
The geometric calculator

Luis A. Pineda

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS)

Universidad Nacional Autónoma de México (UNAM)

Ciudad Universitaria, México, D. F., México

e-mail: <luis@leibniz.iimas.unam.mx>

Abstract

In this paper a geometric calculator is presented. A language of geometrical expressions, that are

evaluated by the calculator, and the design and implementation of its interpreter is also presented.

Geometrical expressions correspond to abstract data-types that can be defined dynamically

through composition operations. Diagrams can be represented by a set of geometrical expressions,

and the geometrical properties of a diagram or a diagram sequence can be computed through the

calculator. The expressive power of the tool is illustrated with two applications: the generation of

design patterns, and a simple but interesting case of geometrical constraint satisfaction.

Keywords: geometric calculator, geometrical languages, geometric abstract data-types,

geometrical interpretation, diagrammatic representation, shape grammars, geometric constraint

satisfaction.

1. The geometric calculator

In the same way that arithmetic calculators return the value of arithmetic expressions, a geometric calculator is a

program that given a geometrical operation over a number of geometrical objects, returns an object of an

appropriate geometrical type as its value. Also, in the same way that composite arithmetic expression result from

the combination of a number of operators with their corresponding arguments, basic geometrical symbols and

operators can be combined in the definition of composite geometrical expressions. Consider the drawing in

Figure 1:

Examples of geometrical expressions that can be evaluated by the geometric calculator in relation to this

drawing are:

(1) is_line(line(d0, d1))

(2) perpendicular(l1, l2)

(3) parallel(l1, l2)

(4) intersect(l1, l2)

(5) symmetrical(triangle(d1, d3, intersect(l1, l2)), l0)

(6) di = intersect(l1, l2)

Expression (1) is a type predicate that verifies that a geometrical object is well-formed (i.e. a line must have a

length); expression (2) is true and (3) false in relation to the diagram; expressions (4) and (5) are functional

constructors that have as their values the dot at the intersection between lines l1 and l2 and the triangle that

Figure 1

d0

d2
d1

d3 l1

l2

l0

 2

results from computing the axial symmetry of the triangle formed by d1, d3 and the intersection dot in relation

the axis l0, as shown in Figure 2; expression (6) predicates the geometrical equality between two objects of same

type, and can be true or false depending on the positions of the dots in question.

The geometrical calculator evaluates a geometrical expression in relation to a geometrical environment

constituted by a set of geometrical symbols, in the same way that programming languages interpreters evaluate

expressions in relation to a programming environment, as illustrated in Figure 3. In the example, the geometrical

environment is the set {d0, d1, d2, d3, l0, l1, l2}, and the symmetrical triangle and intersection dot are constructed

in relation to this set.

The geometrical environment can be empty; in this case, the meaning or semantic value of a geometrical

expression is simply the description of a geometrical object in the geometric domain, with no reference to any

particular geometrical configuration or its graphical realization in a diagram.

Geometrical expressions have extensional values (i.e. the values of properties and relations of geometrical

objects in the evaluation state), and the evaluation process returns these values; consequently, geometrical

objects can be represented or depicted through graphical symbols in a rendering process. However, the identity

of geometrical objects does not depend on the values of their properties in any particular state: if the position of

d3 in Figure 2 is altered as shown in Figure 4 (e.g. by dragging it to a new position with a graphical cursor in a

typical interactive manipulation) the identity of the dot is preserved; in the change process, objects defined in

terms of other objects can also be altered, like the line l2 whose definition includes the identifier of the modified

dot, and the intersection dot and symmetrical triangle, whose descriptions include references to other objects;

more generally, definitions (1) to (6) are intensional as the properties and relations of the objects represented

through these expressions depend not only of geometrical algorithms but also on properties of the basic objects

(i.e. defined extensionally) in the environment in evaluation state.

