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Abstract

In this paper we investigate the process of learning and verifying gaphical theorems through
abstraction and visualisation. First, the notion of effedivenessof a representation is discussed from
both a computational and a cognitive perspedive the nature of the relation between external
representations and alstraction in these two views, and its implications for diagramnatic reasoning
in Al, is also explored. Then we present a discusson of pragmatic aspeds of reasoning with a system
and reasoning from a system, and the relations of these \iews to recognising and learning graphical
proafs. To understand more dearly the nature of diagrammatic proofs, a case study is presented from
two different symbolic perspedives. In the first, the goal is that a system learns a proof from a
sequence of graphical patterns by inductive learning; in the second, the enphasis is on the syntax,
semantics and proof procedure of the inductive mathematical proof of the same problem. As both of
these approaches lies within alogicist view of diagrammnmatic reasoning, the question is addressed of
whether a dagramrmatic argument can ke visualised, and to what extent this visualisation constitutes
a proof. To this end, a third approach to verifying and learning a diagrammatic proof of the case
study through a “visualisation” with a “retina’ is presented. The discusdon results in a
diagrammatic reasoning system with a dedarative syntax and a compositional semantics but
implemented with a distributed computing architedure. The paper is concluded with adiscusson on
the relation between abstraction, visualisation, interpretation change and learning, applied to
understand a purely diagramnatic proof of the Theorem of Pythagoras.

1.INTRODUCTION

Diagrammatic proofs are for many people usualy easier to lean and understand than the crresponding
proofs expressed in mathematicd or logicd notation. In diagrammatic proofs, proof procedures involve a
limited number of operations which transform diagrams representing the premises of atheorem into a diagram
representing its conclusion; proofs of geometric theorems, like the proof of the Theorem of Pythagoras in
Figure 1.1, are probably the most typica examples of this kind. In an informal analogy between geometricd
and logicd prodfs the different diagrams of the graphicd proof would correspond to the premises of alogicd
argument and the final diagram, where the truth of the theorem can be gpredated, would correspond to the
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Figure 1.1. Proof of the Theorem of Pythagaras

There ae dso examples in which both theorem and proof are supposed to be read off from a @ncrete
diagram, without external signs of the reasoning processinvolved, like the proof of the Pythagorean theorem
shown in Figure 1.2. However, the @sence of graphicd transformations of the diagrams does not mean that
the proof is grasped by a single, holistic, inference In this latter case, the adual proof is a geometricd
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argument in which the gpredation of the truth of the premises and conclusion can be diredly verified on the
diagram. Furthermore, the nature of the proof can be best elucidated if the @nstruction procedure for the
diagram is devel oped alongside the geometrica argument.

Figure 1.2. Theorem of Pythagaras (Euclid’s proof)

Diagrammatic proofs have dso been used as logicd reasoning systems; for instance, Euler circles and Venn
diagrams have been used to reason about syllogisms. In these kinds of systems it can be gpredated more
ealy that there is a set of valid operations that can be gplied to produce the diagram representing the
conclusion out of the diagrams representing the premises of a logicd argument. Consider the Euler circle
representation of the syllogism All A are B, All B are C, All A are C which is ¢hown in Figure 1.3. As can be
sea, the diagrams representing the premises are aggregated on and aligned by the midde term B of the
syllogism.
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Figure 1.3. Syllogism representation with Euler’scircles

Diagrams have dso been used to illustrate proofs of arithmetic theorems that are normally proved through
mathematica induction, such as the theorem of the sum of odd numbers, 1+3+5+...+(2n-1)=n? ill ustrated in
Figure 1.4. A sample of theorems of this kind, including the present one, are given by Nelsen [Nelsen, 1993.

Figure 1.4. Theorem of the sum of the odds.

The figure represents the theorem because the leftmost L’s of all the squares whose upper-right corner is at
the upper-right corner of the grid can be interpreted as odd numbers, such that an L with a side of sizen can
be interpreted as the odd number 2n-1. Any sequence of n consecutive L’s (from right to left, starting from the
upper-right) can be interpreted as the sum of the corresponding oddnumbers and, as the aea(number of dats)
covered by this squenceis the same & the aeaof a square of sizen?, the diagram represents the theorem.

Asthis sample of proofs suggests, diagrams can be used effedively to present and assess the validity
of arguments that would be much harder to understand through logicd or natural language representations.



The study of these proadfs is important, as they provide aparadigmatic case of study for the use of graphical
representations in more open forms of graphicd reasoning and problem-solving tasks. The study of
diagrammatic reasoning is not only a theoreticd concern. As has been pointed out by Herbert Simon in the
foreword of arecent colledion on diagrammatic reasoning [Glasgow, 1999, it also has important appli caions
in computational technology both for enhancing the dfediveness of visual displays, and for providing a
scientific base for the mnstruction of representations that can be stored and manipulated by computers. Thisis
relevant to several fields of reseach, such as human-computer interadion, multimodal communicaion, visual
programming, artificial intelligence (Al), and, in general, to any discipline which deds which the effedive
presentation and use of graphical information.

In Sedion 2 o this paper we discuss the notion of effediveness of a representation both from a
computational and a @gnitive perspedive, and ask whether these perspedives med in Al. To look at the
question of computational effediveness we think of the tape of a standard Turing Madhine & an externa
medium, like apieceof paper, and of the set of states and transitions, the dgorithm, as an internal abstradion.
We amphasise that the notation of a representation is embedded in this abstradion. We dso introduce a
generalised scanning devicethat is able to insped symbols and abstrad away from the restrictions imposed on
externa symbals by the achitecture of standard Turing Machines. Then, we turn to consider the notion of
effectivenessfrom a mgnitive perspedive. For this, we alopt the theory of spedficity of graphics [Stenning
and Oberlander, 1995] and review the effed of introducing limited abstradion in graphica representations.
Finally, we review effortsin the field of Al to design and huild intelligent systems that take alvantage of the
effectivenessof diagrammatic representations to increase the power of theorem-proving and problem-solving
systems.

In Sedion 3, we review a number of pragmatic issues relevant for diagrammatic reasoning. We
follow Gurr [Gurr, Leeand Stenning] on the distinction between reasoning within and from a system. The
former is the traditional Al point of view in which the definition of a seach space ad the formal operations
to explore it are the concern of problem-solving systems. However, computational proceses are dways
embedded in agents which interad not only with one symbadlic system but with many, and also with the
world, in complicated ways. Adopting the view of reasoning from a system permits us to seeemerging shapes
in diagramsthat are esentia to the gpredation of diagrammatic proofs and leaning.

In Sedion 4 we turn to investigate diagrammatic reasoning and proof through a cae study. The am
is to clarify as much as possble mmputational models of diagrammatic reasoning, and to seethe extent to
which the effort cgptures human diagrammatic reasoning. The discusson is developed around several ways of
modelling the diagrammatic proof of the theorem of the odds in Figure 1.4. First, we present an approach
developed by Jamnik [Jamnik et al., 1999] in which the aithmetic proof of the theorem, which is usually
proved by mathematicd induction, is modelled as a leaning induction inference produced on the basis of a
sample of diagrams which are mnsidered concrete instances of the general relation expressed by the theorem.
However, althouch leaning and proving theorems are dosely related in problem-solving tasks, they are
normally thought of as different phenomena. The common intuition is that a theorem is first leaned and then
proved. To study this issue we present a system of multimodal representation formalised along the lines of
Montague's emiotic programme [Dowty, 1981]. In this system the syntax and semantics of a graphicd
language in which the diagrammatic prodf is expressed are made eplicit, and we show how the theorem can
be proved graphicdly by a diagrammatic representation of mathematicd induction. These two approaches
highlight two different aspeds of diagrammatic reasoning. The first focuses on the problem of how to express
a theorem graphicdly, while the induction and the proof itself are thought of as symbalic operations. The
seoond, on the other hand, shows how the proof by mathematica induction can be thought of as a linguistic
argument that has a visual counterpart, but assumes that the expression representing the theorem is given.
Additionally, as both strategies postulate intermediate symbdlic structures to lean or reason about the
diagram, the diagram bemmes a subordinate ecternal objed only used for interfadng with the symbalic
process or as an aid to computing and storing information effedively: the traditional logicist view of Al.

In Sedion 5 we investigate further whether diagrammatic proofs can be modelled computationally
without relying esentially on a symbalic process We review Funt’s work on the Whisper system [Funt,
1980] and discusswhether the diagrammatic proof can be visualised through a computational retina. We dso
discuss whether the diagrammatic inductive agument has to be visualised to verify the theorem, or whether,
acording to the theory of graphicd spedficity, the visualisation of the proof on a singe diagram can be
considered avalid argument.



In sedion 6 we discuss whether diagrams can be interpreted as universal assertions or proaofs. We
argue this is the ase because diagrammatic or graphicd proofs are interpreted by people & limited
abstradion representational systems. We ague that the astradion that makes it possble to interpret a
diagram as a graphicd proof is a mnsequence of the éstradion conveyed by the basic notation of the
representational system and some properties of the representation medium. The discusson in relation to the
pragmatics of theorem-proving is also brought to bea, and it is argued that the process of visualisation is
much more interesting in the context of leaning a theorem graphicadly rather than in the context of verifying
graphicdly something that is known already. We then advance a discussion on the relation between
abstradion, visualisation and notational change, and how this relation impads on learning. We cnclude the
paper with a reflection on how the syntax and semantics of graphics, the interpretation of diagrams as
minimal abstradion representational systems, the pragmatic issues related to reasoning within and from a
system, and the processes involved in notational change and visualisation are dl brought to bea upon
leaning and verifying the proof of the Theorem of Pythagorasill ustrated in Figure 1.1.

2. Notation, Representation and Graphical Interpretation.

2.1 Turing machines and effedive mmputations

In this dion we look at the relation of a diagrammatic representation and its interpretation process and
discuss ame of the reasons that make diagrams such effedive dds in communicaion and reasoning. One
way to think of a diagram is as an expression composed from symbols of a well-defined alphabet which is
written down on the tape, probably bidimensional, of a Turing Machine. The tape can be thought of as the
medium of the representation (in a sense similar to that of [Stenning et a., 1999). The Turing machine itself,
the set of states and transitions that defines the dgorithm, can be thought of as an abstrad process which
interprets the diagram. This intuition corresponds to the adions one takes when performing manipulations on
externa representations; for instance for adding two numbers in dedmal notation using the traditional
algorithm that is taught in elementary school, one has to write the numeral symbols on a piece of paper
acording to what is e (in an external representation) and manipulate the symbals foll owing an algorithm,
which has no overt description, but which is known internally.

Expresdons written on the tape of a Turing Macdhine ae interpreted in relation to a given notation.
The string “111”, for instance, can be interpreted as the number threg seven or one hundred and eleven
depending on whether the notation is monadic, binary or deamal. However, unlike the dphabet, the set of
states and adions, and the transition table, the notation is not formally stated in the spedfication of a Turing
Madine. If the interpreter is a person, the knowledge of what is the notation is kept in her mind, and the
interpretation is relative to the standard input and output configuration conditions that have to be explicitly
stated [Boolos and Jeffrey, 1990, but if the interpretation processis a standard Turing Machine, the notation
is nowhere but implicit in the way the dgorithm is constructed.

