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Deep
Learning’s
DIMINISHING
RETURNS
The cost of improvement is becoming 
unsustainable

deep learning is now being used to translate 
between languages, predict how proteins fold, ana-
lyze medical scans, and play games as complex as 
Go, to name just a few applications of a technique 
that is now becoming pervasive. Success in those 
and other realms has brought this machine-learning 
technique from obscurity in the early 2000s to dom-
inance today. • Although deep learning’s rise to 
fame is relatively recent, its origins are not. In 1958, back when mainframe 
computers filled rooms and ran on vacuum tubes, knowledge of the 
interconnections between neurons in the brain inspired Frank Rosenblatt 
at Cornell to design the first artificial neural network, which he pre-
sciently described as a “pattern-recognizing device.” But Rosenblatt’s 
ambitions outpaced the capabilities of his era—and he knew it. Even his 
inaugural paper was forced to acknowledge the voracious appetite of 
neural networks for computational power, bemoaning that “as the 
number of connections in the network increases...the burden on a con-
ventional digital computer soon becomes excessive.” • Fortunately for 
such artificial neural networks—later rechristened “deep learning” when
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they included extra layers of neurons—
decades of Moore’s Law and other improve-
ments in computer hardware yielded a 
roughly 10-million-fold increase in the 
number of computations that a computer 
could do in a second. So when researchers 
returned to deep learning in the late 2000s, 
they wielded tools equal to the challenge.

These more-powerful computers made 
it possible to construct networks with vastly 
more connections and neurons and hence 
greater ability to model complex phenom-
ena. Researchers used that ability to break 
record after record as they applied deep 
learning to new tasks.

While deep learning’s rise may have been 
meteoric, its future may be bumpy. Like 
Rosenblatt before them, today’s deep- 
learning researchers are nearing the frontier 
of what their tools can achieve. To under-
stand why this will reshape machine learn-
ing, you must first understand why deep 
learning has been so successful and what it 
costs to keep it that way.

 
deep learning is a modern incarnation 
of the long-running trend in artificial intel-
ligence that has been moving from stream-
lined systems based on expert knowledge 
toward flexible statistical models. Early AI 
systems were rule based, applying logic and 
expert knowledge to derive results. Later 
systems incorporated learning to set their 
adjustable parameters, but these were usu-
ally few in number.

Today’s neural networks also learn 
parameter values, but those parameters are 
part of such flexible computer models that—
if they are big enough—they become univer-
sal function approximators, meaning they can fit 
any type of data. This unlimited flexibility is the 
reason why deep learning can be applied to so many 
different domains.

The flexibility of neural networks comes from 
taking the many inputs to the model and having the 
network combine them in myriad ways. This means 
the outputs won’t be the result of applying simple 
formulas but instead immensely complicated ones.

For example, when the cutting-edge image- 
recognition system Noisy Student converts the 
pixel values of an image into probabilities for 
what the object in that image is, it does so using 
a network with 480 million parameters. The 
training to ascertain the values of such a large 

number of parameters is even more remarkable 
because it was done with only 1.2 million labeled 
images—which may understandably confuse 
those of us who remember from high school alge-
bra that we are supposed to have more equations 
than unknowns. Breaking that rule turns out to 
be the key.

Deep-learning models are overparameterized, 
which is to say they have more parameters than there 
are data points available for training. Classically, this 
would lead to overfitting, where the model not only 
learns general trends but also the random vagaries 
of the data it was trained on. Deep learning avoids 
this trap by initializing the parameters randomly and 
then iteratively adjusting sets of them to better fit the 

Extrapolating the gains of recent years might suggest that by 
2025 the error level in the best deep-learning systems designed 
for recognizing objects in the ImageNet data set should be 
reduced to just 5 percent [top]. But the computing resources and 
energy required to train such a future system would be enormous, 
leading to the emission of as much carbon dioxide as New York 
City generates in one month [bottom].
SOURCE: N.C. THOMPSON, K. GREENEWALD, K. LEE, G.F. MANSO
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The expert-system approach to this problem 
would be to have people who are knowledgeable in 
radiology and oncology specify the variables they 
think are important, allowing the system to examine 
only those. The flexible-system approach is to test 
as many of the variables as possible and let the 
system figure out on its own which are important, 
requiring more data and incurring much higher com-
putational costs in the process.