The expressive power of a geometric calculator depends on the set geometrical sorts (e.g. dot, line, path, right-

triangle, triangle, square, rectangle, polygon), and in the richness and variety of predicates and function symbols

defined in the language. Our present implementation includes, in addition to the basic constructors for every

geometrical type, type predicates, equality predicates, geometrical predicates (e.g. horizontal, vertical, parallel,

Geometrical

Interpreter
g-exp, g-env g-value

Figure 3. Geometrical interpretation process

Figure 2

d0

d2
d1

d3 l1

l2

l0

d3

Figure 4

d0

d2
d1

l1

l2

l0

 3

perpendicular, etc.), property selectors (e.g. position of a dot, length or angle of a line, dot at the intersection

between two lines, or the dot at the extreme or “t” joint between two lines), rotations, translations and

symmetrical operations over an object with respect to a given reference, etc. We also include a facility for

defining geometrical functions that can be applied to geometrical objects on demand.

Interactive graphics editing operations, graphics design, diagrammatic problem-solving and theorem-proving

require the representation of diagrammatic sequences; in these kinds of applications each state in a sequence

may be represented by an environment. Environments should only include the geometrical objects relevant for

the task at hand, and can be thought of as the objects that are attended to by the interpreter in the problem-

solving task. Also, a diagram sequence is normally spatially coherent, and only the values of a few properties of

a subset of objects in the environment differ from one state to the next in the sequence. For instance, the

difference between the environment for Figures 2 and 4 is the coordinate position of d3; the length of l2 and the

properties of the intersection dot and the symmetrical triangle are also altered, but the values of these

expressions are implicit in their intensional definitions, which remain the same along the change process, and are

only evaluated on demand. For all these reasons, the geometric calculator, with its ability to deal with

intensional representations of geometrical objects, is a tool suitable for the definition of intelligent graphics,

diagrammatic problem-solvers and theorem-provers in IA.

2. The geometrical Language

In this section, the syntax and semantics of the language evaluated by geometric calculator is presented. The

definition includes a strategy to handle geometrical expressions that have no well-defined referent in an

interpretation state; we also show the definition of the interpretation environment, and how geometrical objects

can be given extensional and also intensional definitions. Finally, we present the interpretation strategy.

2.1 Syntax

We first define an ordered and sorted set of geometrical objects; the geometrical sorts are dot, line, path, right-

triangle, triangle, square, rectangle, parallelogram and polygon. Geometrical sorts are ordered: line < path,

right-triangle < triangle < polygon and square < rectangle < parallelogram < polygon. In addition, we define

the following sorts that have no graphical realization: real, real-pair and bool.

With this set of sorts, we define a term-grammar constituted by a set of geometrical constructor and selector

operators of type s1,…,sn → sm; the syntax is given by the following term composition rule: if f is an operator of

type s1,…,sn → sm, and x1,…,xn are terms of sorts s1,…,sn, the expression f(x1,…,xn) is a well-formed term of sort

sm. We also provide a denumerable set of constant and variable symbols for every sort. The set of geometrical

operators constitute a signature for the language (Goguen et. al., 1978; Pineda, 1989); for clarity we represent

the elements of the operator’s set with the following notation:

(23) g-op(operator-name, argument-list, sort-of-term)

We define a basic constructor operator for geometrical objects of every sort as follows:

(23) g-op(dot, [bool, real-pair], dot)

g-op(line, [bool, dot,dot], line)

g-op(path, [bool, dots-list], path)

g-op(right-triang, [bool, dot, dot, dot], righ-triang)

g-op(triang, [bool, dot, dot, dot], triang)

g-op(square, [bool, dot, dot, dot, dot], square)

g-op(rectangle, [bool,dot, dot, dot, dot], rectangle)

g-op(parallelogram, [bool,dot, dot, dot, dot], parallelogram)

g-op(polygon, [bool, dots-list], polygon)

We also define type and equality predicates for symbols of every geometrical sort:

(23) g-op(is-sort, [bool,sort,sort], bool)

g-op(eq, [bool,sort,sort], bool)

The signature includes also a large number of selectors for computing the geometrical properties of symbols of

every kind (e.g. position of a dot, length and angle of a line, hypotenuse, right-angle, right-sides, angles and area

