Logical Representations in Drafting and CAD Systems*

Luis A. Pineda and John R. Lee

EdCAAD and Centre for Cognitive Science
University of Edinburgh

Abstract

In this paper we present a logical language for representing and reasoning about drawings in
the context of interactive computer graphics. We discuss the motivation for this kind of represen-
tation in graphics systems and its applications to geometric reasoning and constraint satisfaction.
A formal definition of the language and its interpretation process is presented and illustrated. The
theoretical machinery is then applied to modelling constraint-based drafting tasks. An application
in which constraint satisfaction problems are expressed through the language in the course of in-
teractive sesssions, and solved through symbolic inference, is presented and discussed. Finally, we
discuss the functional architecture of a drafting system based on logical representations.

Key-words: Knowledge Representation in graphics, Drafting and Problem-solving,
Constraint satisfaction, Graphics Semantics, Geometric reasoning.

1 Introduction

In this paper we discuss the definition and use of logical representations in drafting and
CAD systems. In Section 2, we motivate the use of logical representations in interactive
drafting tasks. We illustrate how a representational language can support the definition
of graphical symbols and constraints in an integrated fashion, and can help to clarify the
semantics of a drafting task. We also argue that logical representations offer a coherent
framework for the solution of constraint satisfaction problems through symbolic inference,
as an alternative to traditional techniques in which constraints are interpreted as equation
systems that are in turn solved through numerical techniques. In Section 3, we define the
syntax of a logical language for representing drawings. The relation between expressions
of this language and the drawings that they represent is illustrated through a number of
examples. In Section 4, we look at the definition of the interpreter of the language, and
discuss the evaluation of graphical expressions in relation to a knowledge-base. In section
5, we review the interpretation of graphical expressions in a more theoretical light. There,
we define the interpretation rules for expressions of the language in a declarative fashion,

*This paper has been written under the auspices of the project Foundations for Intelligent Graphical In-
terfaces (F1G), supported by Special Project Grant 8826213 from the Joint Councils Initiative in Cognitive
Science/HCI.

and discuss the relation between symbolic and numerical aspects of the interpretation of
graphical representations. In Section 6, we discuss the role of logical inference in inter-
active graphical tasks. We address the issue of “consistency” in the representations of
drawings and their associated constraint sets. In Section 7, we show how the representa-
tional language can support the definition and interpretation of drafting rules for solving
constraint satisfaction problems. In particular, we discuss the relation between symbolic
inference and the interpretation of drafting intentions expressed by a human-user in the
course of an interactive session. In Section 8, we present an architecture of a CAD system
supporting logical representations, and discuss the relation between the representational
scheme, the interface component of the program, and some related HCI issues. In Section
9, we conclude this paper with a summary of the main issues arising with the use of logical
representations and we also point out some topics for further research.

The theory presented in this paper has been tested with a practical implementation.
The architecture presented in Section 8 corresponds closely to an experimental computer
program called Graflog [7, 11, 12,13, 14, 15, 16, 17, 18]. The program has been implemented
during the last four years, and has evolved through several stages. The current version is
implemented in terms of two unix processes connected by unix-pipes. The first is a “C”
program running X windows, and handles the external aspects of the interaction. The
second is a Prolog program supporting the representational structures and interpreters of
the system.

2 Graphical Descriptions and Constraint Satisfaction

In this section we motivate the use of a representational language expressive enough to refer
to graphical symbols, relations and constraints in an integrated fashion. We explain that a
drawing can be fully described by a set of terms that act like names or descriptions of the
graphical symbols constituting a drawing. Constraints, on the other hand, are represented
by sentences of such a language.

Consider Figure 1.1 in which we intend to “snap” 15 to 11 in such a way that a {_join
is established. For making this definition we can place one extreme of 15 along 1y with the
help of an interactive pointing device, and we have to express through a comand, or an
alternative interactive facility, that we intend that constraint to hold. A representation of
such a pair of lines can be stated by the following symbolic equations:

(1) L
(2) 1,

The constraint, in turn, can be represented by the expression,

lil’le(dl,dz)
line(dg,d4)

(3) t_jOil’l(lg,ll)

Now consider what happens if one extreme of line 1; is dragged to a new position as shown
in Figure 1.2. In this state the {_join constraint does not hold, and a constraint satisfaction
algorithm can be invoked to make an appropriate change, and produce the drawing in
Figure 1.3.

Note, however, that the proposed solution for the change problem has a certain
amount of indeterminacy. Expressions (1)—(3) tell us what the constraint satisfaction al-
gorithm should do, but they do not specify how the task has to be accomplished. In fact,

11 1.2

14 15 1.6

Figure 1: Definition of a “t_join”

it is possible to think of many alternative constructions, less intuitive perhaps, but which
nevertheless satisfy the drawing description and constraints. Some such drawings are illus-
trated from Figure 1.4 to 1.6. Furthermore, one trivial solution is to reverse the change to
the original configuration in Figure 1.1. Such a change would most probably be counter
to the intention of the user who performed the original change comand, but of course,
not necessarily. There might be an application in which such a cyclic behaviour is indeed
expected by the human user.

This simple example illustrates a problem that has long undermined the use of geo-
metric modellers. These systems tend to behave well when the expectations of the human-
user match the expectations with which the program was specified and implemented. How-
ever, when the demands of the modelling task differ from the original model, systems tend
to behave in erratic and idiosyncratic ways [19]. This has been labelled as the problem of
“prescription” and it is argued that one goal for the next generation of drafting and CAD
systems is to overcome this limitation [2].

It is clear that the more explicit the representation the less the “semantic contribu-
tion” made by the constraint satisfaction algorithm. To a certain extent we face a problem
of naming. Here is where a logical representation comes into the picture: a language that
is expressive enough will allow us to refer to and to describe not only the graphical symbols
constituting a drawing but also its associated constraints in an integrated fashion. Consider
the following alternative representation for the drawing in Figure 1.

(4) 11 = lil’le(dl,dg)
(5) 1, = 1ine(d3,t_j0in<12,11))

The left side of expressions (4) and (5) is a name, and the right side is a description. The
equality holds if the name refers to, or denotes, the same object in the drawing that is

referred to by the associated description. The name and the description must be of the
same syntactic type for the equality relation to be meaningful. Here, unlike the assigment
operator of many imperative languages, the symbol “=" means equal. Note that within the
graphical description of a line, names referring to graphical objects of other kinds can be
included. The symbols dy, d3 and dg are in fact names of the corresponding graphical dots
on the screen. The t_join symbol stands for a function of type 1ine x line — dot. The
value of the {_join term in (5) in relation to the drawing in Figure 1.1 is of course the point
in which 15 and 1; form a {_join. Suppose now that 1, is edited as shown in the transition
from Figure 1.1 to 1.2. With our new representation, the transition from Figure 1.2 to
1.3 is accomplished implicitly: only the basic description of d; —the dot moved— has to be
updated, because the constraint is expressed as an invariant expression which is embedded
in the definition of 1,.

The use of symbolic descriptions can help us to visualise problems that might be
overlooked if numerical representations were used. Definition (5) is, for instance, wrong.
For suppose that we want to know what is the description of 1, in terms of its constituent
parts. The first parameter of the line functor in (5) is a constant term, and as such, its
value is immediately accessible to the interpreter; however, the value of the t_join term
must be computed in terms of the values of 11 and 15. But, the value of 15 is what we are
computing in the first place, so we come to an infinite regression. The problem is that in
(5) we are defining a geometrical object in terms of itself.

Logical representations can help us to understand how “robust” a geometrical defi-
nition allowed by a graphical input device can be. Think again of the interactive definition
illustrated in Figure 1.1. The question is this: where on 1; did we point to to get the
t_join condition? Is it not the case that in such pointing action part of the target was
defined on the drawing, but also part of the target was defined with the pointing device?
Consider that it is not the same to point to a line with a dot —the graphics cursor— with the
intention to select a line, as to perform the same action with the intention to select a dot
on the line. This last pointing action is geometrically ambiguous because in the real space
there is a set with an infinite number of dots lying in the vecinity of the position where the
pointing device is placed, and we intend to pick up one of the dots, rather than the set. If
the graphical pointing device is a dot, then we want the target of the pointing action to
be a dot too, because in a successful pointing action there must be a match between the
parameter of the pointing device and a parameter of the drawing.’

Next, we show one way of making a sound interactive definition of our {_join condi-
tion. In Figure 2.1, we define in addition to 1; the construction line 1.. In Figure 2.2 we
add the joining line 15 in such a way that 15 is defined in terms of an unconstrained dot
and a function that depends on 1; and 1.. The state of the representation of the drawing
could then be expressed as follows,

(6) 1
() 1.

lil’le(dl,dg)
line(dg,d4)

!More generally, in order to pick unambiguously a graphical object of a certain sort in terms of its
geometry, that is matching a geometrical property of the drawing with a geometrical property of the
pointing device, we have to point it out with a graphical cursor of the same sort. Otherwise, conventions
that are not always clear might have been embedded in the program’s code. Furthermore, a pointing action
does not depend only on the geometry, but also on the conceptual interpretation of the drawing and the
user intentions. For a discussion of these issues see, for instance, [11, 12, 14, 16, 7].