Algorithms compute functions, but the same function can be computed by different algorithms, and
the choice of one dgorithm instead of another can have an important impad on the amount of memory and
time required for the computation. Indedl, it is possble to compare two algorithms computing the same
function in terms of the computation steps and memory cdls employed by each of them, and if one performs
better than the other, we can say that it computes the function more dfedively. Algorithms are dso designed
taking into ac@unt the shape of the medium in which the symbds on the tape ae written down. A Turing
Madhine for computing the sum using a linea tape with monadic notation, for instance, can be eaily
designed; however, the same computation can be performed by a Turing Machine using dedmal notation and
an array as its representational medium. This machine would have to navigate not only in a horizonta
diredion (from left to right and vice versa) but also to move up and down the aray acwording to the aurrent
state and the symbal that is <anned. The former machine can be defined with a very small set of states, but
the omputational steps and tape cdls required to perform the computation grow linealy in the size of the
arguments. The latter machine, on the other hand, can be designed with a little more than 110 states but,
interestingly enoudh, the mputational resources required to perform the cmputation gow only
logarithmicdly in the size of the aguments. It is not an acddent that human beings use this ssaond choice of
notation and medium for arithmetic computations. The relation between the @strad process the scanning
device and the grid of abidimensional Turing Machineisillustrated in Figure 2.1.
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Figure 2.1 Bidimensional Turing Machine for a sum calculation

Another important asped of the interpretation process performed by a Turing Machine is that many
computational steps are used to navigate acossthe medium to scan and write symbals in the proper place
Increasing the dimensionality of the medium reduces the number of computational steps, as the navigation of
the scanning device over the cdls will have more acces routes. In order to seethis, one @n easily define an
algorithm to compute asum in dedmal notation with a linea tape and compare the number of steps required
to move the symbadls around the tape with the navigation steps required to compute the sum on a grid. People
do follow a scanning protocol when performing arithmetic computations on a piece of paper, and can be
aware of it.

Other shapes of the Turing Machine's “tape” can be mnceived. Data structures like arays, trees,
dags, or graphs in general can also be thought of as external representations, in the sense that the objeds
stored in the cdls of these kinds of structures (i.e. array cdls or nodes) are basic symbads or compasite
structures of a well-defined language, that are inspeded by a scanning device which is able to move dong the
medium during the interpretation process acording to its sape. Navigation on a graph is smilar to
navigation on alinea tape, as the scanning devicefoll ows the topdogy of the medium and moves from cdl to
cdl through the graph links, one step at a time. Navigation in arrays is more flexible as the position of the
scanning deviceis st diredly through the index; navigation on a random accessmemory is yet more flexible
as the scanning device is st diredly through a dired or an indired reference, abstrading away the
computational steps required to navigate acossthe tape. Tables and arrays are a @mpromise between graphs
in which the scanning protocol is fully determined and random acess media in which it is abstraded away
atogether.

Scanning operations in Turing Machines are locd to tape and grid cdls. The symbals of an a phabet
are dso locd, in the sense that they are dways fully contained in individual cdls, a cdl can contain only one
symbol, symbals are read and written on single @omic operations, and algorithms are discrete sequences of
these operations. These ae formal properties which permit us to describe dgorithmsin a very predse way;
however, if we relax these properties and think of symbals of the dphabet in abstradion from the individual
cdls, and scanning protocols in abstraction from locd and sequentia constraints, then alarge dass of externa
representations can be thought of as a particular seledion of medium, alphabet and notation of a Turing
computation. We suggest that this abstradion could be atieved by thinking of the scanning device & an
adive reting, as in the Whisper system [Funt, 1980, in such a way that a number of cdls could be inspeded
and interpreted simultaneously by adive processors asociated to ead cdl, and the symbads on the grid,
abstraded as wholes, would be the objeds manipulated by the Turing Machine proper. This architedure is
ill ustrated in Figure 2.2.
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Figure 2.2 A Turing Machine with an abstract scanning device

An example of the kind of computation that could be caried out by this architedure is the process of
reasoning with Euler circles, in which circles representing sets of objeds or classes are manipulated by an
abstrad processwhich implements a sound inference method. Here, circles are not constrained to individuals
cdls of grid, do overlap between each other and, nevertheless are inspeded and modified by the human
interpreter in the course of producing the proof. This process as most algorithms employed by people, is very
complex and its full algorithmic charaderisation might never be spedfied, but we can focus on the properties
of the media, alphabet and notation of external representations, and regard the dgorithm used by people to
interpret them as an abstradion.

Looking at human computational processes from the point of view suggested here might have some
implicaions for the debate on the propasitional versus the analogicd views of knowledge representation. The
propositional view of knowledge representation, on the one hand, is concerned with the meaning of logica or
natural language expressons, but not necessarily with how effedively these kinds of representations are
interpreted by people. Propositional representations are interpreted through processes in which external
symboalic manipulation and scanning protocols reved littl e out the nature of the dgorithm, as much of the
work is done internally by the interpretation process Furthermore, questions about effediveness cannot even
be raised because such a view adopts a particular choice of media and notation beforehand. In the analogical
view and the study of diagrammatic representations, on the other hand, the nature of the dgorithm foll owed
by the interpreter is reveded in the external ads, and the medium bemmes a ncrete reference for
understanding the process In this ense, the interpretation process of propasitional representations is more
abstrad than the process involved in the interpretation of diagrams, which have a much more mncrete
charaaer. However, the borderline between the two views is difficult to demarcate because dl computational
processes have both an internal and external asped. In general, information expressed through diagrams can
be expres=ed also, at least in principle, through propasitional representations; these kinds of representations
do not differ in meaning, but one might be interpreted much more effedively than the other depending on the
choice of medium and notation. In a similar vein, Larkin and Simon [Larkin and Simon, 1987 distinguish
between informational and computational equivalence of representations. Effedive computations will require
less computational resources than the arresponding computations using different kinds of representations,
and in that sense, will be eaier for people to use and understand with limited computational resources.

2.2 The spedficity of graphics

From the previous discussion we can see that effediveness is a relational notion which involves the
comparison of different representations for the same kind of knowledge and inferential task. In order to oktain
amore a@gnitive perspedive on the properties that make representational systems eff ective, we consider the
cognitive theory of graphicd and linguist reasoning of Stenning and Oberlander [Stenning and Oberlander,
199%] which was developed on the intuition that graphicd representations limit abstradion and thereby aid
processhility. The limitation requires that a cetain amount of information must be spedfied in a system



concretely, in contrast to systems of representation that allow arbitrary abstradions. This property of
graphicd systems of representation is referred to as spedficity. The theory charaderises three kinds of
representational systems acarding to the restriction of abstradion that is enforced, and redaprocdly, on the
amount of concrete information that is diredly interpretable. These ae minimal, limited and unlimited
abstraction representationd systems (MARS, LARS and UARS, respedively). Stenning and Oberlander
assume that in the same way as logicd and natural language, graphicd representations can be thought of as
expressons of a well-formed language, and can be interpreted in relation to a model, in the model-theoretic
sense. In MARS, expressons representing states of affairs of the represented world are satisfied by a single
model in the intended interpretation, but LARS and UARS can have several models. Hence, MARS are
expressons that can never be ambiguous or contain symbadls standing for incomplete information. For
instance, the representation of a sum in deamal notation on a grid is a MARS because different numerals
denote different numbers, and the number representing the sum is either corred or incorred in relation to the
numbers being added. The knowledge of this algorithm for the sum is nowhere in the representation but only
in the mind of person performing the cmputation, and for the purpose of the model, it is an abstradion. So,
the processof adding two numbers on a pieceof paper involves sme astradion, but the interpretation of the
symbals in the representation is known diredly and unambiguously by the interpreter. Since the abstradion
involved is minimal, MARS are interpreted very effedively. MARS are cmplete representations denoting
fully determined states of affairs.

In Stenning and Oberlander’s theory it is also important to consider how the interpreter knows the
meaning of basic symbals and composite expressons in the representation. For this, they use the notion of
representationd key which consists of the knowledge that has to be made eplicit to the users of a
representation so they can understand it, and to know thisisto know the notation of the representation. If we
ask how many models there aefor “111+ 11 =11111", we neead to know that the notation is monadic, and
that the representation states that three and two are five; so there is one model, and the stringisa MARS. (If
the notation is binary or dedmal the expresson can also be interpreted but is false and has no model.) The
difference between MARS, LARS and UARS depends also on the structure of the representational key. In the
case of MARS, representational terms have adenotation that is fully determined if the notation is known. In
the cae of LARS, the interpretation of a symbal or a composite term can have a number of possble
interpretations and then represents an abstradion. To implement abstradion in representations there must be
symbals ganding for more than one individua or state of affairs; the smplest example is to include symbols
on a representation standing for variables. Consider the expresson “X + 1 =Y + 1", and suppose that in the
key is gated that “X” and “Y” stand either for one or two; then the expression represents more than one of
statesin the world, and in fad it has two models. in one it asserts that two is equal to two, and in the other that
threeis equal to three As a mnsequence the interpretation of this ssoond kind of representation needs to
consider the dternatives, and then it is more expensive computationally than aMARS.

The theory distinguishes two kinds of representational keys: terminological and assertional. The
statement “X stands for either one or two” establishes the values a representational objed can have,
independently of the values taken by other representational structures: then it is a terminologicd key, and is
the only kind of key permitted in LARS. Assertional keys, on the other hand, permit the expresson of
arbitrary relations within elements of representational structures, such as “X is 1 if the value of Y is egual to
the value of Z". Whenever assertional keys are present there is no limit to the éstradion that can be
expressed, and hence the system is a UARS. Stenning and Oberlander review the logicd equivalencies
between MARS and complete sentences of monadic propasitional logic which describe a situation
comprehensively (i.e., a sentence in conjunctive normal form exhausting the cmbinatorial posshiliti es of
predicates and constants of the logicd language, assuming that there is no lexicd ambiguity). However, if a
logicd sentence describes a situation partially there might be several situations that are compatible with the
statement and the logica representation will be equivalent to a LARS, as the sentence @n be thoudht of
abstrading over al such situations; if there were lexical or syntadicd ambiguity in a representationa
structure, it would also be aLARS for similar reasons. As MARS can be mmputed effedively they are dso
compared with Levesque's vivid knowledge-bases [Levesque, 1988 which contain only ground function-free
atomic sentences, use the unique names convention and implement the dosed-world assumption and the
axioms of equality. Vivid knowledge-bases are cmputationally tradable, as they expressinformation in a
complete and unambiguous manner. If the expressvenessof vivid knowledge-bases is increased by allowing
digunction and the subsumption of predicates in taxonomy, they are roughly equivalent to LARS, as they
permit arestricted form of abstradion.



The theory of graphicd spedficity is designed to relate the eff ectiveness of graphics to the properties
of MARS, LARS and UARS, but these can also be thought of as applying to linea representations, as in our
examples. According to Stenning and Oberlander the semantic properties of a representation, espedally in
relation to restricted abstradion, have asyntactic reflex which makes ome representations easier to perceive
and understand. For instance, atabular representation of the semantics of alogicd language in which columns
are labelled by predicae names, rows by constants and the céls are filled with “1” or “0”, is much easier to
interpret than the arresponding comprehensive sentence of monadic predicae logic. It is the particular nature
of this syntactic reflex that makes graphics more dfedive. However, the question of how the syntadic reflex
is linked to a semantic property isillustrated only by examples. The tabular representation for the semantics
of logicd language in our example has no empty cells: al cdls have one out of two pcssble values, and there
is never more than one symbal in ead cdl. Another way to put thisis that the information conveyed for all
propositions is displayed simultaneously in an orderly, synoptic fashion. Stenning and Oberlander use
syllogistic reasoning with Euler circles as the running example to illustrate the theory. In this task, the
diagrams representing the premises of a syllogism (Figure 1.3) are aggregated into a composite figure in a
single holistic operation from the result of which the @mnclusion of the syll ogism can be read off.