 4

of a right-triangle, etc.), verifying whether symbols have a geometrical property (e.g. vertical, horizontal), or

stand in geometrical relation (e.g. parallel, perpendicular, a polygon within a polygon, a dot on a line or path,

etc.), and for constructing a new object (e.g. intersection dot between two lines, the object that results of rotating

or translating a given object, or the symmetrical object of a reference object in relation to an axis, etc.). The full

signature of our current implementation is listed in Appendix 1. Also, in our interpretation scheme, the list of

operators can be augmented by listing new operators in the g-op list, and by providing the corresponding

geometric algorithm in the semantics, as will be shown below. Likewise, for the definition of 3-D objects it is

only required to state the corresponding operators, and the 3-D algorithms for computing the corresponding

properties and relations, as shown in Garza and Pineda (1998).

2.2 Undefined values

The first argument in the argument of every operator in the signature is always of sort bool (e.g. (7), (8) and (9)).

We define the value of this argument to be true in a given term if all its geometrical arguments have a well-

defined value in the evaluation state, and false otherwise. In the same way that division by cero has an undefined

value in arithmetic expressions, a geometrical term can have an undefined value in some states, although its can

be well-defined in others. For instance, the boolean variable B0 in (10) is true unless one or both of the lines are

not well-defined in the evaluation state (i.e. have no length, or their origin and extreme dots are not well-defined

themselves):

(10) intersect(B0, l1, l2)

Likewise, the value of (10) is of an object of sort dot and its interpretation produces (11); the variable B1 in this

latter expression is true if the dot in question is well-defined, and false otherwise (e.g. the lines are parallel). The

term xi:yi is an object of sort real-pair and xi and yi stand for the actual real values of the coordinate position of

the intersection dot.

(11) dot(B1, xi:yi)

We this device, we handle the interpretation of geometrical expressions taken into account whether or not all

arguments of a term, and the term itself, have a well-defined value. If this is the case, the interpreter returns the

description of a geometrical object of the proper type; otherwise, the interpreter returns the input term with the

first argument set to false. In case the lines in (10) have not a well-defined value or are parallel in the evaluation

state, for example, the interpreter returns (12) as its value:

(12) intersect(false, l1, l2)

2.3 Semantics

We turn now to the semantics of the geometrical language; this is constituted by two main objects: the

geometrical interpreter and a set of geometrical algorithms; every algorithm in this set is associated to a

constructor or a selector operator in the signature, and computes the basic geometrical property or relation

named by the corresponding operator. The interpreter is a program that given a term and a geometrical

environment applies the operator to the value of its arguments in relation to the environment and returns a term

of the corresponding sort: the extensional value of the input term in the evaluation state.

The evaluation environment is defined as a set of geometrical definitions and descriptions (in our

implementation, the environment is represented as a prolog list, but the evaluation process is independent of the

order of the definitions in the list); each definition consists of an identifier associated to a well-defined

expressions that has as its functor a constructor operator of the corresponding sort; descriptions can also be

stated directly in the environment, as will be shown below in Section 3.1. Definitions can be extensional or

intensional; in the former case, the description term associated to the identifier has no geometrical identifiers

within its body; if the definition is intensional, on the other hand, the object being defined is a function of the

objects denoted by the identifiers included in its description. The environment of the diagram in Figure 1, for

instance, is represented as follows:

(23) g_env = [g_def(d0, dot(true, x0:y0)),

 g_def(d1, dot(true, x1:y1)),

 g_def(d2, dot(true, x2:y1)),

 g_def(d3, dot(true, x3:y3)),

 g_def(l0, line(true, dot(true, x4:y4), dot(true, x5:y5)))

 5

 g_def(l1, line(B1, d0, d1))

 g_def(l2, line(B2, d2, d3))

].

The first four definitions in (13) are extensional: these associate a constant with the extensional definition of an

object of sort dot; expressions of the form xi:yi stand for the actual coordinate values of the dot in the

environment’s state. The fifth definition is also extensional: although the description associated to l0 contains

two dots as its parts, it is already in a reduced form (i.e. the parameter dots are represented as basic expressions

of sort dot, in the basic constructor’s format, and have no name). The definition of l1 and l2, on the other hand,

are intensional as their values can only be found by evaluating the parameter dots in relation to the environment.