Models for which experts have established the 
relevant variables are able to learn quickly what 
values work best for those variables, doing so with 
limited amounts of computation—which is why they 
were so popular early on. But their ability to learn 
stalls if an expert hasn’t correctly specified all the 
variables that should be included in the model. In 
contrast, flexible models like deep learning are less 
efficient, taking vastly more computation to match 
the performance of expert models. But, with enough 
computation (and data), flexible models can outper-
form ones for which experts have attempted to spec-
ify the relevant variables.

clearly, you can get improved performance 
from deep learning if you use more computing 
power to build bigger models and train them with 
more data. But how expensive will this computa-
tional burden become? Will costs become suffi-
ciently high that they hinder progress?

To answer these questions in a concrete way, 
we recently gathered data from more than 1,000 
research papers on deep learning, spanning the 
areas of image classification, object detection, 
question answering, named-entity recognition, 
and machine translation. Here, we will only dis-
cuss image classification in detail, but the lessons 
apply broadly.

Over the years, reducing image-classification 
errors has come with an enormous expansion in 
computational burden. For example, in 2012 
AlexNet, the model that first showed the power of 
training deep-learning systems on graphics process-
ing units (GPUs), was trained for five to six days 
using two GPUs. By 2018, another model, NASNet-A, 

data using a method called stochastic gradient 
descent. Surprisingly, this procedure has been proven 
to ensure that the learned model generalizes well. 

The success of flexible deep-learning models can 
be seen in machine translation. For decades, soft-
ware has been used to translate text from one lan-
guage to another. Early approaches to this problem 
used rules designed by grammar experts. But as 
more textual data became available in specific lan-
guages, statistical approaches—ones that go by such 
esoteric names as maximum entropy, hidden 
Markov models, and conditional random fields—
could be applied.

Initially, the approaches that worked best for 
each language differed based on data availability 
and grammatical properties. For example, rule-
based approaches to translating languages such as 
Urdu, Arabic, and Malay outperformed statistical 
ones—at first. Today, all these approaches have been 
outpaced by deep learning, which has proven itself 
superior almost everywhere it’s applied.

So the good news is that deep learning provides 
enormous flexibility. The bad news is that this flex-
ibility comes at an enormous computational cost. 
This unfortunate reality has two parts.

The first part is true of all statistical models: To 
improve performance by a factor of k, at least k2 

more data points must be used to train the model. 
The second part of the computational cost comes 
explicitly from overparameterization. Once 
accounted for, this yields a total computational cost 
for improvement of at least k4. That little 4 in the 
exponent is very expensive: A 10-fold improvement, 
for example, would require at least a 10,000-fold 
increase in computation.

To make the flexibility-computation trade-off 
more vivid, consider a scenario where you are trying 
to predict whether a patient’s X-ray reveals cancer. 
Suppose further that the true answer can be found 
if you measure 100 details in the X-ray (often called 
variables or features). The challenge is that we don’t 
know ahead of time which variables are important, 
and there could be a very large pool of candidate 
variables to consider.

“AI is fundamentally an applied technology that’s going to serve 
our society. Humanistic AI not only raises the awareness of the 
importance of the technology, it’s a really important way to attract 
diverse students, technologists, and innovators to participate.”
FEI-FEI LI, codirector of the Stanford Institute for Human-Centered AI
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had cut the error rate of AlexNet in half, but it used 
more than 1,000 times as much computing to 
achieve this.