2.2

Figure 2: A sound definition of a “t_join”

(8) 1 = line(ds,intersect(1ly,1.))

where every term is either basic or can be computed in terms of its constituent parts. Now
we are in a position to illustrate the expressive power of the new definition. If we edit
1; as shown in Figure 2.3, only the value of the basic constant d; has to be changed in
the representation. The expression through which the attachment condition is referred to
remains the same. Here, the satisfaction of the {_join constraint is not mediated by an
idiosyncratic process.

The use of logical descriptions gives additional expressive power over alternative
parametric design techniques in which the “parameters” are restricted to being constant
values. However, there is no freedom without responsibility. This is so because a well-
formed description can have a proper referent in some interactive states while lacking such
a referent in others. Consider now the representation in (6)—(8) in relation to the change
from Figure 3.1 to 3.2. Here, one extreme of 1. has been moved so that there is no longer

-

¢ - ——————————-—-——-»

3.2
Figure 3: Partial Interpretation

an intersection between 1y and 1.. The question is then what happens with 157 Notice
that the definition of 15 is invariant in the change but the term intersect(1;,1.) has no
value in the drawing in Figure 3.2; subsequently, neither has 1. More precisely, the range
of the function denoted by intersect is not defined for every member of its domain: it is
a partial function. However, the free extreme of 1, —d5— is well-defined in Figure 3.2, and
we can depict it on the screen if we wish to do so. Consider that most drafting systems

would not allow the transition in Figure 3 because that would lead to inconsistencies of
the data-structures representing the drawings. In such a situation we would probably get
a message saying “invalid operation: try again”. However, such a strategy is prescriptive
because the system is forcing predefined drafting norms. Such conventions can be proper
in some situations, but there might be contexts in which global drafting intentions of the
human-user are more relevant to the drafting task than a local constraint that can be
provisionally left unsatisfied. In a system supporting logical representations the interactive
change illustrated in Figure 3 can be allowed, provided the user is properly notified of the
irregular condition. In fact, in our implementation the system can move in and out of
partially defined states of the interaction while preserving semantic consistency. This is
another point worth thinking about. In traditional constraint satisfaction the notions of
“inconsistency” and “partiality” are not often distinguished.

In summary, logical representations can be thought of as functions from drawing
states to drawings: a given set terms is an abstraction over the geometrical and topological
properties of a set of symbols, and for every drafting state such properties are assigned
specific values, and the symbols can be depicted. Alternatively, logical representations can
be thought of as functions from basic graphical symbols to composite graphical structures.
This view of drawings provides a general way to look at problems related to constraint
satisfaction. Since Sutherland’s Sketchpad program [21] the problem of satisfying a num-
ber of geometrical and topological constraints on drawings has been thought of in terms of
representing constraints as equational systems. Following Sutherland’s line, many draft-
ing and CAD programs solve constraint systems through local propagation, relaxation
and Gaussian elimination.? However, the literature in constraint satisfaction is often un-
clear in distinguishing the problem’s definition from its solution method. Constraints need
not be conceptualised necessarily as equation systems which are solved through numerical
techniques. Constraints can alternatively be thought of as expressions of a representational
language, and constraint satisfaction problems can be solved through inferential techniques
supported by a clear naming policy. In our view, in constraint satisfaction in drafting and
CAD systems we are interested in constructing drawings through the definition of a number
of graphical symbols, the specification of a set of invariant graphical properties and rela-
tions that ought to hold in a design task, and an interactive drafting process in which the
specification of drawing and constraints is refined. This is precisely what logical represen-
tations can help us to do. In the rest of this paper we address the definition, interpretation
and use of logical representations in the process of drafting.

3 Definition of an Functional Language

One important feature of graphical representations is that they are composed of a finite
number of symbols. In fact, for every finite collection of graphical symbols on the screen
there is a graphical language implicitly defined. Interestingly enough, such a language can
be made explicit and generalised through techniques employed in the formal specification
of programming languages.

In the formulation of a language we first define all symbols that can be a part of

For an introduction to constraint satisfaction and constraint programming languages see, for instance,

Leler[9].

an expression. We then specify the rules for the construction of well-formed expressions.
Finally, we define the rules for interpreting the expressions of the language. Next we address
the definition of a graphical language, then we come to its interpretation process.

3.1 Definition of a graphical language

Following Goguen et. al. [6] and Wang [22] we define every constant symbol of the language
by specifying the symbol’s rank, arily and sort. The arity is a string of symbols stating the
number, order and sort of the arguments that an operator symbol has. If a functor denotes
a function, the arity specifies the type of the function’s domain and the sort the type of
the function’s range. For instance, the symbol {_join shown above has arity line line and
sort dot. The rank is the specification of the arity and sort taken together;i.e. the rank of
t_join is the string line line, dot. For basic constants, the arity is the empty string e.

A language can have a large number of symbols of the same rank and we define ¥,
to be the set of all symbols of rank w and sort s. The family of such sets contains all
symbols of the language and will be referred to as the S-sorted signature .

For example, we might take the set S = {integer}, and X, ; to be empty except for
e, integer = 10} and Xipteger, integer = {succ}. That is, succ is to be interpreted as the
unary operator “succesor” which takes an argument n of sort integer, and yields a value
succ(n) which is also of sort integer. This system produces the set of natural numbers, that
is, the carrier 5. This system can graphically depicted as shown in Figure 4.

0 natural numbers succ

Figure 4: Graphical Representation of a language

Next, we define the language G for modelling the graphics symbols and operations il-
lustrated in the previous section. We include a number of additional symbols for illustrating
the expressive power of the language.

The language G is defined as follows:

1. The set of sorts Sg = {bool, real, real_pair, dot, line, arc, circle, path, polygon}.

2. The set of error sorts S. = {bool., real., real_pair., dot., line., arc., circle., path.,
polygon.}. For every sort there is a corresponding set of abstract error elements

of that sort. In the interpretation, such elements correspond to the denotation of
graphical expressions in states in which the normal denotations are not defined.

3. An orderering relation < on the sorts is defined as follows:
(a) For every pair of types s and s., s. =< s.

(b) line < path, arc < path.

Intuitively, @ < [expresses that the set of objects denoted by expressions of sort « is a
subset of the set of objects denoted by expressions of sort 3. Every error element of a sort
Se is also of sort s, but no normal element of sort s is in s.. Similarly, lines and arcs are
subsets —disjoint— of the set of paths.

Next, we define the basic constants of the language G.

1. The logical constants X, 4., = {false, true}.

2. Ye, e is an infinite set of numerals

3. Ye, real_pair is an infinite set of ordered pairs of numerals.

4. A finite set of dots X, 4,; = {d1, da, ...}.

5. A finite set of lines ¥ jn. = {11, 1o, ...}.

6. A finite set of arcs X¢, 4 = {a1, ag, ...}.

7. A finite set of paths made out of sequences of lines and arcs: X p. = {k1, kg, ...}.
8. A finite set of circles X (ipere = {c1, €2, ...}

9. A finite set of polygons ¥ ,,1y40n = {Poly1, polys, ...}

Error elements will be named by a constant of the form ey;, where s is a basic type
and ¢ an integer.

We come now to the definition of the functor symbols of G. First, we define a basic
constructor for every graphical sort as follows:

1. Dot: Xyeai_pair, dot = {dot}.

2. Line: X o1 dot, line U Y dot real, line — {line}.

3. Arc (centre, radius, from-angle, to-angle): ¥ i,¢ real real real, are = {arc}.
4. Circle: Xgot dot, circle U Xdot real, cirele = {circle}.

5. Path: X0 path, patn = {path}

6. Polygon: X,uth. potygon = {polygon}.

We proceed now to define a number of other constructors and selectors of the lan-
guage:

1. Position of a dot: X .4, real_pair = {position}.

10.

11.

12.

13.

14.

. Construction dot: Xgo¢ 41, dot = {cons_dot}.

. Real properties of lines: Xy, a1 = {angle, length}.

. Extreme dots of lines: ¥y, 4, = {origin, end}.

. Angle of line: Yy ine, real = {angle}.

. Intersections: Xyne tine, dot = {t_join, e_join, intersect, project}.
. Dot on line: X 4ot tine, oot = {ON}.

. Boolean properties of lines: ¥j,. 3,00 = {horizontal, vertical}.

. Boolean relations: Xy, tine, 001 = {parallel, perpendicular}.

Arc selectors: X4, 40t = {origin, end, centre}.

Circle centre selector: Y ipere, 4ot = {centre}.

Circle radius selector: X e, reat = {radius}.

Tangent of a circle at a given angle: Y jrcie real, 1ine = {tangent}
Equality: For every sort S, ¥, 5 4,00 = {=}

The language can, of course, be augmented with other geometrical types, additional

constructors and selectors, arithmetic functor terms, and other utilities. In addition, we
include the following definitions to embed the language G in a first-order predicate logical
language.

1.

Variables: For every sort S, there is a countable infinite set of variables V, =

{2s,, @5, ..}

. Quantifiers: For every sort s, ¥, 3,, each of rank Y001 &, poor-
. The logical symbols X501 4001, 5001 = {and, or, —}.
. The negation symbol X,01 poo1 = {no0t}.

. The auxiliary symbols “(” and “)”.

Next, we state the formation rules of this term language:

. Every constant of sort s is a well-formed term of G.