In the example, the value of the first Boolean argument of extensional definitions is set to “true”, as the

coordinate values of the dots included in these definitions are given directly; however, the value of this argument

depends on the evaluation state and it is usually left under specified in definitions and descriptions.

The value of expressions (1) to (5) in relation (13) is illustrated in (14) to (18):

(14) g_eval(is_line(line(B, d0, d1)), g_env) → true

(15) g_eval(perpendicular(B, l1, l2) , g_env) → true

(16) g_eval(parallel(B, l1, l2) , g_env) → false

(17) g_eval(intersect(B, l1, l2), g_env) → dot(true, xi:yi)

(18) g_eval(symmetrical(B1, triangle(B2, d1, d3, intersect(l1, l2)), l0), g_env) →

triangle(true, dot(true, xi:yi), dot(true, xj:yj), dot(true, xk:yk))

The expressions at the right-side of the arrow are produced by the interpreter and denote a truth value or the

extensional description of a geometrical object in the evaluations state; in this latter case, the expression is a

description in the object’s basic constructor format, as defined in the signature. So in (18), for instance, the

interpreter returns the description of a triangle formed by the dots at positions i, j and k. As the coordinate

positions of the three vertices of the triangle are well-defined, the boolean parameter of the triangle’s constructor

is true.

The value of expression (6) can be obtained by evaluating the expression in relation of an environment g_env’

as shown in (19); the environment g_env´ is like g_env except that the value of (17) in relation to g_env (i.e.

dot(true, xi:yi)) is named as di, and g_env´ extends g_env with the definition di = dot(true, xi:yi).

(19) g_eval(eq(B, di, intersect(B, l1, l2)), g_env´) → true

Now we give the interpreter’s evaluation strategy: if the expression is a boolean constant, a real or a real-pair,

the value is represented by the same expression. If the expression is an identifier in a definition, either

extensional or intensional, its value is the value of the right-side of the definition (i.e., the g_def relation in (13)).

Otherwise, the interpreter evaluates the arguments of the term left to right, and applies the reduced arguments to

the expression’s main operator; if there is an argument without a well-defined value, or the term as a whole has

not a well-defined value, the interpreter returns the input expression but with the first boolean argument set to

false.

Finally, once the arguments of a term have been fully reduced, the geometrical algorithm associated to the

operator’s term is applied to the arguments, and this computation results in a geometrical object of the

operator’s sorts. The specification of the algorithms for all the operators defined in the signature constitutes the

semantics of the language and the interpreter applies these algorithms compositionally. The Prolog´s code of the

current interpreter is simple enough and is given fully in Appendix 2.

The application of the geometrical semantics of the operator’s signature is performed by the g_value clause in

reduce_gterm, the main evaluation function of the interpreter. The variable BASIC_EXP in the clause

g_value(BASIC_EXP, VALUE) is an expression whose functor is an operator in the signature, and its arguments

are reduced already; the g_value clause applies the geometric algorithm associated with the operator to its

arguments directly, and returns the value of the expression in VALUE. In appendix 3 we show the semantics of

the dot constructor. The first instance of the g_value clause gives the semantic value of a constant in a definition,

which is the value of its associated description. This value is given in the basic constructor format of the

 6

symbol’s sort. The second entry of the g_eval clause codifies the constructor operation properly; the geometric

arguments of the constructor are the three dots defining the triangle, which must have a different position and

must not be aligned; if these two condition hold, the three dots “construct” a well-defined triangle, and the first

boolean argument of the constructor operator is set to true; otherwise, the object is not well-defined and the

value of this argument is set to false. In the appendix 3 it is also shown the semantics of the type and equality

predicates for objects of sort triang, and the selector operators for objects of this kind; through these operators,

the properties of a triangle, like the description of their sides, the value of its angles, the base, height and area,

can be provided by the interpreter directly. The values of some of these properties are extracted directly from the

object’s basic definition, but the value of some others, like the base, height and area, are computed in terms of

other geometrical expressions, by invoking the interpreter recursively (i.e. through the eval_gterm function).