Enforcement of a particular level of abstradion in a representation depends on the system having a
suitably chosen syntadic reflex. Euler circles for syllogistic reasoning have been criticised as an effedive
method d reasoning because premises can have several graphicd representations, and all combinations of
diagrams representing the premises must be taken into acaunt when producing a mnclusion. Regions in such
diagrams have adefinite interpretation and ead diagram is a MARS, but several concrete diagrams have to
be inspeded to assesswhether thereisavalid conclusion. In the Stenning and Oberlander version of the Euler
circles reasoning system, on the other hand, a notational device (a mark) is introduced to assert that there ae
some types of individuals whose eistence is necessarily implicaed by the premises, but unmarked regions
mean that individuals of the types represented by such regions might or might not exist, expressng
incomplete information. Hence, the system allows a conclusion to be derived from a very small number of
diagrams — between one and three — by the aldition of a notational device through which abstradion is
expressed. Another way to put thisis that a graphicd LARS permits reasoning that minimises the number of
cases that have to be mnsidered, as eat case represents an abstradion. The syntadic reflex for thistask isthe
superpasition of the diagrams representing both of the premisesin a singe holistic operation gving a synoptic
view of all the relevant information for the reasoning task. As this superposition is additive, it naturally
expresses conjunctive information diredly; digunctive information emboded in abstradions, on the other
hand, neads to be expressed by means of notational devices interpreted acording to the representation key.
Stenning and Oberlander also argue that Johnson-Laird’s mental models [Johnson-Laird, 1983 are graphicd
LARS, although the syntadic reflex in the latter model is lessnatural than the superposition of diagramsin
Euler circles.

2. 3 Computational smulation of diagrammatic reasoning

Having reviewed the notion of effediveness of a representation from a computational and a gnitive
perspedive, we turn now in this edion to the question of how diagrammatic information has been used for
problem-solving and theorem-proving in Al, and to what extent such programs model human diagrammatic
reasoning. A good survey of philosophical and historicd issues, foundational and theoreticd approaches,
computational models and appli cations can be found in [Glasgow et al., 1995. According to Chandrasekaran
[Chandra, 1997], so-cdled dagrammatic information is used in Al in threedifferent fashions, which he refers
to as predicae extradion and projedion, reasoning and simulation. In the first, a diagram is just a pod of
information which is inspeded by (predicate extradion) or modified by (predicae projedion) a symbalic
problem-solving system in the course of completing atask. Diagrams in this approach codify large amounts of
the information that would have to be made explicit by axioms in a data-base otherwise. In this snse, a
diagram codifying some information can thought of as a vivid knowledge-base, since the test of whether
something follows from it could be implemented with the help of algorithms extrading and interpreting
information from diagrams in a very efficient fashion. Probably, the first antecedent is thisline is Gelernter’s
geometric proving system which was able to prove geometric theorems symbadlicdly but used diagrams to
prune the seach space [Gelernter, 1963. Problem-solving systems can aso read and modify diagrams to
represent partial states of a mmputation, and predicate extradion and projedion can interad in complex ways
in course of solving a problem, as in the case of the Hyperproof system for teading logic [Barwise and
Etchemendy, 1991]. Predicate extradion and projedion can be dso use for defining and interpreting graphicd
languages [Pineda, 1989 Klein and Pineda, 1990] and to establi sh the set of interpretations that a diagram can



have in relation to a @nceptua scheme [Reiter and Mackworth, 1987. The second kind of task is
charaderised by the am of developing or anaysing proof-theoretic methods in which premises and
conclusions are represented through diagrams. Stenning and Oberlander’s version of Euler circles [Stenning
and Oberlander, 1995], Shin's model of Venn diagrams [Shin, 1999, Wang and Lee's system for reasoning
about graphicd concepts [Wang and Leg 1993 and Jamnik’s work on inductive proofs of arithmetic
theorems [Jamnik et a., 1999 are instances of this caegory. The third kind of system in Chandra’ s taxonomy
produces a simulation of the processto be modelled. An instancein this classis Funt’s Whisper system which
uses a“retina” to “visualise” unstable objeds coll apsing in a blocks world [Funt, 198(.

Now, we turn to the question of whether these kinds of systems capture important properties of human
diagrammatic reasoning. To assessthis we suggest three levels of resemblance between computational and
human problem-solving. In the first, a similarity between the data-structures used by the reasoning program
and the external expressons representing premises and conclusions of an argument or proof would be
expeded. In the second, similarity between the proof procedures to come from premises to conclusions in the
external proof and the proof-procedures in the computational implementation would be required. In the third
level, a resemblance between the achitedure of the computational machine and the processthat is likely
employed by people would be expeded. Of course, this third level can be stated only very vaguely. Let us
consider Chandrasekaran's taxonomy in relation to these three levels of similarity. Systems relying on
predicate extradion and projedion shed little light in this resped, unless there is a dea description of the
syntax and semantics of diagrams; in such a cae, the first level of similarity would be adieved. Reasoning
systems would achieve the second level if the computational transformations on the representationa
structures resembl e diredly what people would doin working out the solution to the same task. A system to
reason with Euler’s circles within this level, for instance, would apply procedures for combining the graphica
representations of the premises into that of the anclusion by graphical superposition, read the mnclusion
from the diagram thus produced, seach for diagrams invalidating the @mnclusion and make sure that there is
none, in the same way people produce such proofs with a pencil and a pieceof paper. These systems, if asked
to explain the proof, should be ale to produce asequence of drawings representing the proof procedure & a
level of abstradion that is intuitive from the point of view of the human interpreter®. To ill ustrate the third
degree of similarity consider a qualitative simulation produced through inference rules applied sequentially
and contrast this with a similar qualitative processmodel through a visuali sation which can profit from alarge
paralel or distributed computation as in Funt’s Whisper system. The latter would be abetter cognitive model
acordingto the third level. Below, in Sedion 4 and 5, we study these levels of similarity through a case study
in diagrammatic inductive proaofs of arithmetic theorems.

3. Reasoning from a system: the pragmatics of theorem-proving

Thus far, we have focussed on the relation between a given representational system and a particular reasoning
problem. In pradice, faced with areasoning problem there is usually a aucial prior step of determining which
representation system to use. We cdl this the problem of representation seledion. Past theories of
diagrammatic reasoning have tended to focus either on the semantics of diagrams or on the alvantages of
graphics over other kinds of representations, but have not brought these together well [Gurr et al., 1998] to
help with understanding the complex issues that influence the optimal seledion of representations.

One aspea of thisisfamiliar in the literature of cognitive science, popularised espedally by Don Norman (cf.
[Norman, 1994). A typicd example is the solution of the “Towers of Hanoi” problem using coffee-cups
instead of the usual discs-on-sticks. A situation is st up so that coffee-cups (when inverted) can only be
stadked smaller on top d larger — otherwise they fall inside e@h other. This reduces dramaticdly the
number of possble ways the path to a solution can o astray. In effed, it reduces the seach-space of the
problem and thus makes lving it much quicker and easier.

Such a situation can be seen as analogous to graphics, except that in the Towers of Hanoi there is no
semantics: the problem is smply to rearange a given configuration using minimal effort, which can be
compared to a purely syntadic transformation. Some purely syntadic constraints are introduced which limit,

% For instance, the Graflog system is able to solve technicd drafting problems by the gplicaion of qualitative drafting
rules and produce agraphicd explantion of the graphicd problem-solving task diredly refleding drafting adions
performed by people solving similar kinds of problems [Pineda, 1992].



and hence in a sense fadlit ate, that transformation. A reasoning problem of the kind addressed in this paper
involves, additionally, an interpretation and some further constraints that derive from this (e.g. that
transformations should be truth-preserving). Diagrams turn out to be espedally useful when the syntadic
constraints coincide with what is satially possible, and when the interpretation is defined such that these dso
enforce semantic requirements — in other words, when we have, in the sense introduced above, a particularly
well-chosen syntactic reflex of the desired semantics.

We can seethis happening when, for example, we use Euler circles to solve the syllogism depicted in Figure
1.3. We seled a representation for the premises in which we interpret circles as sts and graphicd
containment as st-inclusion. When combined in the only spatially passible way that preserves truth under the
interpretation, these yield a diagram that represents A as included in C. Hence we aan simply “read off” the
conclusion, which we have arived at via what Shimojima cdlsa“freeride’ [Shimojima, 1996. The problem
has been solved essentialy by seleding a representation in which simply representing the problem provides
“for free” arepresentation of the anclusion.

Thereisindeed [Gurr et al.,1998] more to this than appeas at first glance, becaise in some systems (and even
in this system, with some other syllogisms) the mnclusion isagood ded lessobvious; but theride, if not freg
is gill | essexpensive than in a sentential system with full abstradion. The @st of ridesis related to (but not,
as we seelater, determined by) the limitations that the system places on abstradion.

A danger in taking chegp rides is that they may go in the wrong diredion. Indeed they may go completely off
the rails. There ae many examples of graphicd “proofs’ which produce false mnclusions, and some of these
may be due to adopting quite inappropriate wnventions of inference. One @nnot define abitrary graphica
moves and exped them to produce meaningful results. Prior discuses a dosely related pant in natural
language inference, mocking the notion of a “runabou inference ticket” [Prior, 1960]. He proposes a
language with anew connedive, tonk, having the foll owing associated rules of inference

A A tonk B
A tonk B B

Clealy, successive gplication of these rules al ows anything to be derived from anything. Prior suggests that
this dows connectives have to get their meaning from some pre-existing natural language cncept (e.g.
conjunction) that predudes the definition of rules like these. But one can also argue [Haack, 1978 pp. 31-2]
that any rules of inference ae accetable so long as they do not lead to inconsistency; i.e. that syntadic moves
aways have to be wnstrained, but perhaps relatively broadly, by semantic considerations. Graphicd
inferences may not diredly resemble those drawn in natural language, but can still be constrained to be valid;
which alows e.g. for the sorts of completenessresults derived for particular graphicd systems by Shin [Shin,
199%]. Close atention to the “systematicity” of representational mappings [Gurr et al., 199§ should help to
keep us on track and reinforce our resistance to susped inference tickets, for instance in strengthening the
syntadic reflex by avoiding the use of transitive graphicd relations to represent intransitive domain relations.

The risk remains that our ride will take us to a valid destination, but other than where we want to go.
Graphicd proofs can very often, perhaps always, be interpreted in more than one way. Consider the prodf,
given above, of the theorem of the sum of odd numbers. As discussd in sedion 6 below, the same diagram
(our Figure 1.4) can be used to show that 1+2+...+(n-1)+n+(n-1)+...+2+1=n? by considering successive
diagonals, rather than Ls, aadossthe square of dats. Thus the emergence of different patterns all ows us to see
proafs of different theorems. For pradica purposes in reasoning, therefore, something must always dired the
attention of the diagram user in particular ways. This re-emphasises the importance of the representationd
key, introduced above, which defines how a particular diagram is being used for a particular purpose in a
given situation. A diagrammatic proof exists only when a diagram, an interpretation and a theorem are dl
brought into appropriate relationships with ead other. There is apparently no abstrad way to delinede the
class of theorems that any diagram could be used to prove, since the ways in which it can be related to an
interpretation are ultimately arbitrary. (Though we note that the dassmay be limited e.g. by stipulating that
the interpretation be one that avoids abstradion and definesa LARS, or even aMARS))

A final, but for the concerns of this paper highly criticd asped of cheg rides, is that they may only take us
part of the way to the desired conclusion. As discussed in much more detail | ater, we may find that beyond a
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certain stage achange of interpretation is needed to take us to the final conclusion. We need to interpret the
array of dots as Ls for one part of the agument, but then we must seethat it can be equally viewed as a
square; the re-interpretation involved in the Pythagoras proof at the end of sedion 6 is even more dramatic.
Similarly, we may reinterpret with a different level of generality, e.g. to make afigure represent either a
spedfic sguare or any possble square. Mgjor issues arise & the junctions between these interpretations. What
constrains the range of interpretations that can be impased on the figure? How can we tell which diredions it
is sfe or profitable to go in? Might we jump to interpretations that will | ead usto invalid conclusions? Might
some options take us to the same conclusion but at much greaer cost? Perhaps, by viewing the dot-array now
as Ls, now as diagonal lines, we @n derive an interesting relation between odd numbers and symmetrical
sequences; but thisis of no use if we want to relate dther to n”. Goals may direa our focus quite sharply.