Our analysis of this phenomenon also allowed 
us to compare what actually happened with the-
oretical expectations. Theory tells us that com-
puting needs to scale with at least the fourth 
power of the improvement in performance. In 
practice, the actual requirements have scaled with 
at least the ninth power.

This ninth power means that to halve the error 
rate, you can expect to need more than 500 times 
the computational resources. That’s a devastat-
ingly high price. There may be a silver lining here, 
however. The gap between what’s happened in 
practice and what theory predicts might mean that 
there are still undiscovered algorithmic improve-
ments that could greatly improve the efficiency of 
deep learning.

As we noted, Moore’s Law and other hardware 
advances have provided massive increases in chip 
performance. Does this mean that the escalation in 
computing requirements doesn’t matter? Unfortu-
nately, no. Of the 1,000-fold difference in the com-
puting used by AlexNet and NASNet-A, only a 
sixfold improvement came from better hardware; 
the rest came from using more processors or run-
ning them longer, incurring higher costs.

Having estimated the computational cost- 
performance curve for image recognition, we can 
use it to estimate how much computation would be 
needed to reach even more impressive performance 
benchmarks in the future. For example, achieving a 
5 percent error rate would require 1019 billion 
floating- point operations.

Important work by scholars at the University of 
Massachusetts Amherst allows us to understand 
the economic cost and carbon emissions implied by 
this computational burden. The answers are grim: 
Training such a model would cost US $100 billion 
and would produce as much carbon emissions as 
New York City does in a month. And if we estimate 
the computational burden of a 1 percent error rate, 
the results are considerably worse.

Is extrapolating out so many orders of mag-
nitude a reasonable thing to do? Yes and no. Cer-
tainly, it is important to understand that the 
predictions aren’t precise, although with such 
eye-watering results, they don’t need to be to 
convey the overall message of unsustainability. 
Extrapolating this way would be unreasonable if 
we assumed that researchers would follow this 
trajectory all the way to such an extreme out-
come. We don’t. Faced with skyrocketing costs, 
researchers will either have to come up with 
more efficient ways to solve these problems, or 
they will abandon working on these problems 
and progress will languish.

On the other hand, extrapolating our results is 
not only reasonable but also important, because 
it conveys the magnitude of the challenge ahead. 
The leading edge of this problem is already 
becoming apparent. When Google subsidiary 
DeepMind trained its system to play Go, it was 
estimated to have cost $35 million. When 
DeepMind’s researchers designed a system to play 
the StarCraft II video game, they purposefully 
didn’t try multiple ways of architecting an import-
ant component, because the training cost would 
have been too high.

At OpenAI, an important machine-learning think 
tank, researchers recently designed and trained a 
much-lauded deep-learning language system called 
GPT-3 at the cost of more than $4 million. Even 
though they made a mistake when they implemented 
the system, they didn’t fix it, explaining simply in a 
supplement to their scholarly publication that “due 
to the cost of training, it wasn’t feasible to retrain 
the model.”

Even businesses outside the tech industry are 
now starting to shy away from the computational 
expense of deep learning. A large European super-
market chain recently abandoned a deep-learning-
based system that markedly improved its ability to 
predict which products would be purchased. The 
company executives dropped that attempt because 
they judged that the cost of training and running the 
system would be too high.

“Those of us in machine learning are really good at doing well on 
a test set, but unfortunately deploying a system takes more than 
doing well on a test set. All of AI…has a proof-of-concept-to-
production gap.” ANDREW NG, CEO and cofounder of Landing AI
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We must 
either adapt 
how we 
do deep 
learning 
or face a 
future of 
much slower 
progress.

faced with rising economic and environmental 
costs, the deep-learning community will need to find 
ways to increase performance without causing com-
puting demands to go through the roof. If they don’t, 
progress will stagnate. But don’t despair yet: Plenty 
is being done to address this challenge.