The geometrical semantics for all the operators in the signature has the same format. In order to enrich the

functionality of the geometric calculator with a new operator it is only required to list the operator with its

arguments and sort in the signature (i.e. as in Appendix 1) and provide its geometrical semantics through the

corresponding g_eval definitions (i.e. as in Appendix 3).

We also include the sort func as a special sort in the signature; this sort permits to construct geometric functions

dynamically; this is illustrated by the operator class_right_triang that given the lengths of the right sides and the

hypotenuse of a right triangle returns a function of type real-pair × real → right_triang; this latter function

represents the class of right triangles of the given dimensions, and when it is applied to a position and an angle,

returns a right triangle of the given sides at the corresponding position and angle.

More generally, the system allows the definition and evaluation of geometric functions with the following

format:

(20) lambda(var-list, g-exp)

In (20) var-list is a list of variables, g-exp is a geometrical expression containing all the variables in var-list as

free variables; the interpreter can apply functions of this form to a list of arguments (i.e. a list of geometric

expressions of a proper geometrical sort); in the functional application process, the interpreter binds the

arguments with their corresponding variables in var-list first, and evaluates the resulting expression in relation to

the environment, as shown in the corresponding code in Appendix 2. With this we conclude the description of

the functionality of the current implementation of the geometric calculator.

3. Applications

We conclude this paper with two applications to illustrate the functionality of the calculator, and the expressive

power of the geometrical language and its interpreter. The first is a design application in which geometrical

expressions are used to construct design patterns in a simple and general way, using extensional definitions only;

in the second we use intensional definitions, and we show how the calculator can be used to solve a simple but

interesting class of geometric constraint satisfaction problems.

3.1 Shape grammars

The production of design patterns made as compositions of a given basic “tile” or shape form by transformation

operations (i.e. translations, rotations, symmetrical operations) based on a reference or “pivot object” within the

pattern, has a long tradition in design (e.g. Bronowski, 1973); a computational development of this intuition for

the definition of design families or styles was introduced in the shapes grammar formalism (Stiny, 1975); in this

framework, shape patterns forming particular designs were modeled through design rules, implemented with

production systems, and the set of productions were thought of as the characterization of design families. A

simple but interesting grammar of right-triangles was develop by Weissman-Knight (1981); the shapes produced

by this grammar are not only interesting design patterns, but also appear in one of the more compelling proofs of

the Theorem of Pythagoras (Pineda, 2004). This diagrammatic sequence, generated out of an arbitrary right

triangle, is shown in Figure 5.

Figura 5. A grammar for right triangles

 7

Next, we show the generation of this shape sequence with the geometric calculator. We define an initial

environment in (21) including only the extensional description of an arbitrary right triangle: the seed for

generation process; the main and secondary orientation of the seed (up, down, right and left) determine how the

chain of shapes is developed; in figure 5, for instance, the main and secondary orientation of the seed are right

and up respectively, but the family of shapes can be generated out of a seed with an arbitrary orientation.

(21) g_env0 = [right_triangle(true, dot(true,xi:yi), dot(true,xj:yj), dot(true,xk:yk))]

The generation pattern is characterized by the geometrical expression in (22), which describes the next triangle

in the generation sequence as a function of an arbitrary right triangle:

(22) lambda([FOCUS, ANGLE, DELTA],

translate(true, rotate(true, FOCUS, ANGLE, right_vertex(true, FOCUS)), DELTA)).

This function has two parameters in addition to the focus, which is the object generated last in the sequence;

these are the rotation angle and the displacement (positive or negative along both coordinates) that the new

object has in relation to the focus. The fourth parameter of the operation rotate is the rotation pivot, which in

this cased is the right vertex of the focus right triangle itself. The angle and delta parameters are also a function

of the focus, and correspond to π/2 or −π/2 and the difference of the lengths between the larger and shorter right

sides of the right triangle respectively, and depend on the main and secondary orientation of the focus itself (e.g.

if the main orientation of the focus is right and the secondary up, the rotation angle is −π/2 and the displacement

is to the right). The function determining the values of these parameters is also easily defined with the geometric

calculator.