This reminds us that even in the simplest cases there is typicdly more than one way to get to the same
conclusion, aternative rides that may have different costs. Thus the syllogism solved above with Euler circles
could also have been solved with a Venn Diagram, or indeed with some sentential apparatus. One can argue
that all of these, even the sentencesif constrained as a"vivid" representation (cf. above discussion of Stenning
and Oberlander), constitute LARSs. From the spedficity point of view, they may even have just the same
level of abstradion, and therefore be eguivalent. The evaluation of these different syntadic reflexes must be
sought in issues concerning the human perceptual faaulty, which are very much more difficult to render
explicit and formal. Formal systems can only distinguish diagrams up to a cetain level — the level at which
they can be cdled courterparts [Hammer, 1995 p38] — which is intuitively the level at which they are
equivalent under the current interpretation function. A simple example would be an instance of the proof of
the sum of odds that constructs Ls from the lower left instead of the upper right: the proof may be formalised
so as not to dscriminate between these options. Counterparts can in other cases differ visualy a good ced
more than this, but are still defined to be semanticaly identicd. A proof using different such counterparts may
ealy differ in its accesgbility to the human reasoner; it has mehow different cognitive msts. It seems
unlikely that people have aspedfic cognitive bias sy towards constructions from the top-right; but if they did
have then it would matter in choasing the best form of representation to use. One culd define aformalism
which made this distinction, but in general it is hard to know which distinctionsto formalise.

From the pragmatic point of view, areasoning task should be gproadched by seleding a representation which
has the minimal necessary level of abstradion, and which offers the chegpest rides available in the right
diredion. Whereas the first of these requirements may be aldressed formally, there ae no algorithmic means
of asesdng the latter. We ae fadng here the problem of reasoning from or to a representation, rather than
within a representation system already seleced. As noted above, dedading how to represent a problem may be
the most important step in finding a solution, yet it is the one that eludes much current theorising.
Diagrammatic representation systems have anumber of “metalogical” properties that relate to their suitabili ty
for use with various types of problem; for example, “self-consistency” [Gurr et a., 199§. It is suggested that
people can lean simply to see when systems, e,g, Euler circles as oppased to Venn diagrams, have cetain
such properties. However, littl e is known about the extent to which this happens, or how best to teach these
kinds of sensitivities. We can here simply re-emphasi se that problem-solving strategies will in general have to
addressmuch more dealy the seledion and use of possbly a sequence of appropriate representations.

The wsting of inferential rides is also a particularly difficult asped to relate to computational problem-
solving systems. The third level of resemblance between human and computer problem-solving, as mentioned
in the last sedion, would seem to demand at least an approacd to devising programs that mirror the sts for
humans of working with gven representations. By and large, however, the first step in the computational
representation of a problem isto turn it into something so far removed from human perceptual experiencethat
no comparison seems possible. For example, a graphic is often turned into a set of ground clauses. These may
well at one level congtitute aLARS with processng properties very similar to the graphic, but the syntadic
reflex is © divergent as to completely predude perceptual costing. This issue has a pervasive influence on the
following discussion of how to move away from the “traditional Al”, logicist approad to representation and
reasoning — motivating espedally the discussion of “Whisper” in sedion 5.
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4. Reasoning within a system: A case study on diagrammatic inductive proofs.

After reviewing some of the pragmatic issues concerning the relation of signs to the interpreters in which
theorem-proving systems are embedded, we move to the traditional Al point of view which is centred on the
formal representations and manipulations upon them by explicit computational processes. For this purpose we
use the theorem of the sum of the odd numbers presented in Figure 5 as a cae study. We first summarise and
discuss a proof of this theorem and an inductive theorem-proving system that has been developed by [Jamnik
et a., 1999] within the traditional Al logicist perspedive. Despite its formal approad, issues about the syntax
and semantics of diagrams representing the theorem and proof procedure ae not explicitly developed in this
work, and questions regarding whether the external representation plays an essentia role in proof need to be
answered. To look closely into these issues we introduce asecond approach in which explicit syntax and
semantics for graphics with the arresponding theorem-prover are provided. Diagrams in this latter view
correspond to well-formed expressions of a graphicd language, and the new proof procedure permits us to
visualise better the essential aspeds of the graphicd induction, as valid inference steps of the theorem-prover
correspond to dagram transformations that can be perceived dredly. However, as this soond approadc relies
on a representational language of a logical kind in which explicit relational operators denote graphicd
relations that human interpreters can perceve diredly, this theorem-prover ill stands within the Al
traditional logicist view. In order to illustrate how a theorem-proving system can take alvantage of the
property of “diredness’ of diagrams and theorem-provers, in Sedion 5 a third approach is presented and
discussed, in which the intuition that diagrams have awell-defined syntax and semantics is preserved, but in
which the underlying representation is a grid fill ed with dots, an analogical representation.

4.1 An inductive diagrammatic theorem-prover system

In this edion the inductive diagrammatic theorem-proving system “Diamond”, developed by [Jamnik et a.,
1999 is presented and discussed. Interestingly enoudh, the stated goals in this work were to simulate human
diagrammatic reasoning in computers, capturing the intuitive notion of truthfulness that humans find easy to
see ad understand, and also to investigate the relation between formal algebraic proofs and the more
“informal” diagrammatic proofs. The procedure consists of three main steps: (1) expressng the theorem
through a graphicd interadive interface with a set of geometric operations, (2) inducing diagrammatic
patterns through inductive leaning techniques and (3) verifying the proof by trandating it into the
corresponding algebraic one. For step (1) a number of geometric operations for decomposing a shape into its
congtituent parts in a systematic fashion are performed by the human user expressng the prodf; for instance
the sguare representing a square of sizen can be decompaosed into an “L” shape of size 2n — 1and a square of
sizen — 1 Thislatter square can be decompased in turn, until the original square representing the square of n
isdecompaosed into a sequence of “L” shapes representing a sequence of odd numbers. According to Jamnik,
these operations capture the inference steps of the proof. The operators that perform this decomposition are
provided by the Diamond system and they constitute the “graphicd vocabulary” of the theorem-prover.
Geometricd operations are given an operational semantics and the system is able to prove @rred
deammpositions of diagrams. In the second step of the process an inductive mnstructive procedure, the so-
cdled constructive wrule, is used to produce the representation of a reaursive geometric pattern out of a
number of proof instances. The resulting reaursive scheme @n be used to decompose an arbitrary square, and
in the intended interpretation it represents the generali sation to be made when one redi ses that the diagram is
a proof of the theorem becaise it holds for any arbitrary sequence of “L” shapes making wp a square. The
final step of the procedure wnsists in verifying that the resulting scheme is corred. For this, it is required to
show that there is a proof in a meta-theory which corresponds to the diagrammatic proof, where asymbalic
proof-tree must be mnstructed which has the representation of the theorem at its roots and axioms at its
leaves. The theorem and proof are expressed through a symbalic language, and the proof itself is produced by
an inductive agument in this language. Mappings relating arithmetic to diagrammatic representations are dso
defined, and expressions of the symbdlic language can be interpreted as arithmetic expressons.

4.2 Graphical syntax and semanticsfor graphical inductive prodfs.

In order to improve our understanding of the problem, we have developed an approach to modelling the
inductive diagrammatic proof, in which diagrams are thought of as well-formed expressons of a language
with explicit syntax and semantics, rather than as objeds to be decompaosed by a sequence of geometricd
operations, and where the validity of the diagrammatic inductive agument can be aswssed by direa
inspedion, as is usually done with Euler circles or Venn diagrams. As a reference for this discussion, an
arithmeticd inductive proof of the theorem, a propasitional one, is shown in Figure 4.1:
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Theorem:
1+3+5+..+(2n-1)=n’

Proof:
(1) 1+3+5+...+(2n-1)=n?
(2) 1+3+5+...+(2n-1) + (2(n+1)-1) = n*+ (2(n+1)-1)
() 1+3+5+..+(2n-1) + (2(n+1)-1) = n® + 2n+1
(4) 1+3+5+..+(2n-1) + (2(n+1)-1) = (n+1)?

FIGURE 4.1 Mathematical induction on the theorem of the sum of the odd numbers.

To appredate better the propositional nature of this proaof procedure, consider how it would be implemented
as atraditional symbalic process(i.e., an Al theorem-proving system). The steps of such a program would be
asfollows:

(a) Recave asitsinput thetheoremin eq. (1)
(b) Apply the inductive hypothesisto produce &. (2)
(c) Reducethe a. (2) to eq. (4)

To cary out step (c), a heuristic search processwould have to be gplied involving severa steps, including
eg. (3). The dlipsis “..." in expresson (1) to (4) states that the pattern in which it is embedded represents an
abstradion: that the pattern occurs an wnspedfied number of times. Now consider the aalogols
diagrammatic formulation of the theorem and proof in Figure 4.2:

Theorem:
[ ] [ [ J [ ] 00
+ 00+ O + + @ = @ O.'
(X X ) H i
o-—-00 o--00
Graphical inductive proof:
@ ®.,ee.,8 . .. - H
00 i
00 o--00
@ .+:.*Eoo+ * s: *? —:—:: :
o000 L] o-00 [ ]
o000 o000
(3) ° + :. +: + + : + : =
L X ] H i
o—-00 [ J
o000

FIGURE 4.2 Diagrammatic inductive proof of the theorem of the odd numbers
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Figure 4.3 Multimodal system of representation

This ill ustrates a protocol for inspeding the diagram that can applied by a human reasoner in the murse of
making the proof, although the adual external representation need not be other than the diagram in 1.5.
Noticethat this proof also uses elli psis as a notational device, in both the verticd and horizontal dimensions.
We believe that this proof procedure catures better the diagrammatic intuition underlying the inductive
graphicd reasoning. If a graphicd theorem-proving system were designed to perform this prodf, it would
proced as follows:

(@) Receveasitsinput the original theoremin graphicd eq. (1)
(b) Apply the inductive assumption producing gaphicd eg. (2)
(c) Perform agraphicd manipulation processto reduce graphica eq. (2) to graphicd eqg. (3)

To model the inductive process we need to show that the graphicd expressions used in the proof do kelongto
alanguage and have the intended semantic interpretation; we dso need to show how the steps of the proof can
be performed as dired transformations on the diagrams, what operations perform such transformations, and
what isthe aorrelation of the diagrammatic proof with the corresponding arithmetic proof. For this we use the
multimodal representational system illustrated in Figure 4.3, which has been developed over the last few yeas
[Pineda, 1989, 1996], [Klein et al., 199Q, [Santana, 1999 and [Pineda axd Garza, 1999], and which foll ows
closely the spirit of Montague's general semiotic programme [Dowty et al., 1985. The reason to adopt this
formalism is that although it was originally conceved to cgpture mpasitionally the semantics and
trandation relations between arbitrary natural languages, it can also be gplied to more general systems of
signs including diagrams [Pineda axd Garza1999. In general, Montague’'s smantics provides us with a
framework for defining meaning preserving translation rules relating expressons of source and target
languages. For our case study, if the aithmetic and dagrammatic proofs do mean the same, there must be
meaning preserving translations between diagrams and their corresponding arithmetic expressons. An
additi onal reason to use this framework is the strict separation employed by Montague between syntactic rules
and semantic operations for the description of unambiguous languages. Syntadic rules are thought of as
formal structures, abstraded away from any external materialisation, but they are defined in terms of syntadic
operations which separate the external shape of symbals in the external expresson from the adua syntadic
structure of the expresdon, a flexibility that is essential when thinking of drawings as expressions of a formal
language. Note that this cannot be atieved with a standard production system in which the shape of an
expresson, astring of charaders, is symmetricd to its syntadic structure.