. If t,...,t, are terms of sorts sy, ..., s, , respectively, and fis an operation symbol of

rank w, s, where w = s;,..., 5., then f(¢;,...,{,) is a well-formed term of G.

. If V5 is a quantifier of sort s, u a variable of sort s, and ¢ a term of sort bool, then

Vsug is a term of sort bool. The same for the existential quantifier d;.

. Nothing else is a well-formed term of G.

We can now formulate a large number of expressions referring to graphical symbols
and relations that arise in graphical configurations. The constructors and selectors defined
in the language allow us to define geometrical objects in terms of other objects in a flexible
fashion. For the definition of expressions, we just have to verify that the term’s arity and
sort are of consistent types. In Figure 5.1 to 5.6, a number of constructions are shown
to illustrate the expressivity of the language. In each drawing, basic symbols are drawn
with light lines, while the composite symbol denoted by the corresponding expressions in
(9)—(14) are depicted in bold. In Figure 5.1, the dot in the intersection between the two

P 4 - \ 5 1 I3

54 5.5 5.6
Figure 5: Drawings denoted by expressions of G

lines is denoted by (9).

(9) intersect(ly,1y)

We can also denote the position of the dot through the expression
position(intersect(1ly,13))

which is of sort real_pair. Note that the expression denoting the dot can be depicted, but
the dot’s position is an abstract property.

Figure 5.2 illustrates the construction of a line in terms of four basic lines. The
construction is denoted by the term (10) of sort line. The new line is defined from the
intersection of the “projection” of 11 into 1, on the one hand, and the “t_join” intersection

10

between 13 and 14.
(10) line(project(ly,1z),t_join(1ls,14))

Figure 5.3 illustrates the definition of a dot as a function of more than two lines through
the cons_dot functor term. Expression (11) takes two dots as its arguments; if the position
of both dots is the same, the value of the term is also a dot in the same position; otherwise,
the “cons_dot” term has no interpretation in the state.

(11) cons_dot(e_join(ly,1;),e_join(1ly,13))

Expression (12) and Figure 5.4 illustrate a boolean relation between a basic and a composite
graphical object. The composite line is defined from the “t_join” between 1; and 1, to the
“t join” of 13 and 14. The expression as a whole states that such a line and 15 are parallel.

(12) parallel(line(t_join(1y,13),t_join(1ls,14)),15)

Figure 5.5 and expression (13) illustrate the construction of a line that is tangent to a circle
at some specified angle. The centre of the circle is in turn defined as the intersection of
lines 1; and 1, and a given radius.

(13) tangent(circle(intersect(1ly,13),p),0)

Finally, (13) denotes a composite polygon, as illustrated in figure 5.6. The polygon is
constituted by a sequence of paths, one of which is the arc a;. The center of a; is itself
defined as a function of the intersection of the axis 1; and 1, and the angles in relation
to the horizontal that determine the origin and end extremes of the arc. The definition of
the polygon is as follows:

(14) polygon(ks)

where,
a; = arc(intersect(1ly,13),p,01,02)
ki = path(ls,a;)
ko = path(ky,14)
ks = path(ky,15)
k4 = path(ks,1s)

Note that the functor path denotes a function of type path x path — path but some
of the arguments of the path constructors in (14) are of sorts line and arc yielding the
corresponding terms syntactically ill-formed. However, recall the ordering relation on the
sorts line < path and arc < path. That is to say that lines and arcs are restricted kinds of
paths, and if two paths can combine to form a path, then lines and arcs can combine to
form paths too. The ordering relation < is a device to increase the expressive power of the
system, allowing us to define a small set of basic constants of differents sorts explicitly, while
constants of other sorts are implictly defined. The explicit definition of the path constructor
of rank path x path — path and the relation < implicitly define nine different constants
of type @ x — path in which « and § are either line, arc or path.

With this example we finalise the definition of a graphical language, and the discus-
sion of its expressive power. Next, we come to its interpretation process.

11

4 Interpretation of the language G

There are two alternative ways of looking at the interpretation of expressions of G. In this
section, we direct our attention to the computer program that can take an expression of
G as an input and compute its value in terms of the representation of the current drawing
on the screen. In Section 5, we focus on an alternative declarative formulation of the
interpretation process. There, we introduce the notion of semantic algebra, and the notion
of interpretation in relation to a theoretical model.

In Figure 6, the interpreter of the language (' as a computer program is illustrated.
First, note that there is a geometrical knowledge-base (KBg) that holds the logical repre-
sentation of the drawing at any state of the interactive session. In the modelling process,
basic constants correspond to the graphical symbols to be considered as “the independent
variables of the modelling process”. A composite term, on the other hand, captures one
or more functional relations and the term’s value depends on its constituent parts. The

knowledge-base

KBg
expression interpreter value
of G

Figure 6: The interpreter of expressions of G

process of interpretation can be thought of as the substitution of a term by its value in
the evaluation state. Intuitively, the output of the interpretation process is a “drafting
command”, an initialised description of the graphical object to be depicted. We illustrate
this notion with the help of an example. Suppose that the representation in KBg of the
drawing in Figure 5.4 is as follows,

(15) 1; = line(d;,dz)
1, = line(ds,dy)
13 = line(ds,dg)
14 = line(d;,dg)
15 = line(dgy,diq)
1, = line(t_join(1;,13),t_join(13,14))

As can be seen in (15), every entry in KBg consists of a definition in which a constant
symbol of a graphical sort is associated to a graphical constructor term of the same sort

12

through an equality relation. Note that some parameters of the graphical constructors are
basic constants while others are composite terms. If all parameters of a constructor term
are basic constants the term will be referred to as a basic description or normal form. If
a graphical constructor has as parameters only basic descriptions, such a constructor term
will be a normal form too. In general, a basic description of a graphical sort cannot be
substituted by a more simple description and the corresponding graphical symbol can be
depicted directly on the screen. With this new definition we can reformulate the process of
interpretation of an expression as follows: the interpretation of a term consists in replacing
the term by its basic description in relation to the current state of KBg. Evaluating an
expression consists in replacing it by its normal form.

The value of 1; in relation to (15) is given through a basic definition.? However, the
value of 1, can be reduced in relation to KBy as shown in (16).

(16) line(t_join(1ly,13),t_join(ls,14))
line(t_join(line(d;,d;),line(ds,d4)),t_join(line(ds,dgs),line(d;,dg)))
line(d,,ds)

where d, and dp are computed through geometry.
Next, we define the interpretation of a term ¢ of the language G as follows:

1. If ¢ is a basic description the value of ¢ is ¢ itself.

2. If ¢ is a basic constant of a graphical sort the value of ¢ is the value of its associated
basic description.

3. If ¢ is a graphical description —not basic— reduce the parameters of the description
and return its basic description.

4. If ¢ is any other term, reduce the term’s parameters and return the term’s value.

Note that the evaluation of a well-formed expression not only depends on its syn-
tactic definition and interpretation rules. It also depends on the semantic consistency of
the representation. It is indispensable that every expression of a graphical sort has a ba-
sic description; however, to assess whether all expressions satisfy this requirement for an
arbitrary geometrical knowledge-base is by no means a trivial problem. Here, we assume
that the knowledge-base is well-defined, and that there are no implict cyclic definitions of
graphical objects.

4.1 Partial interpretation

In this section we explain the interpretation of expressions in graphical states in which
denotation is not defined. Consider again Figure 3, and its representation as follows,

(17) 11 = line(dl,dz)
1. = line(ds,d4)
1, = line(ds,intersect(1;,1.))

*For simplicty, we consider terms of sort dot as basic constants in all examples.

13

If all arguments of a term have a value in a given graphical state, the term as a whole
might or might not have a value. If it has a value, the expression denotes a normal element
of sort s. However, if the term has no normal denotation, then its value is an object of sort
Se.

Consider the evaluation of (18) in relation to Figure 3.2.

(18) line(ds,intersect(1;,1.))

The functor line is a basic constructor term, and according to the interpretation rule 3 above
all its arguments have to be reduced to a normal form. The term ds is itself in normal
form, but the intersect term has to be reduced. The value of intersect(1ly,1.) depends on
whether the equations representing the intersection condition (i.e the parametric equations
of two vectors in the space) have a solution or not in such a state. In this particular case
there is no such value, and the term has an object of sort dot. as its value. Expression (18)
is then reduced to,

(19) line(ds,e€dq,)

Expression (19) is syntactically well-formed. Note that the functor line is not the basic line
constructor, but a constant of rank dot dot., line, which is implied in the language due to
the ordering relation on the sorts (dot, < dot). The value of (19) is an object in the set
line, felme])f which is in turn the value of 15 in relation to Figure 3.2.

Next, we postulate the rules for handling partial interpretation of expressions of G.
These are,

1. If all arguments of a functor term are normal elements of their corresponding sorts,
the value of the term is a normal element of its sort.

2. If all arguments of a functor term are normal elements of their corresponding sorts,
but the value of the term is itself an error element of the term’s sort, we place the
term in the error-stack for further inspection and the production of an error message.

3. If an argument of a term is an error element of its corresponding error sort the value
of the term is an error element of the term’s sort.

These rules complement the definition of the interpreter as a computer program.
Next, we look at the interpretation process in a more abstract and theoretical fashion.

