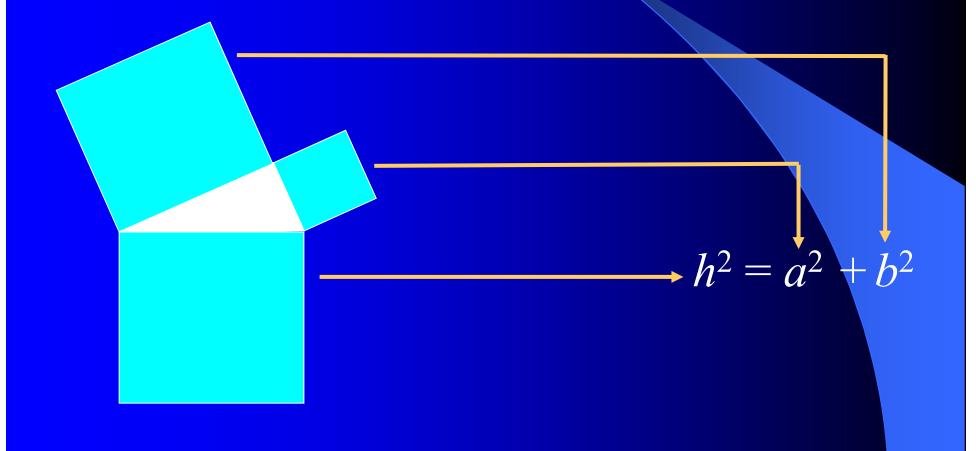
Representation of meanings!

The area on the hypotenuse of a right triangle is the same as the area of the union of the squares on its right sides

The theory...

Action schemes (a synthetic machinery)
A notion of *re*-interpretation
A geometric description machinery
Conservation principles
The arithmetic interpretation

A mapping from the geometry into the arithmetic



The representation function

 $\phi(x \le f) = \lambda u.u^2 \text{ if the type of } x \text{ in } f \text{ is } sq$ $\phi(union) = +$ $\phi(g(y_1, y_2) \le f) = \phi(g)(\phi(y_1 \le f), \phi(y_2 \le f))$

The mapping

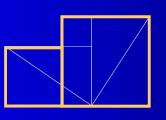
Diagram:

The arithmetic concept:

 $\phi(y \le f_1) = \lambda u.u^2$

The mapping...

The diagram:



The arithmetic concept:

 $\phi(union(y, z) \le f_2) = \lambda v \cdot v^2 + \lambda w \cdot w^2$

The mapping

The geometric principle: - λΡλQλx(area(P(x)) = area(Q(x)))
The arithmetic principle: - λΡλQ(P = Q)
Concept of global aritmetic equality!

Diagrammatic Derivations

A three-tier tandem process

The synthesis of geometric form
The synthesis of the geometric concept
The synthesis of the arithmetic concept

• Diagram:

Principle of conservation of area: - λΡλQλx(area(P(x)) = area(Q(x))
Concept of the global arithmetic equality: - λΡλQ(P = Q)

Principle of conservation of area: - λΡλQλx(area(P(x)) = area(Q(x))
Concept of the global arithmetic equality: - λΡλQ(P = Q)

• Diagram:

Principle of conservation of area: - λΡλQλx(area(P(x)) = area(Q(x))
Concept of the global arithmetic equality: - λΡλQ(P = Q)

Principle of conservation of area: - λΡλQλx(area(P(x)) = area(Q(x))
Concept of the global arithmetic equality: - λΡλQ(P = Q)

Principle of conservation of area: - λΡλQλx(area(P(x)) = area(Q(x))
Concept of the global arithmetic equality: - λΡλQ(P = Q)

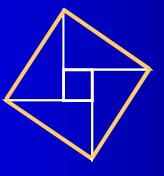
First reinterpretation

• Reinterpretations preserve area:

• Concepts construction: $-\lambda P\lambda Q\lambda x(area(P(x)) = area(Q(x))(w <= f_1))$ $-\lambda P\lambda Q(P = Q)(\lambda u.u^2)$