The drcleslabelled P and L in Figure 4.3 represent the sets of expressions of the graphicad language
and the language of arithmetic respedively; the functions p_.c and ps.. stand for the translation mappings
between the two languages. The drcle labelled G stands for an interlinguabetween P and L which, on the
one hand, captures the geometricd structure of P and, on the other, has a well-defined syntax and semantics
that can be related to the language of arithmetic and can be used for the spedficaion of a computationa
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implementation. The functions pg.p and pp.¢ Stand for the translation mappings between G and P. These two
tranglation relations define the “generation” and the “ perceptual interpretation” of diagrams. The set W stands
for the world, which in this case is the set of natura numbers and together with the functions Fp and F_
congtitutes a multimodal system of interpretation. The ordered pairs <W, Fp>, and <W, F_ > define,
respedively, the model Mp for the diagrammatic or pictorial language, and the model M for the language of
arithmetic. The functions pg.p and pp.¢ define homomorphisms between G and P as basic end composite
terms of these two languages can be mapped into ead other. The interpretation of expressons of G in relation
to the world can be computed by two routes: the trandlation into P through psp and the model Mp or,
aternatively, the trandation to L through ps.. and the model M. The mapping pe.p isillustrated in Figure
4.4.

Pc-p

L(s,*, )
O, L(s, », *))
+(o, L(*, », )

HL(, o) L(L(s, 20 0),000)
O(O(e, L(s, », +)) , L(L(*, *, *), », »

)

Figure 4.4 M appings between G and P

Expressons of G also have an interpretation in relation to the diagrammatic world P. This soond
interpretation captures the intuition that diagrams can be thought of not only as representational objeds, but
aso as entities of a world that can be represented. Under this interpretation, expressions of G are
representations of diagrams in P, and operators of G denote geometricd agorithms that check whether the
operator’s arguments conform to the shape of operator’s value. Fg in Figure 4.3 stands for this soond
interpretation function and the ordered pair <P, Fg> isthe model Mg for the graphicd language in relation to
the world of diagrams.

The language G defines “¢” as a mnstant symbol, and its operators are the symbadls “L”, “+" and
“0O7, in addition to the equality sign. The “L” operator has three aguments which are an objead of type L (a
single dot at the origin is also of type L), and two das which extend bah edges of the L (upwards and
rightwards), and produces an objed of type L that is two units longer than the one from which it is built (the
first argument). The “0O” operator takes an objed of type square (asingle dot is also a square) and an objed
of type L that lies next to the square, on the left, and produces a square whose side is the same as the legs of
the component L. The “+” operator takes two oljeds, a sequence of conseautive L’s (a single dat is
considered the basic sequence of L’s) and an L on the left of the first argument, and produces a compasite
objed of type L" as illustrated in the fifth expresson in Figure 4.4. The trandation function pg.r can be
thought of as a drafting interpreter which draws the picture on the screen or a piece of paper which
corresponds to awell-formed expression of G. On the other hand, graphicd expressions of P can be translated
into the corresponding expressions of G through the goplicaion of pp.g whichislike “sedng the diagram”.

Expressons of G have dso a trandation into the language L, as illustrated in Figure 4.5. The
mapping pe.. defines areaursive trandation from expressions of G into L in a simple fashion. Constants and
operators of G have an associated symbal in L, and the translation of composite expressons is achieved by
applying the trandation of the functor to the trandation of the aguments. As can be seen in the figure, the
trandation of “«” is s(0). The trandation of bath “+” and “L” is a function that, when applied to the
trandations of the aguments, produces the mrresponding expression of L, which is a sum. The trandation of
“0O” is a function that maps sjuare expressions of G into successor expressons of L. The system also
includes the equality signto allow the expression of axioms and theorems. The last expresson in Figure 4.5,
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for instance expresses that a sequence of the two smallest L’s of the system is equal to the square of sizetwo,
and it istrandated into the equation 1 + 3 = 4. The interpretation of symbals of L is given diredly in terms of
the model defined with the natural numbers and the interpretation function F_ in the standard way: it is the
language of arithmetic. The system of multimodal interpretation as a whole defines an interpretation that
corresponds to the interpretation a human interpreter would make when looking at the symbals if he or she
knows how to interpret the notation. The full formalisation of the syntax, semantics and translation relations
between all threelanguages of the scheme is presented in Appendix 1.

Pc-L
G ' —» 50) L
L(*,*:¢) \ / » (S(0) + (s(0) + 5(0)))
O, L(s, =, *)) \ / P S(s(s(s(0))))
e, L(e, 0, 0)) P ((0) + (s(0) + (s(0) + 5(0))))
+(L(s,*,2), L(L(s, *, %), *, *)) \ (((0)+(s(0)+s(0))) +((s(0)+(s(0)+s(0))) +(s(0) +s(0))))
/ —p S(S(S(S(S(S(s(s(s(0))))))))

D@, L, o 0)) s LIL(ss 20 2), 00 0))

o Llerer ) = O Lo, o) (SO+(S(OHS0)+S(0)))) = S(SS(SLO))))

Figure 4.5 Trandation between G and L

With this machinery in place we @n proceel to define atheorem-proving system which is able to produce
the proadf in Figure 4.2, but first we cnsider the question of how the theorem can be expressed or input to the
theorem-prover. This can be adieved by typing the theorem diredly as an expression of G, or aternatively,
by expressng the diagram diredly (e.g. through the picture in 1.5) and interpreting it through a graphic
interadive fadlity or through vision and leaning processes, or through a combination of these two. In the
traditional logicist view of Al thefirst alternative is a matter of course, but if our goal isto capture the essence
of diagrammatic reasoning, the issue is the relation between seeing the diagram, noticing that it represents a
theorem, and also a proof of the theorem which happens to be valid. Additionally, understanding this relation
probably cannot be done without taking into acount pragmatic issues related to reasoning with and reasoning
from a system. Here, in order to clarify the processof proving atheorem when it has already been learned, we
assume that the expression of G representing the theorem is available diredly. Later on, in Sedion 6, we
discuss me apeds of the relation between expressing, leaning and proving the theorem using
diagrammatic means.

The main steps of the proof as well as their corresponding trandations into L are shown in
Figure 4.6. In the proof procedure, the transformation rules applied to expressons of G refled the graphicd
transformations of the diagrammatic proof in Figure 4.2. Once the inductive hypaothesis has been obtained
from the original theorem, the square on the right hand side of the graphicd equation (2) in Figure 4.6 is
decomposed into a square and an L, as shown in the right hand side of equation (3). This aubstitution can be
expressed as a diagrammatic production rule of the diagrammatic theorem-proving system as foll ows:

o o Ov+L"
where

L' =+, and L" stands for an L of size2n-1, n>1;
O"=+,, and O" stands for asquare of sizen, n>1.
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The transformation from eqg. (3) to eg. (4), which completes the proof, is achieved by the dimination of the
same term whenever it appeas on both sides of an equation, in a norma symboalic fashion. As these
production rules preserve “shape”, they can be mnsidered sound inference rules in a strict logicd sense, and
the system could be proved sound and complete in relation to these axioms, as has been done for Venn
diagrams by Shin [Shin, 1995.

(D e+ L(o00)+L(L(s2 ) e,e) +... 4L =0
o S(0) + S(S(S(0))) + S(S(S(S(SLO))) + ... + =&
2 e+ L(eo)HL(L(e o))+ AL HL™ =0 + L™
O S(0) + S(S((0))) + S(S(S(S(S(O)))) + .. + T+ M= S
(3) e+L(ve0)+L(L(syo o))+ L "+ L™l=gr+
o S(0) + S(S(S(0))) + S(S(S(S(S(O))) + ... + &+ SOV = 2

Figure 4.6 Proof in G of the theorem of the sum of the odd numbersand itstrandation into L

The power of the representational system can also be assssed by noticing that the trandation rules
between G and P ensure that the proof is isometric to the crresponding diagrammatic one, and the
translations between G and L ensure that the proof corresponds also to the standard arithmetic proof. Through
these trandations, and beaing in mind that all threelanguages have amodel relative to the same world, the
isomorphism between diagrammatic and algebraic proofs is establi shed.

4.3 Comparing the two approaches. Expressng and proving atheorem

The two models presented above emphasise different aspeds of diagrammatic reasoning; while the first is
more concerned with the diagrammatic expresson of the theorem, the induction and verification stages are in
no sense diagrammatic. The representational structures and graphicd proof procedures of the second
approach, on the other hand, resemble better the drawings and drafting transformations required to visualise
the proof by people with pencil and paper; consequently, it captures better the intuitive notion of truthfulness
that humans find easy to see aad understand, and also makes explicit the relation between diagrammatic and
algebraic prodf. In particular, the dfediveness in understanding the diagrammatic depends on size and
possble moves in the seach space of the proof process as graphicd transformation can be seen as an
abstradion of a large sequence of algebraic transformations. The graphicd proof in Figure 4.2 and its
representation in the language G in Figure 4.6, for instance, is produced by only two transformations while
the aithmetical counterpart requires a larger number of more primitive symbalic transformations, some of
which are shown in Figure 4.1, that depend on the form of the dgebraic expressions’.

However, this s2oond approach assumes that the expresson representing the theorem is given, and
many questions about how the theorem can be expressed by graphicd means gill remain. In particular, the
mapping ppe-c has not been spedfied, and depending on particular research questions, several ways to look at
it are possble. In particular, if we think of Diamond in terms of our multimodal system of representation, the
geometricd operations used to spedfy a theorem through the graphicd interface ad the inductive leaning
technique can be thought of as a particular implementation of such a trandation function. In such a
spedfication pp.c would be afunction mapping a sequence of geometricd operations to the reaursive
description of the general pattern. However, aternative settings to express the theorem graphicdly without
relying on inductive leaning can be cnceived. For instance a graphical interface suppating gaphicd
cursors with sguare and L shapes, asciated to the operators “00” and “L”, as in Diamond, but augmented

* In ardated investigation involving 3-D diagrammatic reasoning we have studied how to produce isometric views of
polyhedra from their orthogona projedions using similar kinds of graphicd languages and graphicd operators. Although
a full implementation d that system is dill pending, current results sow that the seach-spacefor the problem-solving
task issmall [Garza and Pineda, 199§ .
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with a symbal for expressng €llipsis, could map graphical input sequences into expressions of G diredly.
With such a kind of interadive or interpretation technique, the diagram in Figure 4.7, for instance, could be
interpreted as the theorem. Thiskind of interfaceislikely to have avery spedfic charader asit would have to
be designed and huilt taking into acount the syntadic structure of the target representational structure, G in
our case, and a large number of pragmatic assumptions about the nature of the task. In the cae of Diamond,
for instance, the human-user needs to know that the input expeded by the system is a sequence of graphicd
patterns to be interpreted as concrete instances of the theorem to be proved.