5 Declarative specification of the interpretation process

The view of the interpretation process shown above emphasises the “symbolic” aspect
of graphical representations, in which complex expressions are partitioned into its basic
constituent symbols. However, we have yet to explain how the geometrical algorithms
associated to geometrical computations are defined, and how these algorithms are system-
atically used in the interpretation of expressions of G. We assumed above, for instance,
that an expression of the form intersect(1ly,12) can be substituted by a basic description
like d;,¢, as if they were equivalent constants. However, such substitution has to be me-
diated by the process of computing a geometrical algorithm. More generally, the question
that we focus on in this section is how to relate in a systematic manner the finite world

14

of graphical symbols and relations that constitute a given drawing, and that we use when
we think of drawings as “symbol systems”, with the infinite domain of real numbers for
representing the space and the numerical values of geometrical properties and relations.
The relation between finite and infinite domains can be better understood in terms of a
declarative specification of the interpretation process.

We start this discussion by emphasising the distinction between a graphical symbol
and its name or its description. We define the symbol itself as the semantic value, or
denotation, of the symbol’s name or description. The former is an object of the world,
the thing to be represented, while the latter is a linguistic object, the thing doing the
representation. To capture the systematic relations between representing and represented
objects we use the semantic framework introduced by Montague, as presented by Dowty
et al. [5]. We define the semantic interpretation of the language G in relation to a model.

A model M for G is an order tuple (G, I, F), where G = < G5 >; . gisan S-indexed
family of non-empty sets (i.e. the sets of graphical symbols of different kinds belong to
this family), I is a set of states iy, ..., i, (the states of the interactive session), and F'is an
interpretation function whose domain is the set of non-logical constant symbols of G, (the
numerals and basic constants of the graphical sorts), and whose range is in G as defined
below.

For the interpretation of variable symbols, we define the function g which has as its
domain the set of all variables, and as its range a member of < G5 > for every variable of
sort s.

Now, we introduce a notational convention: The semantic value of an expression «
with respect to a model M, a state i ¢ I, and a value assignment g is expressed as,

o]
Next, we define the interpretation of expressions of G:
1. If @ is a constant or a basic description of sort s, then [[]]MH9 = [F(a)](i).*

2. If fis an operation symbol of rank w s, where w = sy, ..., s, , then [[f]]M+¢ is a function
with domain in G, x ... X G,, and range in ;. Note that the interpretation of fdoes
not depend on the state i, because the functions denoted by logical and geometrical
operation symbols are the same in every state. For a geometrical functor term, this
function is the function computed by a computational geometry algorithm associated
to the functor term. For the basic constructors of every graphical sort, this function
verifies that the geometry of a symbol is properly defined.’> For a logical constant,
this function is stated in its associated truth table.

3. If ¢ is a term of the form f({;,...,t,), where fis an operation symbol of rank w s,
where w = sy, ..., 5, and {;,..., t, are terms of sorts s;,..., s, then

[[f (t, eyt)00 = [T (D59 ooy ([TV H4D)-

4. If ¢ and 7 are terms of sort s the [[¢ = ¥]]M'»9 is true if and only if [[¢]]M+9 is the
same as [[]]M:9,

*The value of [F(«)] in the state i.
For instance, the polygon constructor verifies that the argument of sort path forms a closed curve in
which the constituent segments do not intersect each other.

15

5. If ¢ is a term of sort bool and u a variable of sort s then [[V,ug]]M"9 is true if and
only if [¢]]M:59" is true for all ¢ exactly like g except, possibly, for the value assigned
to w.

6. If ¢ is a term of sort bool and u a variable of sort s then [[F,ug]]M "9 is true if and only
if [[¢]]M59" is true for some g’ exactly like g except, possibly, for the value assigned
to w.

The semantic rules (1)—(6) state precisely the interpretation of expressions of G, and
they correspond to the more intuitive procedural specification presented in the previous
section. Rule 1 simply states that the referent of a graphical symbol’s name or its basic
description is the graphical symbol itself. Definition (2) states the interpretation of functor
or operation symbols of the language. Every operation symbol is interpreted as a function,
which of course can be further specified in formal terms. But given that geometrical
properties can be computed by different computational geometry algorithms, we just make
the abstraction that the meaning of an operation symbol is some function. The definition
of the actual functions for a particular implementation would depend, of course, on the
nature of the application, and the available computational geometry algorithms. Rule (3)
is the semantic counterpart for the syntactic rule through which well-formed terms are
defined, and it simply states that the interpretation of a functor term is the application of
the function denoted by the operator symbol of the term, to the objects denoted by the
argument terms. Rule (4) specifies the interpretation of the equality relation, and it is the
device that we use for interpreting basic constants of graphical sorts. For instance, the
interpretation of a constant like poly; is a symbol on the screen, but such a polygon can
only be depicted in terms of its associated description; then, the interpreter is implemented
in such a way that when the interpretation of a symbol’s name is required, its associated
description is evaluated, using (4) and (3). Rules (5) and (6) specify the interpretation
of quantified terms. Rule (5) specifies that a universally quantified formula is true if it is
satisfied by all the possible different instantiations of the bound variable in relation to the
model M in the current state. Rule (6) requires that at least one such instantiation must
hold. In our model, the universe of discourse consists of the symbols that are named in the
knowledge-base either by a basic constant or a description.

The semantic rules cover as well the partial interpretation of expressions of G. Given
that the addition of error elements in every sort allows us to think of the functions associated
with every functor term as total functions, the present formulation is general enough: in
every situation the interpretation of an expression is a normal or an error element of its
sort.

Now, we turn to the relation between the theoretical notion of Model and its im-
plementation in terms of the objects in the logical representation. In the same way that
expressions of G are evaluated in relation to the representation in the data-base (the set
of expressions denoting the drawing’s constituents), they have a semantic interpretation
in relation to the model M. Here, we make the abstraction that the finite set of graphical
symbols of every sort s in a particular state of the data-base is the set G5 of the model M
at that state. On the other hand, the computational geometry functions associated with
the operation symbols of G have domains and ranges of infinite cardinality (the set of real
and order pair of reals) and such functions are the same for every drafting state.

16

Next, we illustrate with the help of an example how the interpretation rules are used.
Consider the expression (5) in relation to the drawing in Figure 3.1,

line(ds,intersect(1y,1.))
The interpretation proceeds as follows:
1. Rule 3: Application of line,

[[1line(ds, intersect(1y,1.))]11M:"9 =
[[1inel1M9([[d5]1M:"9, [[intersect(ly,1.)11M:%9)

2. Rule 1: Eval ds,

[[ds]11M 00

is given by the interpretation function # of the model M.%
3. Rule 3: Application of intersect,

[[intersect(1;,1.)11M%¢ = [[intersect]]IM9([[1,11M:9, [[1,11M:59)

(a) Rule 4: Substitution of constant 1; by its basic description, (similarly for 1)
[[1,J1M"¢ = [[line(d;,dy)1]1M:0e

(b) Rule 3: Application of line,
[[line(d;,d2)I11¢ = [[1ine]1M#([[dJ1M9, [[dp11M19)

where the dots are basic constants and 1ine(d;,d;) is a well-defined basic de-
scription.

(c) Rule 3: Application of geometrical algorithm associated to intersect:
[[intersect]]1™:([[line(d;,d)11M", [[1ine(ds,ds)1]1M 1)
= [[d;1]M 00

where [[d;,¢]]™»¢ has a normal denotation.

4. Rule 3: Substitution (3) in (1) and application of geometrical algorithm associated
to line (which verifies that the two dots are well-defined and whose positions are not
the same):

[[1ine]]¥([[d511M59, [1dindTH"9)
which is a well-formed basic description.

Consequently, (5) is a well-defined line from ds to d;,,; in relation to Figure 3.1. No-
tice that the expression is recursively partitioned into its constituent parts: a symbolic
operation. This reduction is governed by the interpretation rules specified in the semantic
algebra. However, the substitution in 3.c is a numerical process which is embedded within
the symbolic interpretation. Note that the application of the function denoted by a basic

S Although in our grammar, dots have basic descriptions in terms of order-pairs of reals, for clarity we
consider dots as primitive constants in this example.

17

geometric functor, —which is computed by the geometrical algorithm associated to the func-
tor symbol- is preceded by the reduction of the arguments to their corresponding normal
forms. Such reduction might itself involve the application of other embedded geometrical
computations. It is important to notice that from a declarative point of view, the substi-
tution of a geometric description by its value corresponds to a substitution of equals by
equals. However, from a computational perspective this substitution is only made possible
through a sub-symbolic level of information processing. Only the input and output of such
a process can be thought of as symbols; what happens within the process is a continuous,
indivisible flow of information. The symbols defined within the algorithm (i.e constants
and variables) function at a lower level of abstraction. All expressions of G can be in-
terpreted in the same combined symbolic and numerical fashion, but the semantic theory
itself is compositional. Although the domains of the functions computed by the primitive
geometrical algorithms are sets of infinite cardinality, the actual objects denoted by the
expressions of the representational language at a given state of the knowledge-base —the
model- is a finite set.