The generation sequence is defined with a single production rule (i.e. function (22) applied to the current focus)

that extends the environment envi with a new object, defining the new environment envi+1. The shape generation

process has as its input parameters the initial environment and the focus, and returns a new environment with a

reference to the new object, which becomes the focus for the next generation step; this is illustrated in Figure 6.

The process is applied iteratively for the generation of the whole chain; the termination function is also defined

as a geometrical condition computed by the geometric calculator (e.g. the new object is already in the input

environment). For the example, the final environment env3 contains the extensional description of the four

triangles (but not of the two squares that emerge in this diagrams; for a discussion of the representation and

interpretation of these emerging objects see Pineda, 2004). It is also possible to define more than one generation

rule, and produce a non-deterministic design space for the shape family.

The present generation process is an illustration of design applications in which extending a geometrical

configuration is a process that depends on the local properties of a geometrical object that is currently taken as

the focus of the generation process.

3.2 Theorem of the inscribed parallelogram

This theorem states that if the vertices of a four sides polygon lay on the middle of the segments of a

quadrilateral, it is a parallelogram. If there are nested figures satisfying the same condition, all of these are

parallelograms too; the theorem is illustrated in Figure 7.

Shape

generation
envi, focus envi+1, new

Figure 6. Shape generation process

Figure 7. Theorem of the inscribed parallelogram

 8

The problem is how to determine the coordinates of the vertices of the inscribed figures as a function of the

inscribing ones if the positions of one or more vertices of the outermost control figure are modified. This is

illustrated in Figure 8 where the bottom-right vertex of the control polygon in (8.a) is moved right and upwards

as shown in (8.b); from (8.b) to (8,c) the upper-left vertex is moved left and downwards; as can be seen, both of

the inscribed figures in all three diagrams are parallelograms, but the inscribing one needs not be.

This problem has a long tradition in geometric constraint satisfaction, and was used to illustrate local

propagation in ThingLab (Borning, 1981), and also constraint satisfaction through constructive procedures in

object oriented programming paradigms (Alberti et. al, 1995); in our line of work, the theorem has been used to

illustrate constraint satisfaction through reference relations and intensional representations (Massé, 1994). Here

we present the solution of this problem through intensional representations and the geometric calculator. The

initial environment env0 for the diagram in Figure 8.a contains the following definitions (we use normalized

space from 0.0 to 1:1 for the example):

(23)

%Control dots

g_def(d1, dot(true, 0.2:0.2)).

g_def(d2, dot(true, 0.8:0.2)).

g_def(d3, dot(true, 0.8:0.8)).

g_def(d4, dot(true, 0.2:0.8)).

%Control lines

g_def(l1, line(true, d1, d2)).

g_def(l2, line(true, d2, d3)).

g_def(l3, line(true, d3, d4)).

g_def(l4, line(true, d4, d1)).

%parameters parallelogram 1

g_def(d5, midle_dot(true, l1)).

g_def(d6, midle_dot(true, l2)).

g_def(d7, midle_dot(true, l3)).

g_def(d8, midle_dot(true, l4)).

%parameters parallelogram 2

g_def(d9, midle_dot(true, line(true, d5, d6))).

g_def(d10, midle_dot(true, line(true, d6, d7))).

g_def(d11, midle_dot(true, line(true, d7, d8))).

g_def(d12, midle_dot(true, line(true, d8, d5))).

%Nested parallelograms

g_def(plg1, parallelogram(_, d5, d6, d7, d8)).

g_def(plg2, parallelogram(_, d9, d10, d11, d12)).