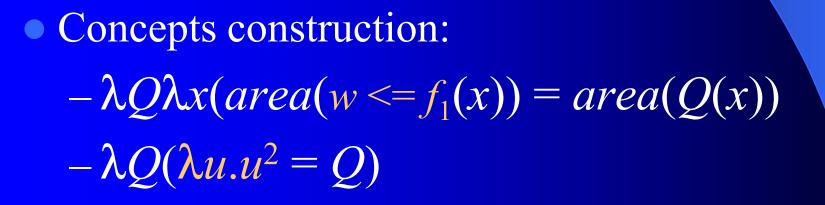
First reinterpretation

• Reinterpretation:



• Concepts construction: $-\lambda Q\lambda x(area(w \le f_1(x)) = area(Q(x)))$ $-\lambda Q(\lambda u.u^2 = Q)$

• Diagram:

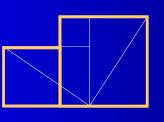


• Diagram:

• Concepts construction: $-\lambda Q\lambda x(area(w \le f_1(x)) = area(Q(x)))$ $-\lambda Q(\lambda u.u^2 = Q)$

Second reinterpretation

• Reinterpretation:

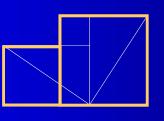


• Concepts construction:

- $-\lambda Q\lambda x(area(w \le f_1(x)) = area(Q(x))(union(y, z) \le f_2)$
- $-\lambda Q(\lambda u.u^2 = Q)(+(\lambda v.v^2, \lambda w.w^2))$

Second reinterpretation

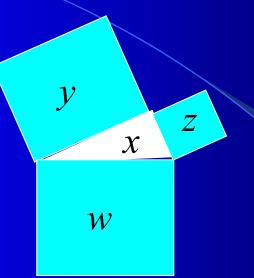
• Reinterpretation:



• Concepts construction:

- $-\lambda x(area(w \le f_1(x)) = area(union(y, z) \le f_2(x))$
- $-\lambda u.u^2 = +(\lambda v.v^2, \lambda w.w^2)$

Program transformation rules



 $\lambda x. \lambda w. \lambda y, z. (area((w \le f_1)(x, w)) = area((union(y, z) \le f_2)(x, (y, z)))$

 $\lambda u, v, w. u^2 = v^2 + w^2$

Questions about diagrams

What is their expressive power
Why can they be interpreted so effectively
What is the relation between logic and diagrammatic reasoning

Questions about diagrams

What is their expressive power
Why can they be interpreted so effectively
What is the relation between logic and diagrammatic reasoning

Diagrams and abstraction

- A common view is that diagrams are good for expressing concrete information but...
- There is a limitation in the abstractions that can be expressed
- The theory of graphical specificity (Stenning and Oberlander, 1995)

We can have concrete interpretations...

Diagram:

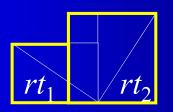
• Description:

sq₁ <= right-triangle(rt₁) & square(sq₁) &
 side(hipotenuse(rt₁), sq₁)

... and deal with the ambiguity!

We can limit the expressive power of the representational language...

Diagram:



Descripción:

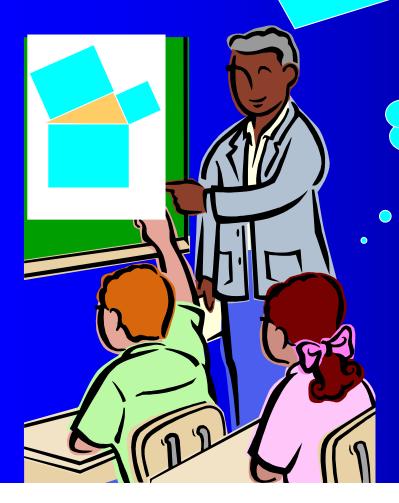
 $union(sq_1, sq_2) \le right_triang(rt_1) \& right_triang(rt_2) \& square(sq_1) \& square(sq_2) \& side(side_a(rt_1), sq_1) \& side(side_b(rt_2), sq_2)$

and face the limitations of the medium line

Representation of meanings

The area on the hypotenuse of a right triangle is the same as the area of the union of the squares on its right sides