We conclude this section by highlighting that the definition of the language’s inter-
preter as a computer program as shown in the previous section and the semantic rules
presented here are two alternative views of conceptualising the interpretation process. Nei-
ther view is more complete or more formal than the other, but each view highlights better
a particular aspect of the process.

6 Constraint Satisfaction and Layout Design

In this section we investigate how the theoretical apparatus that has been developed can
be applied to a particular problem commonly found in computer graphics and CAD ap-
plications. The problem is how to satisfy an arbitrary set of geometrical and topological
constraints that have been expressed by the human-user in the course of an interactive
graphics session. Problems of this kind range from the simple modification of the prop-
erties of a graphical object on the screen to the synthesis of complete layout drawings, in
which symbols can be added, changed or even deleted in the drawing construction pro-
cess. Constraint satisfaction problems in this context have traditionally been addressed by
interpreting constraints as equation systems, which in turn are solved through numerical
techniques, like local propagation, relaxation and Gaussian elimination. This tradition
goes back to Sketchpad [21] and is still found in many modern systems, for instance,
[1, 3, 4, 9, 20, 23]. However, such approaches have the limitation that configurations
produced by graphics systems are causally determined by a number of factors that are
contingent to the drafting task: how the constraints are translated into algebraic equa-
tions, what initial conditions are selected for the numerical equation-solving method, etc.
In short, the solution will come out of the blue for the human-designer and there is no easy
way to justify a design decision made by the system. These problems are particularly ac-
cute if we wish the constraints to be expressed interactively through linguistic expressions
supported by pointing actions, and rely in a pre-defined translation process for converting
external expressions into equations systems. In this section we investigate how constraint
satisfaction and layout design problems can be represented and solved through symbolic
inference techniques.

18

In order to start this discussion, we emphasise once more that graphical symbols in
an application domain are named by ferms of the representational language. Terms are
either basic constants or functional descriptions which refer to graphical objects of a certain
graphical sort. Constraints, on the other hand, can be thought of as properties that must
or should hold of a drawing, and they are usually expressed through boolean expressions.
That is to say, through expressions that refer to truth values. It is important to emphasise
that the notion of constraint presupposes an intention. Through the representational lan-
guage we can name or refer to accidental features of a drawing without intending to state
a constraint; but when we constrain a drawing we express how a drawing should be. A
constraint refers to a goal to be achieved either by the user or by the system. We express,
for instance, that two lines ought to be parallel, or that a line ought to have a certain
length. Constraints do not necessarily have a definite value, as when we assert that the
area of a polygon should be larger than a certain minimum and smaller than a specified
maximum value. Constraints can also be negative propositions, as when we express that
two polygons should not intersect each other. In summary, constraints are expressed as
boolean expressions, and we can reason about them through the logical machinery associ-
ated to the representational language. Next, we show some situations in which reasoning
about constraints is useful.

The application of logic to constraint satisfaction that first come to mind is to verify
whether a set of constraints is consistent. This is particularly important in interactive ap-
plications in which the human-user is free to add, modify or delete the constraints involved
in a drafting task during the course of interactive sessions. He or she might not be fully
aware that some constraints are logically incompatible. Consider, for instance, that the
user accidentally defines the following constraint set, 7

(20) {parallel(l;,1;),perpendicular(l;,1;)}

Consider that this set is not logically inconsistent, but there is no graphical situation which
satisfies these constraints under the normal geometrical interpretation of the predicates
involved. Consider also that a given object can be referred to through different terms of
the representational language, and that a contradictory situation might not be explicit.
For instance, suppose that we substitute 1; by its basic description in (20) as follows,

(21) {parallel(line(d;,dz),1;),perpendicular(ly,l;)}

In order to realise the inconsistent nature of (20) we need not only to know the meaning
of the predicates parallel and perpendicular, but also the fact that 1; and line(d;,ds)
are co-referential, which is a contingent situation of the knowledge-base. However, the
contradiction would not scape to a logical proof procedure. Suppose that we add the
following geometrical axiom

(22) {YZiineVyine parallel(x,y) — not perpendicular(x,y)}

The union of (20) and (22) is an inconsistent set, and that can be expressed in our rep-
resentational language. In general, a number of geometric axioms representing necessary

"Suppose that the parallel constraint is stated firts, and the perpendicular contraint is stated lat-
ter after several interactive transactions have taken place, remembering the identity of symbols is nos
straightforward.

19

constraints that every drawing must satisfy can be permanently enforced in the implemen-
tation.

Consider now that parallel and perpendicular are basic functor operators in our rep-
resentational language, and they have an associated geometrical algorithm, which is their
denotation as explained in the previous section. Then, an alternative way to realise that
a number of constraints are inconsistent consists in evaluating the conjunction of the con-
straints in terms of the semantic rules: inconsistencies can be realised through a process of
geometrical verification. Informally we could say that in the former procedure we realise
the inconsistency by “thinking” while in the present case the inconsistency is realised by
“seeing”. The decision as to which strategy is better to use would depend on the kind of ap-
plication, and the expected computational load of one or the other procedure. Geometrical
verification is very efficient, and it is the strategy employed in our current implementation
in the Graflog system. However, it is important to keep in mind that inconsistencies re-
alised through this algorithmic method are a matter of contingency, and depend on the
state of the data-base. Logical proofs, on the other hand, follow from the structure of the
representational language.

Logical inference is also useful in the satisfaction of constraints in which the task
consists in mapping a given graphical state to a state in which the constraint set is satisfied.
Suppose, for instance, that we have a method for making two lines parallel. Suppose too
that such a method is only applicable if a number of conditions hold in the application state.
Such a condition migh be, for instance, that the lines involved must not be perpendicular.
Once again, we can either prove or verify that the applicability conditions for a method
hold. We will make use of this facility when we come to the actual definition of constraint
satisfaction methods below in this paper.

Finally, our graphical and logical language supports the definition and interpretation
of drafting rules that are useful in the solution of constraint satisfaction based drafting
tasks. In the next section, we illustrate the definition of such a kind of drafting rules, and
explain their interpretation process.

7 Drafting Intentions and Drafting Rules

The representational language allows us to describe graphical objects and relations in the
different states of an interactive session, but transitions from state to state are produced
either by the human-user or by the system — by the application of a number of drafting
rules. In this section we discuss the definition and interpretation of such a kind of rules. We
motivate this discussion with the help of a simple example in which a drawing is modified
by a draftsman in a normal drawing activity. Consider Figure 7.1 in which the layout
of a house has been sketched. Suppose that at some point during the design process the
draftsman realises that the size of the house is too small, and wishes to make it larger. Here,
we highlight the fact that design and drafting intentions are commonly expressed through
underspecified and vague statements. We could make this task more precise by stating
the actual area of the house, but use of the vague statement will emphasise, hopefully, the
substance of our argument. Notice that there is an infinite number of ways of making a
change producing the desired result, but suppose that we decide to make the house wider
in relation to the north-south orientation by dragging the bottom line down. To gain an

20

—_—_———-—m T~

« :
i
rubbed out
7.1 7.2 7.3

Figure 7: Making larger the area of a house

intuitive grasp of the task we wish to carry out, you could try to do the exercise yourself
paying attention to the way your hand proceeds in the modification of the sketch. Working
with traditional drafting tools, like pencil and rubber, we could modify our sketch by
rubbing out the offending line, and then drawing it below its original position, as shown
in Figure 7.2. Suppose now that there is an external observer who knows that we intend
to make the house larger —perhaps because we have told him so— and who has observed
the modification of the sketch from Figure 7.1 to 7.2. Would he be able to predict that
we intend to produce the sketch in Figure 7.37 Presumably, he would. Unless, of course,
he knows some additional facts that prevent him from drawing such a conclusion. We say
that the inference through which he is able to make this prediction is the interpretation
of our drafting intention, or simply intention interpretation. Furthermore, if the observer
infers the intention correctly, he or she could presumably complete the drafting change
him or herself, and we call this latter action intention satisfaction. We emphasise that
the expression and interpretation of a drafting intention are different notions. Here, the
intention has been expressed partly through language —“the area of the house should be
larger”— and partly through graphics —drawing the line down. The interpretation of the
intention, on the other hand, consists in inferring the course of action that has to be taken
in order to achieve the goal implied by the expression of the intention.

To clarify further our notion of drafting intention we emphasise the distinction be-
tween individual entities, the properties of these individuals, and the values of these prop-
erties. In our example there are five individuals: a house and four walls. The house is
represented by a polygon, and the walls are represented by lines. Note that although the
lines do not form a closed path, we think of the area of the house in terms of the virtual
polygon that is enclosed by the projection of the lines representing the walls. Of course,
we assume that the sketch is a faithful representation of the house, and that there are no
strange walls, not depicted, which close the explicit gap in an irregular fashion, for instance,
by a curve. Although this is not a valid prediction —in a logical sense— familiarity with ar-
chitectural or cultural conventions would, presumably, facilitate this default assumption.
Consider as well that the polygon is a structured object that is defined in terms of its
constituent lines, which in turn are defined as a function of their extreme-dots. So it can
be seen as a unit, or as an aggregation of parts, depending on the level of granularity at
which the drawing is interpreted.