The initial diagram in Figure 8.a is produced directly by evaluating and rendering the lines of the control

polygon, and the inscribed parallelograms plg1 and plg2 in env0; the environment env1 is like env0 except for the

definition of the control dot d2; accordingly, changing the diagram from 8.a to 8.b only requires to create env1 by

a move operation defined as follows:

(24) env1 = move_to(d2, dot(true, 1.0:0.4), env0)

Figure 8.b is obtained by evaluating and rendering the definitions of the control lines and the parallelograms in

env1 as before; Figure 8.c is the graphical representation of the environment env2 in which the position of d4 is

updated by a similar process:

(25) env2 = move_to(d4, dot(true, 0.1:0.6), env1)

Current object oriented graphical editors, as AutocCAD, PowerPoint and even Word support an approximate

behavior: in these editors it is possible to run this example by creating the initial three objects, and grouping

them; the group can then be modified by dragging the control dots to new positions and the nested figures will

be parallelograms; however, the positions of other control dots, different from the one explicitly modified, can

a) b) c)

Figure 8. Modifying the control polygon

 9

be also altered as a side effect of the move operation, as the definitions of geometrical abstract data-types in

object-oriented graphics is not fully compositional.

A feature of our representational scheme is that most of the definitions in (23) are intensional, and remain

constant along every state in the sequence of transformations, and only the definition of the four control dots is

extensional. Accordingly, there is no need to keep a copy of the intensional definitions for each state of the

sequence, and a single record of these definitions, in addition to the extensional definitions for each state, is

enough to record the change information of the diagrammatic sequence. This suggest to structure the

environment in a two levels hierarchy: the intensional definitions i_env are stored in the upper level (together

with extensional definitions that undergo no change along the change process), and the extensional environments

e_envi, corresponding to each state in the diagrammatic sequence, are stored in the lower one, as illustrated in

Figure 9.

The geometric calculator, with extensional and intensional definitions organized in this hierarchy, provides a

flexible and economical environment for the definition of intelligent graphics applications, diagrammatic

problem-solvers and theorem-provers, where transitions may be non-deterministic and the change information

along the diagrammatic sequence may be required for further inference (e.g. for contrasting the geometrical

properties of the same objects in different states of a design sequence or, more generally, for following the

consequences of the change process).

4. Conclusions and some related work

The geometric calculator is a device that supports the definition of geometrical abstract-data types in a fully

compositional fashion, and this device is useful for the representation and computation of graphical and

diagrammatic information; in this respect, although geometrical and graphical abstract data types have been the

object of a considerable number of studies, previous work has been concerned, for instance, with the definition

of abstract types for design applications and methodologies (e.g. Lenart et. al, 1994) and for the definition and

visualization of geometrical objects and relations through constraint satisfaction (e.g. Satoshi et. al, 1992;

Kamada and Kawai, 1991). Abstract geometrical data-types have also been used for geometric modeling within

the object-oriented paradigm; an interesting example in this line of work is the GEObject system (Alberti et. al,

1995), where geometrical knowledge is encapsulated in geometric classes and objects, and new classes or

methods can be constructed dynamically; also messages exchanged between objects specify geometrical

relations, and form a relationship network which captures mutual dependencies between objects; in this respect,

primitives and constructive procedures of GEObject parallel the constructs that can be defined compositionally

through our signature, and the graphs defined in that approach correspond to composite expressions in ours;

however, unlike the declarative representation with a well-defined semantics of the geometric calculator, the

representational object in the object-oriented approach is a dependency network, which can be much more

difficult the maintain and modify, specially in complex scenarios where change information needs to be kept.

We conclude with a comment on the relation between abstract geometrical information and its graphical

representation. In the geometric calculator we deal with geometrical abstract objects that are independent of the

attributes of their graphical representations (e.g. the color of a symbol, whether a dot is filled, or a line is

depicted dotted or continuous, its width, or even whether it is shown or hidden on the drawing), and also of their

labels, which can also be thought of as attributes, and advocate for a strict modularity of the geometrical

knowledge, its conceptual interpretation, the properties of its external graphical representation, and the

interactive and rendering processes; for all these reasons, computations performed by the geometric calculator

abstract over interface and applications issues; this position has also been advocated in recent work in relation to

intelligent diagrammatic systems (Chandrasekaran et. al, 2004). However, the use of logical representations can

be a source of some misunderstanding; for instance, our logical approach (as presented in Pineda, 1992) has

been qualified as limited (in Alberti et. al, 1995), on the grounds that explicit predicates are used. However, the

i_env

e_env0 e_env1 e_vn
...