Figure 4.7 Expressing the theorem

Another way to conceve ppg is to think of the drawing as a bidimensional expresson on a grid to be
interpreted using a graphicad grammar and parser [Wittenburg, 1998. However, the use of this latter approach
can be onceved better within the mntext of a much more wmplex computer vision system in which the
symboalic representation of the theorem would be induced not only by bottom-up processes ading upon the
external input but also by top-down processes projeding conceptual expedations about arithmetic theorems
into the diagram. Considering the particular combination of graphicd interadive input fadliti es and the
inductive learning techniques of Diamond in terms of pp.g suggests that the effedive use of grammars
involves vision and learning processesin very cumbersome ways, in addition to the diagrammatic process To
appredate this better, suppase that the input sequencein Diamond were not provided by a human-user but by
afad-finding processin aleaning system designed to lean arithmetic theorems from a particular diagram. If
such a program were ale to lean not only the theorem of the odds, but other theorems represented by the
same diagram, as will be discussed below, it would be avery interesting discovery and leaning system.
Furthermore, it would only make use of the diagrammatic theorem-prover once the theorem had been
discovered. In the light of this refledion we speculate that Diamond's diagrammatic inferences are more
concerned with leaning theorems than with proving them, as should be expeded given that a non-
demonstrative inference such as leaning induction is very different from mathematicd induction which is
demonstrative.

We mnclude the cmmparison between the two approaches by mentioning that both use diagrams for
predicate extradion, the first to colled the input for its inductive leaning process and the second to carry out
the proof with very few graphicd transformations, using very effedively the geometricd algorithms
asciated with the geometricd operators of the representational language. However, as both of the
approaches investigated here ae propositional in charader, the question of whether it is possible to simulate
human diagrammatic reasoning diredly requires further investigation. Next, in Sedion 5 we present a refined
system in which the language G is eliminated when a wmputational processfor reasoning diredly with the
expressons of P is pedfied, and examine the mnsequences of such a system.

5. Diagrammatic theorem proving
5.1 A generalised scanning deviceand visualisation

An anteceadent for the following discusson is Funt’'s system for solving problems about mechanicd relations
among rigid bodes [Funt, 198(. This program used aretinato insped a diagram represented as an array (i.e.,
a memory buffer, in which different colours of pixels represent different bodes). The retina is constructed
from a number of processors arranged in rings and aligned by rays (wedges) coming from the eentre of the
circular structure, as shown in Figure 5.1. Each procesor in the aray was able to read the mlour of the pixel
behind it, and to communicae with its immediate neighbours bath in the ring and the wedge. All processors
could also communicate with a central procesor, cdled the supervisor, through a cmmon bus. The retina’' s
basic functionality was used to implement a number of “perceptual operations’ such as: finding the centre of
areaof a body; smulating the rotation of a body; scding a body; finding the mllision point between two
bodes; finding the neaest procesor to the retina's centre satisfying a given condition; and deteding
similarity between two dfferent bodes. Particularly interesting is the visualisation of rotation: to rotate a
body by a given angle, ead processor reading the lour of the body sends a message to the next in the ring
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after erasing its own colour, until the sought angle is readied. Coallisions can be eaily identified: if a
processor recaves the wlour of a body that is being rotated when it is holding the @lour of a different body,
there is a alli sion between the two bodes at the point. In Whisper it was also passble to pasition the cantre
of the retina on an arbitrary part of adiagram, to insped the diagram closely, as the processors in the centre of
the retina had a better resolution that the procesorsin the outer rings.

Figure 5.1 Whisper’sretina

A program with knowledge aout instabilities of rigid bodes, cdled the High-Level Reasoner (HLR), in
Whisper, was able to use the retina’s primitives to produce asimulation of the mllapsing process The relation
between the Whisper’s HLR, the retina and the diagram, is sown in Figure 5.2.

HLR

B

Figure 5.2 The architecure of Whisper

Thisarchitedure can be contrasted with the achitedure of a Turing Machine described in sedion 2, as shown
in Figure 2.2. The high-level reasoner would correspond to the dgorithm used internally by the Turing
Madhine where the abstrad processtakes place the retina would correspond to a generalised scanning device
and the diagram would correspond to the external representation. Whisper's dired link between the HLR and
the diagram can be thought of as the hand of the agent in which the mmputation as a whole is embedded,
which performs the adion of modifying the diagram.

The problem-solving strategy was to simulate the dynamics of rigid bodes when they were subjeded
to mechanicd forces auch as gravity. Through the simulation, Whisper was able to draw a new diagram after
a change had taken place and use it as the new objed seen by the retina. The simulation was a qualitative
process(i.e., one that did not use numericd methods to solve differential equations describing the procesg
and dd not use asymbadlic externalised language for representing and reasoning about the diagram. The daim

18



is not that the states of affairs expressed dagrammaticdly cannot be expressed logicdly, but only that
athough the atual scanning device operates on symbals in the grid, in the same way that linea strings of
symboals are normally scanned in a Turing Madine to model logicd (symbolic) computations, the objeds
“scanned” by the high-level reasoner, the astrad process are symbals representing individual objeds of the
scene domain. The individualisation of a bunch of pixelsinto a shape is achieved by the perceptual primitives
implemented in the retina, but in a processthat is controlled by the HLR. The fad that shapes are produced by
locd processes ading on the grid cdls is not inconsistent with thinking of shapes and diagrams as constants
and composite terms of well-defined languages. To achieve the simulation, symbaols denoting the shapes
represented dagrammaticaly must be defined internally in the HLR of Whisper, and an acount of this level
of description can be given compasitionally. Compasitional semantics provides us with a tool to describe a
type of expression (such as diagrams) and its interpretation processat a very high level of abstradion, but
does not commit usto the view that the gplicaion of semantic rulesis psychologicdly red.

In Chandrasekaran’s terminology, diagrams are used in Funt’s program through predicae ectradion
and simulation. The processthat implements sich manipulations can be thought of as an abstradion, but the
crucial fad is that the definition of the dgorithm depends on the particular properties of the computational
retina. The process of reasoning about the dynamics of rigid bodes can be implemented as a different
algorithm, even a logicd one & in quditative physics, but this particular algorithm for implementing the
simulation depends on the particular choice of media and notation, and the properties of the generalised
scanning device

5.2 Visualisation and diagrammatic proofs

The question that we raise here is whether it is posdgble to think of the diagrammatic proof of the
theorem of the sum of the odds in Figure 4.2 in such a way that the diagram is not used by predicae
projedion but by a processin which the external representation is used dredly, asin Whisper’'s smulations.
The novelty consists in employing a diagram for representing abstrad objeds guch as natural numbers and
proofs, rather than rigid bodes. The proof would be diagrammatic because it would be asimulation of the
proof in which the processapplying the inductive hypothesis and the simplification of the diagram would ad
on the concrete representation of the theorem on the grid, and the transformation would take placein the
retina's paralel processors. However, to show that such a process is posshle we have to provide a
representational system in which diagrams can be interpreted as natural numbers, and the relation between
diagrammatic and arithmetic expressions is also established systematicdly. In particular, we require to
develop a multimodal system of representation similar to the one used in our proof of the theorem in Sedion
4.2, but one in which the relation between the diagrammatic language and the language of arithmetic is dired,
and the language G is removed altogether from the representational system; such a multimodal
representational system isillustrated in Figure 5.3.

0 0
(s(0) + s(0))
S((s(s(0))))

F

Pr-L PL-p

Fp

o

FIGURE 5. 3 Refined multimodal system of representation.

We can now relate this diagram to the achitedure of the Turing Machine in Figure 2.2, and the achitedure
of Whisper in Figure 5.2. L and P are the language of arithmetic and a pictorial language & before. The
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trandation relations p_.p and pp,. establish an isomorphism between the languages and permit meaning
preserving translation between basic and composite expressons of both languages®. The astrad processthat
uses expressons of either of these two languages is embedded in the dgorithmic box of the Turing Machine,
or inthe crresponding HLR box of Whisper's smilar architecure.

Now we proceal to describe acomputational processto prove the diagrammatic proof of the theorem
of the sum of the oddsin Figure 4.2 through visualisation with a Turing Machine with a grid and a generalised
scanning device Knowledge of mathematicd induction is kept as an abstrad processin the HLR. The HLR
understands the notation and knows the theorem already as discussed before. The original diagrammatic
representation on the grid is any instance of the diagram. It is interesting to note that al instances of the
theorem — any square full of dots — have the same logicd properties in relation to the notation, and one can
define an equivalence relation between diagrams, similarly to Shin's counterpart relation for defining a dass
of Venn diagrams that differ in shape but mean the same in relation to the domain [Shin, 1995 Hammer,
199%]. Then, arelation holding in the mncrete cae would hold for the whole of the dass, and that would
prove the theorem. However, under this assumption the proof of the theory would consist in demonstrating
graphicdly that al diagrams in the dassdo kelong to such a wunterpart relation, and an inductive agument
would still be required.

We mnsider now how the simulation can be produced on the retina's array of processors. For
simplicity we assume that the retina’ s shape is also a grid, and there is a processor for inspeding every grid of
the diagram. Also, eat procesr can communicate with its eight surrounding reighbours in the aray. To
simulate the process several procedures can be designed. We exemplify one posdble implementation through
a process consisting of three main parts: (1) read the square, (2) visualise the theorem and (3) apply the
inductive hypothesis. To perform (1), a perceptua primitive of the retinais used by the HLR system to deted
the square, and each processor inspeding cdls on the square’s gatial extension stores a “1” in its locd
memory, and the square of size n is read by the HLR; the locd memory of all procesors in the retina is
switched off. In (2) a sequence of numbersin “L notation” is visualised in the retina and compared with the
visualisation of a number in “square notation”. To dothe former, the HLR visualises a sequence of n Lsin the
retina (e.g., by instructing the procesrs in the top row of the square to switch on and propagate the message
through its lower side, and similarly for the procesors on the right side of the square, which would propagate
to the left; when one processor receves a message from the top and right side, it is instructed to switch on but
to stop the procesg and compares this with the objed recognised in (1). Then, it visualises a square of sizen
in the retina, and compares that with the objed recognised in (1). If both of these tests succee, then the nth
instance of the theorem is recgnised. To apply the inductive hypathesis, the HLR system increases the
parameter n by one, and repeds (2). If the operation succedls, the inductive proof by visualisation is
completed. Note that in this implementation the induction is visualised, but the external representation is
never altered.

Processng expressons of P with a computational retina in the @ntext of the multimodal system of
representation provides an illustration of how a distributed processcan be given a compaositional semantics.
Each procesor computes a ssimple function with locd information and yet the distributed computation as a
whole can be given a meaning: the graphicd symbals and transformations are interpreted as the process of
performing a mathematicd inductive proof.

It is interesting that Stenning and Oberlander have agued that diagrams in a graphicd argument
stand in an ordered relation that can be thought of as an “animation”. Animation introduces temporal
spedficity, and temporal states of the proof that can be eaily visualised have to be proximate in this order. It
has also been argued that this kind of continuity of structural description underlies people’s ability to solve
problems through “visualisation” [Hilton, 1979 1980].