21

An important consideration in our concept of drafting intention is the destructive
character of changes. A drafting process is non-monotonic in relation to the set of con-
straints holding on the drawing being changed. When a rule is applied with the intention to
satisfy a constraint, another constraint might be undone as a side-effect. The modification
from Figure 7.1 to 7.2, for instance, produces an unstable structure in which some con-
straints of the original configuration are violated. In particular, the implicit e_joint relations
between lateral and bottom walls are broken down by this change, and these constraints
must be satisfied again by the next transformation. In general, when we reach a state in
which all constraints associated with a task are satisfied, the problem at hand is solved;
however, the satisfaction of constraints does not proceed in an incremental —monotonic—
fashion. For that reason, the blind application of drafting rules can lead to cycles in the
problem solving path, and provision for preventing this behaviour has to be made. Using
AT planning terminology, we could say that the sub-goals involved in solving a drafting
problem are not necessarily serialisible [8].

Another important consideration is that the expression and interpretation of a draft-
ing intention is centered around one or more specific entities. Consider again the change
from Figure 7.1 to 7.2. Although our main intention was to make the area of the house
larger, what we actually did was to modify the properties of the lines representing the walls.
Furthermore, we expressed the intention by focusing on a particular line whose position
was explicitly modified. Although the intention was global to the house, it was expressed
locally in relation to the bottom wall. In our terminology, the local object around which
the expression or interpretation of an intention is centered is called the focus: the rule that
permits the transformation from Figure 7.1 to 7.2 has the bottom wall as its focus. It is
important to highlight that there is no need to think that modifications always proceed
by having in focus the more basic elements of a structured object. A human draftsman
could change the area of the sketch in Figure 7 in an atomic process, that is to say, by
applying one single rule, or in two sequential stages as in the example. This would depend
not only on the level of structure of the rules that he or she is able to represent, but also
on the limitations imposed by his or her drafting devices. In general, an action that can
be performed by a single highly structured rule would have to be accomplished by the
application of a number of rules that act on less structured entities. The level of structure
of the individual upon which the reasoning process is focused is a paramount parameter
in the efficiency of a reasoning process, and it is consistent and desirable to support rules
that act at different degrees of granularity in an integrated fashion in a drafting system.

A drafting change can be performed in different ways depending on how drafting rules
are defined, and how the focus for the application of each rule is selected. We can think,
for instance, of the second transformation in Figure 7 in terms of the sequential application
of two rules that have as a focus an individual of sort line. Alternativately, we can think of
the same change as produced by the parallel —simultaneous— application of the same rule,
but with different focus lines. Furthermore, we can think that the transition is produced
by the application of a single rule that has two focus individuals of sort line. All options
are consistent, although they have different computational costs. The third view illustrates
that the focus needs not be a unique individual, nor a number of individuals topologically
connected. Furthermore, a rule can be defined in relation to a set of individuals that have
different degrees of structure. Our notion of focus is functional: a rule is focused on a set of
individuals that are relative parameters of the intention that the rule aims to satisfy, and

22

in order to apply a drafting rule the focus must be defined. It is important to highlight
that when a problem is solved by applying several rules that act upon basic individuals
—like dots— or upon individuals of an intermediate degree of structure, the focus changes
during the inference process. Furthermore, which focus individuals are selected in the
course of solving a problem determines, to a very large extent, how the user-intention is
“understood” by the system.

Our intuition is that the selection of the focus precedes and determines, to a great
extent, what is the form of the drawing to be produced. Consider again the interpretation
of the drafting intention in Figure 7. Suppose that the original intention is expressed as,

(23) Make the area of the house larger

at the time the polygon representing the house is pointed out. One way to interpreting
such a drafting intention would be to inferring and executing a plan. One such plan could
be as follows,

(24) Move line x down. Move dots y and z down

The interpretation of the drafting intention consists in inferring the graphical statements in
(24). Satisfying the intention consists in “uttering” such a piece of “discourse” —of course
through graphics and in a way such that the constraints are satisfied, as will be shown
below. Notice that the production of a sequence of statments in (24) can be partioned
into two different —but related— conceptual problems: the first is to identify what is the
actual command sequence that solves the problem, and the second is to indentify what are
the individuals referred to by the variables in the command sentences. We consider that
the identification of the referent of these variables depends on contextual and pragmatic
considerations, and an intuitive idea is to search for the focus of a change command in
the previous graphical sentences. Our suggestion is that in our example x must be related
somehow to the polygon representing the house, and that y and z must be related to x.

Notice that the level of structure of graphical focus can vary. In our example, the
type of the house is polygon, but the type of x is 1ine, and the type of y and z is dot.
Then, the polygon cannot be the referent —or value— of x, which in turn cannot be the
value of neither y or z. However, the polygon is related to the line it is the whole of which
the line is a part— and the line is similarly related to the dots in the state in Figure 7.1.
Generalising this intuition, we could resolve the graphical variables to an individual that
has been previously referred to either directly, or alternatively in an indirect fashion by
referring to one of its subordinated —or super-ordinated— constituents. If a line is defined
in terms of its constituent extreme dots, for instance, and it is the focus of a graphical
command, so are its constituent dots.

After this motivation we introduce some instances of our drafting rules and illustrate
how the solution of a constraint satisfaction drafting task is found. In Figure 8, two rules
for making two lines parallel are illustrated. The left-side of the rules specifies the graphical
context in which the rule can be applied, and the right-side illustrates the graphical state
after the application of the rule. The solid lines in Figure 8 denote actual graphical symbols
of the drawing that is being produced, while the construction lines are defined and “drawn”
by the rules themselves. The dark dot-labels indicate the focus of the rule, and all references
and operations of a rule are defined relative to such a focus. So, in the satisfaction of a
parallel contraint between two lines, each of the four extreme-dots of the two lines involved

23

a >
parallel 1
___'Ek__
! —
- P
parallel 2

Figure 8: Drafting Rules

can be selected as the focus, and the construction lines would be drawn relative to such
a reference. Subsequently, the transformation made by the rule is relative to the focus.
Another way to think of the rules is in terms of a function from dots to dots in which the
domain is the focus, and the range is the dot —or set dots— whose position is changed in the
satisfaction of the rule’s constraint. Note that the two rules produce a similar graphical
configuration as their output. However, they are “pivoted” on a different reference, and
they execute a different procedure: while the focus is placed on the line that is fixed in the
satisfaction of the constraint in the first rule, the focus is an extreme-dot of the line that
is rotated in the second.

Next, we illustrate the application of drafting rules as currently implemented in the
Graflog system. Consider Figure 9 in which the human-user has entered the statement
These are walls at the time a number of symbols of graphical type line are selected and
placed in the drafting space. Next, the user types the statement This is a house as the
vertices of a polygon that stands for the house are pointed out on the screen. In Figure 10
we identify the graphical entities that have been introduced through these interactive trans-
actions. These references will be used below when we explain in detail the interpretation
of drafting intentions. This graphical and linguistic input is interpreted by a heuristic al-
gorithm (“the graphical parser”) that produces the expressions in (25) which are asserted
in the KBg as follows,

(25) 1; = line(d;,dz)
1, = line(end(1;),ds)
13 = line(end(15y),dy)
14 = line(end(13),ds)

24

these are walls thisisahouse denoting a house

Figure 9: Definition of graphical objects

the graphical objects

Figure 10: Definition of graphical objects

15 = line(end(14) ,origin(1y)
k; = path(1;,12)
ko = path(ky,13)
ks = path(ky,14)
ks = path(ks,1s)

poly; = polygon(ky)

Now, we come to the definition of constraints. In Figure 11 the user types the statement
These are parallel as two lines are pointed out on the screen. This statement expresses
that the the user wishes that such a pair of lines should stand in a parallel relation. The
constraint is represented in the knowledge-base as follows,

(26) parallel(ly,14)

Next, in Figure 12 the user selects a dot and moves it into a lower-right position. We
take this information as the specification of a drafting intention expressed by the user.
The result of interpreting this intention according to our drafting rules is also shown in

25

these are parallel

Figure 11: Definition of a geometrical constraint

Figure 12. Note that the dot that is modified by the user in the change command is the
focus for the application of the drafting rule. The application of the rule corresponds to
the formulation and execution of the following plan,

(27) parallel(ly,1l3),focus(x)
move (f(x))

where the variable values are x = dy and £(x) = d4. The value of x is directly determined
in terms of the interactive input, and f is a function determined by the drafting rule.

Whenever more than one constraint is involved and the problem must be solved by
the application of more than one drafting rule, a procedure for shifting the focus during
the problem-solving process must be defined. Consider the situation illustrated in Fig-
ure 13 in which we have two parallel constraints directly stated through the interaction
and one additional constraint that is implied by the transitivity of the parallel relation.
The constraints of this problem are,

(28) parallel(ly,1ls)
parallel(ly,15)

The implied constraint is
parallel(ls,15)

In Figure 13 a change similar to our previous example is indicated. The question
is how the problem should be solved. If the problem can be partitioned into a number of
sub-problems that can be solved by our drafting rules, the solution would depend on the
choice of foci in the different solution steps. The constraints that we impose for the focus
selection problem in our current implementation are:

1. Focus shifting rule: if the solution of a drafting problem is produced by a sequence
of drafting rules Ry, ..., R, the dot modified by rule R; is an admissible focus of the
rule R;+q1. The transformation R; is the interactive input made by the human-user,
and the focus of Ry is the dot explicitly modified in the interaction.