Figure 9. Geometrical environments hierarchy

 10

use of logical expressions does not requires necessarily that predicates have to be typed in advance by the user:

these can also be specified through graphical interaction, as has been the case in most of our prototype

implementations. Furthermore, diagrammatic representations can be used in applications that may require no

graphical interaction at all (e.g. some forms of diagrammatic problem-solving or diagrammatic representations

for situated agents) and the form of presentation or visualizing of geometrical information depends on

conventions and on the nature of applications; also, the conventions embedded in the definition and use of

graphical interfaces are also application dependent; for all this, to keep apart geometrical knowledge from

graphical representations and interactive issues is, in our perspective, a healthy design discipline.

5. References

Alberti, M. A., Bastioli, E & Marini, D. (1995). Towards object-oriented modeling of Euclidean geometry.

Visual Computer 11: 378−389.

Bronowski, J. (1973). The Music of the Spheres, in The Ascent of Man. BBC Corporation, London.

Borning, A. (1981). The programming language aspects of ThingLab: A constraint-oriented laboratory, ACM

Transactions in Programming Languages and Systems 3(4), pp. 353−387.

B. Chandrasekaran, Unmesh Kurup, Bonny Banerjee, John R. Josephson and Robert Winkler, "An Architecture

for Problem Solving with Diagrams," in Diagrammatic Reasoning and Inference, Alan Blackwell, Kim Marriott

and Atsushi Shomojima, Editors, Lecture Notes in Artificial Intelligence 2980, Berlin: Springer-Verlag, 2004,

pp. 151-165.

Goguen, J. A., Thatcher, J. W. and Wagner, E. G. (1978). An Initial Algebra Approach to the Specification,

Correctness and Implementation of Abstract Data Types, in Current Trends in Programming Methodology. R.

T. Yeh (ed.). Prentice-Hall.

Garza and L. A. Pineda (1998). Synthesis of Solid Models of Polyhedra from their Orthogonal Views using

Logical Representations, Expert Systems with Applications, 14 (1). Pergamon, pp. 91–108.

Kamada, T. and Kawai, S. (1991). A General Framework for Visualizaing Abstract Objects and Relations. ACM

Transactions on Graphics, Vol. 10, No. 1 : 1−−39.

Lenart, M., Padawitz, P. & Pasztor, A. (1994). Formal Specification for Design Automaton, in Formal Design

Methods for CAD (B-18), J. S. Gero and E. Tyugu (eds.) Elsevier Science B. V. (North-Holland).

Matsuoka, S. Takahashi, S. & Yonezawa, A (1992). A General Framework for Bidirectional Translation

Between Abstract and Pictorical Data. ACM Transactions on Information Systems, 10 (4): 408−−437.

Massé, A. (1994). Satisfacción de Restricciones por Referencia simbólica en dibujos geométricos, BSc. Thesis,

ENEP Aragón, National Autonomous University of México (In Spanish).

Pineda, L. A. (1989). Graflog: a Theory of Semantics for Graphics with Applications to Human-Computer

Interaction and CAD Systems. PhD Thesis, Centre for Cognitive Science, University of Edinburgh.

Pineda, L. A. (1992). Reference, Synthesis and Constraint Satisfaction, Computer Graphics Forum, 11 (3), pp.

334−−344.

Pineda, L. A. 2004. Discovery and Proof of diagrammatic theorems: the case of the Theorem of Pythagoras, 1er.

Congreso Internacional de Bioinformática, 13 y 14 de mayo de 2004, Palacio de las Convenciones de La

Habana, Cuba (in Spanish).

Stiny, G. (1975). Pictorical and Formal Aspects of Shape and Shape Grammars, Basel, Birkhauser Verlag.

Weissman-Knight, T. (1981). Languages of designs: from known to new. Environment and Planning B, 8:213–

238.