® Note that the fad that L is a “propositional representation” does not mean that it has no externa asped, as ymbals
written ona pieceof paper are dways external. The astrad process performing the proof with expressons of P is as
“internal” as the processading on expressons of L, and expressons of bath P and L are written on the external tape of
the Turing Machine, and can beinspeded with a generali sed scanning device
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To conclude this dion, we cnsider what kind of representational system the square representing
the theorem should be, acmrding to the theory of graphicd spedficity. As afirst approximation, one can say
that the square is a MARS because the square denotes a spedfic sgquare number, and the Ls gedfic odd
numbers, as in Jamnik’s inductive system where the squares input by the human user are meant to represent
concrete instances of the theorem. However, if all dotsin an L shape representing an odd number are thought
of as a bidimensional monadic notation for numerals, the dependencies of objeds in different cdlsin the Ls
and squares have to be stated using notational keys. The key for the Ls dates that any L shape represents an
odd number, the number of dotsin the L, hence an abstradion, and similarly for the squares, as ill ustrated in
Figure 5.4.

LsNOTATION SQUARESNOTATION

Syntax Semantics Syntax Semantics

° 1 ° 1

° o0
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o 000
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00 000
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o 2n-1 o oo n?

o-00 o-00

Figure 5.4 Bidimensional monadic notations

Consequently, the tabular form fill ed in with dots with these notational keys is best thought of asa LARS. It
isnot a UARS, becaise there ae no assertional keys. Furthermore, if the notational keys for the interpretation
of Ls and squares permit such limited abstradion over an infinite number of cases, then a single square
representing an instance of the theorem stands for al instances of the theorem. Accordingly, reasoning with
this concrete objed abstrads over all the caes that would have to be mnsidered to assessthe validity of the
theorem otherwise. However, the syntadic reflex producing the efficacy of the representation is very likely to
be related to the perceptua modality, like the visualisation suppated by the retina and its perceptual
operations. Furthermore, as a particular diagram abstrads over al diagrams, the inductive step (3) in the proof
by visualisation is not required. For people to verify the theorem, it is only necessary to visualise any square
of dots under bath of the notations. We speaulate that this is why people ae @le to verify the truth of the
theorem of the sum of the odds © effedively.

6. Pragmatics and notational change: Learning and graphical proof

In the pradice of mathematics and logic, proving theorems that are essumed to be true is the main concern. In
the dgebraic proof of the theorem of the sum of the odds, for instance, the hard work consists in developing
an argument by mathematica induction. How we get to know the theorem is an issue which is not even
considered. Such questions about credivity are not for mathematicians or logicians. In the diagrammatic
setting, on the other hand, the situation is reversed. Verifying the truth of the theorem istrivial if the notation
is known and the diagram is interpreted as a LARS, as one knows that a singe diagram abstrads over all
instances of the proof and, consequently, it represents the proof. However, leaning this abstradion requires
an inductive learning inference, and to model this latter processis by no means trivial. Interestingly enough,
in the Diamond system, although the intention is to model diagrammatic proofs, the hard work consists in
expressng and leaning the theorems, and the proofs themselves are not even claimed to be diagrammatic.
And thisis right, because in the cae of this graphicd theorem, leaning the theorem is the isaue. There ae
other graphicd reasoning situations in which the graphicd proof procedure does elucidate fads that are hard
to appredate & first sight, as in syllogistic reasoning by graphicd means, but even in those situations the
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question of why the @mncrete sequence of diagrams employed in the proaf stands for the proof, and not just
for an instance of the proof, should be axswered.

To addressthis question, we can exploit two perspedives alrealy discussed in sedion 3. One is to
take aview entirely within a system and the other is to adopt a perspedive from the system. The Diamond
system, for instance, sits within the first perspedive and adopts the view that leaning induction can be used
to produce the generalisation from a number of concrete cases. However, the question of whether a concrete
diagram represents the proof is not even raised, and indeed, Diamond leans the theorem but no diagram in its
setting represents the theorem. However, the processlooks rather different if we take the second perspedive
and reason about the notations of the representational system. To state the notational key for L shapes we do
not say that the basic L of size one (the top right dot) represents the number one, and that the L of size 2
represents the number three and so on, and asert an infinite number of notational keys. We just say that any L
represents an odd number, which is two times the side of the L plus one; similarly for the square. And there
are fads that follow from the coice of notation and the @stradion it embodes. One such fact is that a
sequence of Ls aligned together make up a square, and as this syntadic fad is general, it has a semantic
consequence that is also general. When we redise a relation between the two notations, all semantic
consequences of the notations are involved in the relation. We could have stated a third representational key
to the dfed that any pattern of Ls arranged as any square represents some relation between the number
represented by such a pattern of Ls and the number represented by such a square. In the cae & hand, the
sequence of Ls represents the sum of the numbers represented by the Ls in the pattern, and the relation is
equality. To lean the estradion that any square represents the theorem is to learn this assertiond key out of
the notationd keys that were given when the system of representation was originall y introduced.

To stressthat a diagram represents a proof only if it isinterpreted with a particular notation in mind,
notice that the same diagram can be real as representing different procofs. In the cae of the squares, suppcse
that we define anotation that we call monadic diagonal notation such that a diagonal of n dots represents the
number n. Then, a square of size n represents thetheorem 1+ 2 + ...+ n+(n—1) + ... + 2 + 1 = n?, which
also appeasin Nelsen'sbodk [Nelsen, 1993. But in order to read the square & thisand no ather theorem, the
notational key stating the monadic diagonal notation has to be stated, and the arresponding assertional key
has to be induced to seethe drawing as a LARS, and then as a representation of the theorem. The same
external representation but with different representational keys expresses a different abstradion.

There is no reason why a string like“1+2 +...+n+(n—1) + ..+ 2+ 1 =n? can expressa

theorem while the graphical counterpart cannot. The dlipsis sgn “..." is a notational device that, in the
context of the other symbadls, expresses the dstradion, but the astradion is never in the externa
representation: it is always in the mind. To know that a @lledion of marks on a pieceof paper expresss a
theorem is to know the notation; the notational keys, which are given, and the asertional keys, which are
redised when the interpreter redises the theorem. As Wittgenstein once put it: “The sentence is ‘ellipticd’,
not becaise it [eaves out something that we think when we utter it, but because it is shortened” [Wittgenstein,
1953 §20].

Leaning systems conceved from within a system of representation cannot reason about the
properties of its own syntadic structure or semantics, the shape of the representation medium and notation, as
these ae given from above the system. Nevertheless, when an agent needs to lean the solution to a problem,
rather than verifying one, her task can focus on expressng the problem in different ways and trying to read
the solutions from these representations. Good choices of notation and medium will make it easier to express
the problem and find the solution. To lean arithmetic theorems, the learner has a few choices of notation and
media & hand, from which the seach spacefor the leaning problem can be built. If a problem can be
expressd easily in a representation, the likelihood d finding the solution easily would be high, and vice
versa. It would be auimbersome to compute the sum of, say, the first ten odd numbers if one is restricted to
use dedmal notation and a linea tape, even with external aids like apencil and a pieceof paper. To redise
that the sum of the first n odd numbers is n® from an arithmetic representation is only likely when one has
performed a few such sums and noticed the pattern, but for the diagrammatic case, when a graphical patternis
looked at with the notations in mind, the theorem is read off from the representation diredly. If a person is
asked what is the sum of the first ten odd numbers, but is also asked to expressthe problem in an L shape
monadic notation, as oon as $e writes down the sum and olserves, from the resulting shape, that the
expresson can be reinterpreted with a different notation, the solution can be read dredly from this
interpretation shift. If the interpreter is a computational device, changing the interpretation means changing
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Figure 6.1 Change of algorithm during theinterpretation

the dgorithm whereby the “tape” of the Turing Machine is read. This is illustrated in Figure 6.1. The
visualisation discussed in Section 5.2 might look trivia if the @am is to verify the theorem, but if the same
processis performed as a part of aleaning task, before the relation between the notations has been redi sed,
the task is much more interesting. The theorem is recognised when the diagram is reinterpreted as a
construction representing an abstradion. For people, leaning the éstradion that the figure represents the
theorem and proving the theorem are redly one and the same thing.

To end this discussion we consider now the proof of the Theorem of Pythagoras. First a comment on
the proof in Figure 1.2, which is the one that appeas as propasition 47 in Euclid’s Geometry. The figure is
not redly a proaf but just a diagram that is used as a reference for the geometric argument, a symbalic one,
which is the red proof. Here, we can simply say that the diagram is used for predicae etradion and
projedion, espedally if the diagram is constructed along the development of the agument. We turn now to
the proof presented in Figure 1.1, which is repeaed for clarity below in Figure 6.2. Bronowski has geculated
that this was the proof through which the theorem was first discovered by Pythagoras [Bronowski, 1987. As
can be seen, the mnstruction is performed out of aright triangle which is rotated and trandated four times to
form a square on the hypotenuse. The length of the side of the square inside the construction is the difference
between the lengths of the two right sides of the triangle. In the last state, the trianges are rotated, and from
the resulting configuration two squares emerge. Each of these squaresis on ead of the right sides.

% i&

Figure 6.2 The Theorem of Pythagoras

The intuition of the validity of the proof is overwhelming, and nevertheless, some people would argue that it
isnot formal, and it does not congtitute avalid argument. In a recent discussion on the Internet about another
diagrammatic proof of the theorem, for instance it was argued that the diagrammatic sequence would
congtitute an individual instance of the proof. This issue car be aldressed on the light of the present
discussion. First, we cmnsider whether the triangle in the initial state of the anstruction stands for itself, an
individual concrete objed, or stands rather for any triangle, for the dass of al triangles; similarly for the
squares involved in the proof. The answer depends on the representational key. If people ae looking at the
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diagram without a notation in mind, the diagram is not a representation at all. If a child looks at the sequence
in Figure 6.2 without thinking of geometry, the picture does not represent anything. If the notation is that the
triangle stands for a mncrete individual objed, a notational key expressing complete information, then the
whole @nstruction stands for a mncrete instance of the proof, as there is no abstradion involved. In that
realing, the initia triangle and the whole of the cnstruction isa MARS. In particular, the assertion that the
areaof the square emerging as the square on the hypotenuse is the same & the aeaof the two squares on the
right sides of the triangle is a particular assertion holding only for the particular construction. However, if the
key says that the initial triangle stands for any (right-angled) triangle, then it represents the dass of all such
triangles, and the particular geometric properties of the triangle ae dso part of the astradion. In this latter
situation, the graphicd representation, the diagram, is a LARS. In this reading, redising that the aeaof any
square on the hypotenuse of any right triangle is the same a the aeaof any two squares on the right sides of
the same triangle, the statement of the theorem, is to lean an assertional key. To lean the astradion, this
assertional key hasto be induced from the notational key and a general geometrica property: the fad that the
transformations between the state in which the square of the hypotenuse emerges, and the state in which the
sguares on the right sides emerge, preserve the aea Redising this abstradion, seang the sequence of figures
as arepresentation of the theorem, is learning the theorem; and people redly do seethe theorem. But suppaose
for the sake of argument that some people look at the diagram as a MARS (unlikely as it might seem), say
during the processof understanding the proof: once the truth of the theorem is reveded, then there has to be
an interpretation shift, a change of the notational key, and from then on the diagram isread as a LARS. If the
theorem isfirst leant throughthis proof, leaning and proving the theorem are again one and the same thing.