26

\ J
12.2

e A

\ J
12.3 124

Figure 12: Application of Parallel Rule

2. Focus embedding rule: If d; is an admssible focus for rule R;, then it is also an
admissible focus of rule R; for all j > i. The intuition behind this rule is that the
main focus of a change —the one that is indicated externally— “controls” subordinated
changes.

3. Focus neighbouring rule: If a dot d; is a candidate focus, so all d; whose distance
from d; is one line segment are admissible foci too (i.e. d; and d; are the extremes of
a line or an arc). This extension provides additional “local” references for a drafting
task because under the focus shifting and focus embedding rules the system might
fail to solve a problem for lack of a plausible focus even if the task can be solved by
the current set of drafting rules. Consider that in realistic drafting tasks, foci can
be graphical objects of any degree of structure, but in the current version of Graflog
only dots can be foci of transformations, limiting the power of the problem-solving
mechanism. We hope to overcome this limitation in a further implementation of the
system.

4. Cyclicity constraint: No dot can be modified twice in the the same transformation se-
quence. This constraint prevents the problem-solving process from going into infinite
drafting loops.

We come now to the solution of our drafting task. Consider that the proliferation of

27

/

these are parallel these are parallel

Figure 13: Application of Parallel Rule

admissible foci in combination with the set of drafting rules define a search space in which
a given problem can have several solutions and a given solution can be found in terms of
two or more different search paths, if it has a solution at all. This conforms to our intuition
that drafting problems are highly non-deterministic.

The drafting inference is a forward search process. In each state of the problem-
solving task we compute the product set of the power set of atomic constraints that are not
satisfied by the drawing in the state with the set of plausible foci in the state. This set is
called the applicability matriz. Every member of the applicability matrix is an ordered-pair
of a set of constraints and a focus dot. Consider now that each drafting rule is defined to
satisfy a set of constraints in relation to a focus individual. We define the cross-product
of the rules-set and the applicability matrix as the weights-matriz. Let ¢ be an entry in
the applicability matrix and j a rule. If j cannot satisfy ¢ then weights-matrix(i,j) = O;
otherwise, the rule is applicable and the value of weights-matrix(i,j) is the number of
constraints in the goal of rule 5 multiplied by an arbitrary preference factor assigned to
every drafting rule. That is, the higher the degree of structure and the rule’s preference
factor, the larger its weight in the weights-matrix in that state. The entries in the weights-
matrix are ordered according to the weight’s value, and this list is explored in a depth-first
search strategy. However, the number of solutions is independent of the search strategy,
and the full set could be computed by exploring the full search space. All solutions could
be found more efficiently in a parallel implementation of the problem-solving mechanism,
which is already being considered.

Next, we show three alternative solutions for the problem in Figure 13. In the first
case the intention is interpreted by the graphical discourse in (29). The corresponding
graphical explanation as produced by Graflog is shown in Figure 15 at the end of the

paper.

(29) parallel(l;,13),focus(dy)
move(dy)
parallel(1ly,1l5),focus(d;)

move(dy)

28

The second inference is illustrated in Figure 16, and is as follows,
(30) parallel(l;,13),focus(dy)

move(dy)

parallel(1ly,1l5),focus(dy)

move(dg)

Note that the only difference between (29) and (30) is that in the former, the focus of the
second transformation is dy, while dg in the latter. The final configurations in Figure 15
and 16 are alike, except that the middle detached line is displaced rightwards in the former,
and leftwards in the latter.

The third inference in (31) illustrates the non-serialisible nature of the task in relation
to the constraint set, and also the use of the second drafting rule in which the focus is placed
on the line that is rotated. The graphical sequence in Figure 17 is the graphical translation
of the following set of sentences,

(31) parallel(l;,13),focus(dy)
move(dy)
parallel(1ly,15),focus(dy)
move(d;)
parallel(1ly,13),focus(d;)
move(ds)

Notice that the constraint that is satisfied by the first modification is undone by the second.
However, the last transformation re-enforces the satisfaction of the first constraint. Notice
also that in the first and third transformations, the focus lies on the line that is fixed in
the application of the rule; however, in the second transformation, the alternative parallel
rule in which the focus lies on the line that is rotated is considered.

As can be seen, the motivation for this method is based on the view that drafting
task are rule-based. The notion of focus reflects what is the set of geometrical objects that
the human draftsman is attending to when he or she is engaged in a drafting task, and
how his attention varies during the solution of a problem. In summary, we view constraint
satisfaction drafting tasks as symbolic inferences supported by a highly expressive repre-
sentational language, in which graphical symbols, relations, constraints and drafting rules
can be expressed.

8 On the Architecture of an Intelligent Drafting System

We are now in a position to discuss some elements of an architecture for a CAD system
supporting logical representations. This architecture reflects closely the structure of the
Graflog system, and is centered around the definition and use of expressions denoting
graphical objects and constraints. Then, the backbone of the system is constituted by the

29

geometrical knowledge-base KB¢, the constraints set, and the drafting-rules knowledge-
base. Interactive transactions have the purpose of defining instance expressions of these
representational structures, presenting queries about the objects and relations denoted by
them, and specifying changes on these structures.

Figure 14 illustrates the main components of the functional architecture. As can be
seen, there are four functional levels: the human-user, the interface, and interpretation and
representation levels. The representational structures are the backbone of the scheme. The
arrows abstract the main control and information paths. The “internal” aspects of this

| | |
Externa world [Interface I Interpretation I Representation
el el P el <0

induction
of
graph. terms

>| KBg J
interpreter
of G

>[drafting rules J

9[constraints set J

dialogue
manager

drafting
rules
interpreter

inference
explanation

Figure 14: Architecture of an Intelligent CAD system

architecture have been discussed in detail in the previous sections. Here, we concentrate on
its front-end functionality. The interface component is constituted by three main functional
modules: the dialogue manager, the induction of representations and the explanation of
the inferences performed by the system.

The dialogue manager is a complex process that takes the external information,
and handles all related processes. This process has access to the internal representational
structures and interpreters of the system. In addition, it contains a knowledge-base of its
own for handling input strings. The application of the rules in the interface knowledge-base
is constrained by the context, and the dialogue manager state. Here, we do not address in

30

detail the definition and interpretation of the interface rules. However, it is worth pointing
out that the theoretical framework used above for the definition and interpretation of
graphics can also be applied here. Next, we give a general idea of the objects and processes
that the dialogue manager should be able to handle.

The first issue to address is how the expressions in KBg and the constraints set
are defined. The most basic approach is to let the user type directly the definition of all
representational objects. To support this strategy, a number of interactive concepts and
tools can be developed for allowing the user to define and verify the graphical properties
of the drawing as well as the consistency of the representation.

A more developed system can have a number of built-in strategies for inducing repre-
sentations from the graphical input. Graflog, for instance, uses a heuristic algorithm called
refers_to_dot that given a position on the screen (provided through a pointing device), pro-
duces an expression that refers to a dot in such a position. This expression depends in turn
on the current state of the drawing, and captures a number of geometrical and topolog-
ical properties that permit reference to the dot in an informative and relevant way. The
current algorithm produces an expression that “links” all lines that intersect at a selected
position. We refer to this strategy as the “strong attachment condition”. We have to keep
in mind, however, that definitions constituting the representation of a drawing depend on
the drafting and design intentions of human-users. In general, these intentions cannot be
predicted, and algorithms for inducing graphical representations should be considered as
default strategies, and interactive tools for reviewing the representation must be available.
For instance, an interface facility for pointing to things to be attached or detached as re-
quired should be available. A “detach” command, in particular, would simply replace a
complex definition for its basic description.

The partial interpretation of function terms raises another set of HCI issues. Most
traditional drafting systems implement extensional representations in which parameters
are limited to be basic constants. Such systems do not allow interactive states in which
graphical objects lack a well defined referent. In systems based on logical representations a
better compromise between user intentions and representations can be found. In particular,
the explicit definition of error conditions of different sorts allows us to define error mes-
sages according to the kinds of expressions having a partial interpretation or inconsistent
constraint sets.

The interactive definition of the constraints set opens another set of interesting HCI
issues. Interactive tools for exploiting reasoning with combined logical deduction and ge-
ometrical verification can help the user to clarify and synthesise his or her own design
intentions. In complex drawings he or she can, for instance, select a subset of constraints
in the constraint set as the immediate goal for the system. Although it is perhaps possible
for a system to compute a design solution in a one-off fashion, the partition of a global task
into a number of local tasks can perhaps be a better interactive strategy. Furthermore, a
number of different, but not necessarily mutually exclusive, constraint sets can be defined.
Interactive facilities should allow the user to create, modify or select a given contraint set,
according to the state of the drafting construction process.

The definition of drafting-rules for solving problems can also be subject to interface
research. The system can be provided with a number of rules that are as context free as
possible. Such rules might be useful for solving simple drafting problems. However, if there
is a substantial amount of knowledge about the application domain, the system could be

31

customised with a small number of powerful rules able to produce complex modifications
in composite graphical objects in a modular fashion. Interface facilities can be developed
for the interactive definition and simulation test of such a kind of rules.

In an intelligent CAD system, a facility for explaining the inferences made by the
system should also be available. Even with very small knowledge-bases the consequences
of the assertions made by the user might be difficult to trace. Many HCI issues arise in
relation to the kind of dialogue that can support such a task.