 $f_{\rm TP}$



Through the *lambda calculus* we represent <u>interpretations of</u> <u>diagrams</u>

NOT diagrama shis, unam

Diagrams and abstraction

- The present theory shows that diagrams can be given generic (fully abstract) interpretations!
- A representation is specified through:
 - The external symbols and configurations
 - <u>The interpretation process</u>
 - The language to represent the interpretations <u>does</u> not need to have a limited expressivity (e.g. propositional logic)
 - Diagrammatic proofs are genuine proofs!

Questions about diagrams

What is their expressive power
Why can they be interpreted so effectively
What is the relation between logic and diagrammatic reasoning

Reasoning with concrete representations

- Vision provides concrete interpretations of shapes directly
- Easy... if the problem has a concrete nature!
- Concrete problems can often be expressed through diagrams

 But, if the problem demands abstraction (e.g. an infinite number of instances) concrete resources (memory and computational time) run out very quickly!

Abstractions capture change implicitly!

• Two dimensions of change:

- The parameters of the diagrammatic objects
- Different diagrammatic configurations that have the same description (i.e. equivalent in relation to the task)

Abstractions account for equivalent objects!

• Diagram:

- Description: $y \le f_1$
- where:

 $f_1 = \lambda x \lambda y.right_triang(x) \& square(y) \& side(hipotenuse(x), y)$

Abstractions account for equivalent objects!

• Diagram:

• Description:

 $union(y, z) \leq f_2$

where:

 $f_{2} = \lambda x \lambda y \lambda z.right_triang(x) \& square(y) \& square(z) \& side(side_a(x), y) \& side(side_b(x), z) \& side(sid$

Diagrammatic reasoning is monotonic!

• In spite of the change in the geometric form and regardless the values of the parameters of diagrammatic objects, the synthesis of the geometric and arithmetic processes is monotonic

Reading a diagrammatic sequence!

Incremental interpretation:

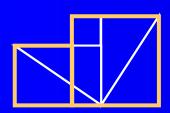
- every man is mortal
- $-\lambda P \lambda Q \lambda x (P(x) \supset Q(x)) (man) (mortal)$
- $-\lambda Q\lambda x(\max(x) \supset Q(x))(\max(x))$
- $-\lambda x(\max(x) \supset \operatorname{mortal}(x))$
- There is not a change to account for!
- Natural language quantifiers can be seen as conservation principles!

Reasoning with abstractions is easy!

• Abstractions are small finite representational objects (that represent interpretations) that can be used in thought process as units, but have a very large, perhaps infinite, extension

What is hard is to produce the relevant abstractions!

A square on the hypotenuse of a right-triangle



The union of a square on a right side of a right triangle and a square on the other right side of the same right triangle

Abstracting on concrete descriptions?

 $duck_1 \leq duck(duck_1)$?

Constructing the abstraction directly!

 $x \leq \lambda x.duck(x)$

Generation of abstract descriptions ...

The extensional representation
Visualisations (i.e. Reinterpretations)
Domain knowlege (e.g. Geometry)
Knowledge about the aims of the task (e.g. theorem proving and discovery)

Perceptual inference

Questions about diagrams

What is their expressive power
Why can they be interpreted so effectively
What is the relation between logic and diagrammatic reasoning

The axiomatic method

Proposition 47, Euclid's Elements

The axiomatic method

A simpler problem!

Reinterpretations

- Enrich the problem-solving space
- Interesting emerging objects belong to the enriched space
- The recognition of emerging objects depends on the interpretation process, but also on the nature of the external representation!
- The process is genuinely synthetic and synthesized objects cannot be found through analysis!

The paper:

Luis A. Pineda, Conservation principles and action schemes in the synthesis of geometric concepts, *Artificial Intelligence* 171 (March, 2007) 197-238.

Thanks very much!