One strategy is to use processors designed spe-
cifically to be efficient for deep-learning calcula-
tions. This approach was widely used over the last 
decade, as CPUs gave way to GPUs and, in some 
cases, field-programmable gate arrays and 
application- specific ICs (including Google’s Tensor 
Processing Unit). Fundamentally, all of these 
approaches sacrifice the generality of the computing 
platform for the efficiency of increased specializa-
tion. But such specialization faces diminishing 
returns. So longer-term gains will require adopting 
wholly different hardware frameworks—perhaps 
hardware that is based on analog, neuromorphic, 
optical, or quantum systems. Thus far, however, 
these wholly different hardware frameworks have 
yet to have much impact.

Another approach to reducing the computational 
burden focuses on generating neural networks that, 
when implemented, are smaller. This tactic lowers 
the cost each time you use them, but it often 
increases the training cost (what we’ve described 
so far in this article). Which of these costs matters 
most depends on the situation. For a widely used 
model, running costs are the biggest component of 
the total sum invested. For other models—for exam-
ple, those that frequently need to be retrained— 
training costs may dominate. In either case, the total 
cost must be larger than just the training on its own. 
So if the training costs are too high, as we’ve shown, 
then the total costs will be, too.

And that’s the challenge with the various tactics 
that have been used to make implementation 
smaller: They don’t reduce training costs enough. 
For example, one allows for training a large net-
work but penalizes complexity during training. 
Another involves training a large network and then 
“prunes” away unimportant connections. Yet 
another finds as efficient an architecture as possi-
ble by optimizing across many models—something 
called neural- architecture search. While each of 
these techniques can offer significant benefits for 
implementation, the effects on training are muted—
certainly not enough to address the concerns we 
see in our data. And in many cases they make the 
training costs higher.

One up-and-coming technique that could reduce 
training costs goes by the name meta-learning. The 
idea is that the system learns on a variety of data 

and then can be applied in many areas. For example, 
rather than building separate systems to recognize 
dogs in images, cats in images, and cars in images, 
a single system could be trained on all of them and 
used multiple times.

Unfortunately, recent work by Andrei Barbu of 
MIT has revealed how hard meta-learning can be. 
He and his coauthors showed that even small dif-
ferences between the original data and where you 
want to use it can severely degrade performance. 
They demonstrated that current image- 
recognition systems depend heavily on things like 
whether the object is photographed at a particular 
angle or in a particular pose. So even the simple 
task of recognizing the same objects in different 
poses causes the accuracy of the system to be 
nearly halved.

 Benjamin Recht of the University of California, 
Berkeley, and others made this point even more 
starkly, showing that even with novel data sets pur-
posely constructed to mimic the original training 
data, performance drops by more than 10 percent. 
If even small changes in data cause large perfor-
mance drops, the data needed for a comprehensive 
meta-learning system might be enormous. So the 
great promise of meta-learning remains far from 
being realized.

Another possible strategy to evade the compu-
tational limits of deep learning would be to move to 
other, perhaps as-yet-undiscovered or underappre-
ciated types of machine learning. As we described, 
machine-learning systems constructed around the 
insight of experts can be much more computation-
ally efficient, but their performance can’t reach the 
same heights as deep-learning systems if those 
experts cannot distinguish all the contributing fac-
tors. Neuro-symbolic methods and other techniques 
are being developed to combine the power of expert 
knowledge and reasoning with the flexibility often 
found in neural networks.

Like the situation that Rosenblatt faced at the 
dawn of neural networks, deep learning is today 
becoming constrained by the available computa-
tional tools. Faced with computational scaling that 
would be economically and environmentally ruin-
ous, we must either adapt how we do deep learning 
or face a future of much slower progress. Clearly, 
adaptation is preferable. A clever breakthrough 
might find a way to make deep learning more effi-
cient or computer hardware more powerful, which 
would allow us to continue to use these extraordi-
narily flexible models. If not, the pendulum will likely 
swing back toward relying more on experts to iden-
tify what needs to be learned.  ■
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