Finally, the explanation of drafting inferences that solve constraint satisfaction prob-
lems is an indispensable interface facility. This is so because in this sort of inference it is
not only relevant to know the geometrical properties of a graphical configuration satisfying
the design constraints, but also how such a configuration is related to the original drawing
and the design intention. If the system lacks such an explanation facility, the human-user
might not be able to identify whether a solution to a constraint satisfaction problem cor-
responds to his or her design intentions. Furthermore, if the design concept is consistent
but the system finds no configuration satisfying a drafting intention, then the user should
help to complement the system’s knowledge.

Before concluding this section, it is worth pointing out that we do not intend to
specily particular HCI strategies for a practical implementation. However, we emphasise
that the properties of logical representations permit us to formulate precise questions about
why an interactive concept is required, and also impose strong constraints on how it can be
implemented. We hope to address the definition of specific interactive concepts and tools
in a further work.

9 Conclusions and Further Research

We conclude this paper with a brief reflection on the nature and applications of logical
representations in drafting and CAD systems. First of all, we highlight the fact that this
discussion has been motivated by a semantic concern. The syntactic definition and semantic
interpretation of the representational language allows us to distinguish the representational
scheme from the represented object in a rather objective fashion. In addition, the seman-
tic theory helps us to clarify a number of issues that arise in computer interaction, and
also to extend the power of current drafting and CAD systems. Particularly, the notions
of partial interpretation and error-conditions, and constraints inconsistency are recurring
problems underlying interactive systems in which the input is not only passive data but has
a functional significance too. In many traditional systems semantic problems are not re-
alised either by human-users or by programmers both because of the lack of a well-founded
theoretical framework, and also due to the unflexible nature of such programs.

Next, we state a number of concluding remarks about the main notions discussed in
this paper, as well as some potential issues for further research:

e Representation: Graphical objects can be defined in terms of other symbols in a
fully compositional fashion. Compositions are quite flexible, and the geometry is
used in terms of the form of expressions, rather than in a predefined and fixed set of
strategies. There are as many graphical compositions as well-formed expressions of
the graphical language.

e Reasoning: The ability to reason about drawings and drafting problems expressed

32

by human-users during interactive sessions is greatly enhanced by the use of logical
representations and its associated semantic theory. Logical inferences allow us to
review the consequences of a given set of sentences. Pragmatic inferences are helpful
to synthesise drawings and design objects.

e Traditional techniques for approaching constraint satisfaction focus on the properties
of methods for solving equations, rather than on the clarification of the notion of
“constraint”. The use of logical representations helps us not only to clarify the
notion of constraint, but also to simplify and explain solutions to so-called constraint
satisfaction problems.

e The semantic theory helps us to clarify the relation between the symbolic and nu-
merical levels of computation. In particular, simple strategies for handling numerical
errors can be used. Graflog, for instance, is fairly robust using single precision arith-
metic.

e The explicit linguistic view of representation can help to define precise HCI research
issues. Although interface design must consider social and psychological aspects
of human-users that are external to the computer program, the internal aspects of
interactive processes can be subject to objective research. From the system’s point
of view, only what can be expressed in the representational language can have a
functional role in the interface. HCI concepts should be constrained by the kind of
expressions to which they map in internal representations. Important HCI issues are
consistency and interactive problem-solving, supported by logical and geometrical
inference processes.

e The close similarity between the definition of representational languages and the
methods for formal specification of programming languages encourages a sound pro-
gramming methodology. In particular, the notion of abstract data-type in object-
oriented systems, corresponds closely to the sorts and operation symbols of our rep-
resentational language.

There are several issues for further research. Of particular interest is the development
of drafting applications supporting a non-trivial set of drafting rules, in which the focus is
not limited to a single object of a basic sort, allowing the definition of inferences that focus
on lines, polygons or even graphical objects of a composite geometrical structure.

Another promising line of research is exploring the potential of parallel architectures
for the solution of complex drafting problems. Parallelism can be exploited at several levels:
from the use of general parallel logic programming environments, to specific uses of parallel
architecture to deal with the huge volume of computation due to the non-determinism of
drafting tasks.

Finally, an important issue for further research is the extension of the formalism for
the representation of abstract objects and non-graphical concepts that arise in drafting
and design tasks. Such concepts are usually expressed through natural language and other
symbolic languages and notations. This extension would allow us to represent not only the
geometrical shape of a design object, but also aspects of its functionality, the properties
of the materials from which the object is made, aspects of the machinery needed for its
manufacture, etc. Some progress in this line has already been made [7].

33

References

[1] Bjorn, N. F. B., Maloney, J., Borning, A., An Incremental Constraint Solver, in:
Communication of the ACM 33, No 1. (1990) 54-63.

[2] Bijl, A., Computer Discipline and Design Practice, Edinburgh University Press
(1988).

[3] Borning, A., The Programming Language Aspects of Thinglab, A Constraint-
Oriented Simulation Laboratory, in: ACM Transactions in Programming Lan-
guages and Systems 3, No. 4. (1981) 353-387.

[4] Borning, A., Maher, M., Martindale, A., Wilson, M. Constraint Hierarchies and
Logic Programming, Computer Science Department FR-35, University of Washing-
ton.

[6] Dowty, A. D. R., Wall, A. R. E., Peters, P. S., Introduction to Montague Semantics
(Reidel Publishing Company, 1981, Dordrecht, Holland).

[6] Goguen, J., Thatcher, J. W., Wagner, E. G., An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types, R. T. Yeh
(ed.), (Current Trends in Programming Methodology, 1978, Prentice-Hall). 80-149

[7] Klein, E. H., Pineda, L.A., Semantics and Graphical Information, in: Human-
Computer Interaction -INTERACT’90 D. Diaper et. al. (Eds.). (Elsevier Science
Publishers B. V. North Holland, 1990).

[8] Korf. R. E., Learning to Solve Problems by Searching for Macro-Operators, Re-
search Notes in Artificial Intelligence 5, (Pitman Advanced Publishing Program,
Boston, 1985).

[9] Leler, W., Constraint Programming Languages: Their Specification and Generation

(Addison-Wesley, Reading, Mass. 1988).

[10] Liu, Y., Popplestone, R. J., Symmetry constraint inference in assembly planning:
Automatic assembly configuration specification, in: Proceedings of the National
Conference in Al. (Boston, Mass. 1990) 1038-1044.

[11] Pineda, L.A., Klein, E.H., Lee, J., Graflog: Understanding Graphics Through Nat-
ural Language, Computer Graphics Forum 7 (1988) 97-103.

[12] Pineda, L.A.; A Compositional Semantics for Graphics, in: D. Duce and P. Jancene
(eds.), Eurographics’88 Conference Proceedings (Elsevier Science Publishers B.V.,
North-Holland, 1988).

[13] Pineda, L.A., Chater, N., GRAFLOG: Programming with Interactive Graphics and
PROLOG, in: New Trends in Computer Graphics, Conference Proceedings of CG
International’88, Geneva (Springer-Verlag, Heideberg, 1988).

34

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Pineda, L.A.; GRAFLOG: A Graphical and Logical Programming Language, in:
Proceedings of the IFIP TC5 International Conference on CAD/CAM, G. Leon
Lastra, J. Encarnacao and A. G. Requicha (eds.) (Elsevier Science Publishers B.
V. North Holland, 1988).

Pineda, L.A., Klein, E.H., A Graphical and Logical Language for a Simple Design
Domain, in: P. ten Hagen and P. Veerkamp (eds.) Intelligent cAD Systems III
(Springer-Verlag, Berlin, 1991).

Pineda, L.A., GRAFLOG: A Theory of Semantics for Graphics with applications to
Human-Computer Interaction and cap Systems (PhD thesis, University of Edin-
burgh, 1989).

Pineda, L.A., On Computational Models of Drafting and Design, in: Edinburgh
Architecture Research (18), (Department of Architecture, University of Edinburgh,
1991). To be publish in Design Studies.

Pineda, L.A., Reference, Synthesis and Constraint Satisfaction (To be published in
Eurographics’92 Conference Proceedings, Cambridge, U. K., 1992).

Requicha, A. G., Geometric Modeling and Programmable Automation, in: Pro-
ceedings of the IFIP TC5 International Conference on CAD/CAM. Technology
Transfer to Latin America: Mexico City, August 22-26 '88. G. Leon Lastra, J. En-
carnacao, G. Requicha (Eds.), (Elsevier Science Publishers B. V. North Holland,
1989).

Steele, G.L., The Definition and Implementation of a Computer Programming Lan-
guage Based on Constraints, (Technical Report AI-TR-595, MIT, Cambridge, Mass,
1980).

Sutherland, 1., Sketchpad: A Man-Machine Graphical Communication System, in:
AFIPS SJCC Proceedings (1963) 329-346.

Wang, D., Lee, J., Graphics—Assisted Reasoning, Internal Report, (EdCAAD,
Dept. of Architecture, University of Edinburgh, 1991).

Gusgen, H.W., CONSTAT, A System for Constraint Satisfaction, Research Notes in
Artificial Intelligence, (Morgan Kaufmann Publishers, Inc. San Mateo, California,
1989).

35