The shapes of this proof can be produced througha simple production system. In the shape-grammar
formalism introduced in the context of design [Stiny, 1979, for instance, a grammar has been developed
which produces configurations out of right triangles, and produces all the triangle shapes of the proof [Knight,
1981]. However, since this grammar manipulates triangles only, the squares emerging in the esential stages
of the cnstruction are just contingent side dfeds, which are not a part of the syntactic structure of the
corresponding shape-grammar sentence. These squares are not produced from within, and the triangle’'s
grammar cannot define the searcch spacefor the proof process However, an agent looking at the diagram
sequence @n recognise the proof becaise she is reasoning not within but from the system. To recognise both
the sguare on the hypotenuse and the inner square which emerge in the same state of the cnstruction is a free
ride. However, to redise that the squares on the right sides emerge in the last stage of the sequenceis not so
eay. It iseasy to seethat the L shape in the last stage of the sequence has the same aea & the square on the
hypotenuse, but it is not so essy to seethat the L can be reinterpreted as two squares lying one beside the
other, and that their sides correspond to the right sides of the triangle. To perform this latter interpretation
shift, and see the theorem as a whole, is at best a chea ride, or posshly even an expensive one. This is
because the last reinterpretation requires the agent looking at the anstruction to restructure five geometrica
figures — the four triangles and the littl e square — into the two new sguares. As this reinterpretation does not
appea inthediagram, it hasto be visualised. We ae fortunate that our retina has such a preference for square
notations. This visualisation is rather stable but sometimes notations can be brought about by rather arbitrary
forces, as in the well-known duck-rabbit picture popularised by Wittgenstein [Wittgenstein, 1953 part 11,
§1(], shown in Figure 6.3. For some people, what is reveded in these visualisations might be acompanied by
afeding of emotion.

FIGURE 6.3 A notational change
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APPENDIX 1

Spedfication of the Multimodal System of Representation
A. Definition d language G
In this ®dion the syntax and semantics of the language G are presented.
A.l. Syntax of language G
Thetypes of G are asfollows:
(1) dot, dotPair, L, square, L, integer and orderPair are types.
(2) tisatype (truth values).
(3) If aand b are any types, then <a, b>isatype.
(4) Nothing elseisatype.

The onstants (or basic expresdons) of type dot are e, y,, *x,y, -~ Where X, y;, X,, y,, ..[JN and the
subscript indicates the position of the dot acording to the grid as $own in Figure A.1. These mnstants are
aso of typesL, squareand L (i.e., abasic L, abasic square and a basic sequence of conseautive L’s are dats).
Constants of types integer and orderPair are the numerals and the pairs of numerals as usual; position is a
constant of type <s, orderPair> where sis either dot, dotPair, L, square or L*, and similarly size is a onstant
of type <s, integer>. There is an additional constant minL of type <L, integer> which denotes the size of the
smallest L of an objed of type L. Let Cfbe the set of constants of type s and Efthe set of well-formed
expressons of type sfor any types.

A syntadic rule forming a mmpaosite expresgon contains: (1) the types of the input expressons and the
constraints on the parameters’ value which are accsible through the predicaes paosition, size and minL;. (2) a
syntactical operation (F=, Fao, F(, F., F- or Fyeq) used in the rule which spedfies how the inpu expressons
must be combined or transformed to produce the output expresson, and (3) the type of the output expresson
and the aonstraints on the parameters’ value mentioned above. The spedficaion of the syntadic rules of G is
based on the definiti on of the graphicd objedsin Figure A.1 asfollows:

Constants

SO Ifal C(Ssthen al E(szor any types.

dotPair construction rule

Sle. If BOES, =yn and 80 ES = *xny fOr some integers x,y >1, 0<n<x,y, then F+(B,5) 0 S
where F+(3,8) =* (B)(8) such that size(F+(,8)) =n+1 and position(F-(f3,5)) = (x,y).

L construction rule

S2. (a) IfpO E?: *,y then size(3) = 1 and positi on(f) = (x,y).
(b) If O E(E'such that size(3) =n-1 and position(B) = (x,y), and & Effqpajr such that size(d) =n and

paosition(d) =(x,y), for some integers x,y>1, 1<n<x,y, then F (3,5) O Ef where F (B,0) =
L(B)(d) such that size(F | (3,5)) =n and position(F.([3,8)) = (X,y).

X 1
X 2 1 X 2 1 X 2 1 X 2 1 1
1 1 1 1 ° | e
2 2 2 2 ° o e n
Y L] LN ) [ ] [ ] L BN J L]
° y L] ° LN ] [ ) e o (e o
n n
n o °
° y e -0 0 y ¢ o o 0o y e o 0o 0|0 0 y
n % A
dot at position (x,y) pair of dots of sizen L of sizen at position Square of sizen at sequence of sizem of m-n+1
(type dot) at position (x,y) xy) position (x,y) L’sat postion (x,y), wheren is
(type dotPair) (typel) (type square) the sizeof thesmallest L.
(typeL)

FIGURE A.1 Objeds of graphicd types referred to by language G.
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sguare construction rule
S3e. (a) IfBO Eguae: *,y then size(f8) = 1 and position(3) = (x,y).

(b) If pO Eguae such that size(3) =n-1 and position() = (x-1,y-1), and 61 E(L3 such that size(6) =n
and position(d) =(x,y), for some integers x,y>1, 1<n<x,y, then Fo(B,0) 0 quuare where
Fo(B,0) =0O(B)(d) such that size(Fa(B,5)) =n and pasition(Fa(B,8)) = (X,y).

(o) If O E(jquae such that size(3) =n-1 and position() = (x-1,y-1), and 6 E(E' such that size(d) =n
and position(d) =(x,y), for some integers x,y>1, 1<n<x,y, then F.(3,0) 0 quuare where
F.(B,%) = +(B)(d) such that size(F.(B,5)) =n and position(F.((3,0)) = (x,y).
L" construction rule
HAc. (a) If BO E(L3 such that size(3) =n and position(p) = (x,y) for someintegersx,y>1, 1<n<x,y, then
O Eﬁ such that size(3) = minL([3) =n and position(B) = (x,y).

(b If O E(LB* such that size(3) =m-1, minL() =n and position(B) = (x-1,y-1), and 6 E(E' such that
size(d) =m and position(d) = (x,y), for some integers x,y>1, n>0, X,y <m>n+1, then F.((3,0) O
Eﬁ such that size(F.(3,0)) =m, minL(F.(,5)) =n and position(F.((3,8)) = (xy).

Equality construction rule
SBe. If BOES and SCIES, for s, 5, 0{dat, L, L', square}, then F-(B,8) [ E;, where F-(,8) = B=3.

Predicate mnstruction rule
S6. If 0 DES,,, and BOIES for any types a, b, then Fye(0r,B) 0 EgWhere Fore(al,B) = a(B).

Aninstance of asyntadic derivation of G isillustrated in Figure A.2.
A.2. Semantics of language G

The semantics of G is given in a model-theoretic fashion. A model Mg for G is an ordered pair <P, Fg>
such that the domain P is a set of individuals (drawings of P), and Fg is a function assgning a denotation to
ead constant of G. Let D, be the set of passble denotations for expressions of type x, such that Dyy, Dyopairs
Di, Di+, Dsguaes Dintegers Dorderpair @€ subsets of P, D,={true, false} and, for any types a and b, D> = D, a
(the set of al functions from D, to Dy). The interpretation function Fg assgns to ead constant of type a a
member of D, and is defined as follows: Fg(ex,) =+ —in position (X,y)— , for any integers x, y>0; F¢ assgns
to the numerals and order pairs of numerals the normal denotation; and for the mnstants position, size and
minL Fg assings a function from objeds of the proper type to the value of the crresponding parameter.

Following [Dowty et al., 1985, we alop the notational convention by which the semantic value or
denotation of an expresson o with resped to a model M is expressd as [[a]]™. The semantic rules for the
interpretation of G are as follows:

Constantsinterpretation rule

L(*22)(%(*21)(*12))
/\
*22 *(*20)(°12)
/\
®21 ®12
1) *21 rule SOg
2) 12 rule SOg
3) *(*20(*12) from 1) and 2) by rule Slg
4) 22 rule SOg
5) L(*22)(% (*21)(*1.2) from 3) and 4) by rule S2;

FIGURE A.2 Syntactic derivation of an expresson of G.
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MOg. If o 0CSthen [[a]]™=Fa(a) for any types.

dotPair interpretation rule

Mls. If BOES=xyn and SO EG=*yny fOr some integers x,y>1, 0<n<x,y, then [[F+(BS)]" is the
drawing containing two ddsin pasitions (X, y-n) and (x-n,y), respedively.

L interpretation rule

M2. (@) pOES = *,y then [[B]]Misapoint in pasition (x.y).

(b) If O E(L3 such that size() =n-1 and position(3) =(x,y), and &0 Effqpajr such that size(6) =n and
position(d)=(x,y), for some integers x,y>1, 1<n<x,y, then [[F.(B,5)]]is the drawing
containing the drawings [[B]]™and [[3]]".

squareinterpretation rule
M3s. (a) If O Eguae: .y then [[B]] Misapoint in pasition (x,y).

(b) IfBO Eguae such that size(3) =n-1 and position(3) = (x-1,y-1), and d O E(E'such that size(d) =n and
position(3) = (x,y), for someintegersx,y>1, 1<n<x,y, then [[Fa(B,5)]]"is adrawing containing
the drawings [[B]]™ and [[3]]".

(o) IfpO Eguae such that size(3) =n-1 and position(3) = (x-1,y-1), and 60 E?such that size(d) =n and
position(d) = (x,y), for someintegers x,y>1, 1<n<x,y, then [[F.(B,5)]]"is adrawing containing
the drawings [[B]]™and [[3]]".

L” interpretation rule
M4g. (a) LikeruleM2g.

(b) If O E(E* such that size(3)=m-1, minL(B) =n and position(B) =(x-1,y-1), and &0 E(L3 such that
size(d) =mand pasition(8) = (x,y), for someintegersx,y>1, n>0, x,y<m>n+1, then [[F.(3,5)]]"
is a drawing containing the drawings [[B]]™ and [[5]] .

Equality interpretation rule

M5g. If BO E?1 and 50 E(Ssz, for s, s,0{dot, L, L", square}, then [[F-(B,d)]]M =true if [[B]]M= [[5]]", false
otherwise.

Predicateinterpretation rule

M6o. If a DESy- and BOES, for any typesa, b, then [[Fyves(o, 811" = [[al]™(IBI™).

Consider, for instance, the formal expresson L(*;2)(% (*2.1)(*1.2)) “which can be expressed informally in
a relational form as L(*zp, *(*21, ®12)), or dternatively in the intuitive form L(e,»,*). The semantic
interpretation of this expressonisasfollows:

[[L(>22) (% (21) (* 1,2))]]M
=[[o22l1" and [[*(*2) (+12)]1"
=[[*221" and ([[*21" and [[*1]]")

4 32 1

and ([[+2]]"" and [[*121")

1
2
3
4

4 32 1 4 3 2 1 4 3 2 1

and and

NS
AW N R
A w N e
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4 32 1 4 321

1 ° |1
= . 2and ® 2
3 3
4 4
4 3 2 1
® 1
= oo,
3
4

B. Definition d language L

In this ®dion the syntax and semantics of L are formally defined.
B.1. Syntax of language L

The types of the language L are & foll ows:
(1) integer isatype.
(2) tisatype (truth values).
(3) If aand b are awy types, then <a, b> isatype.
(4) Nothing elseisatype.

The only constants of L is0 and it is of type integer. Let CSL be the set of constants of type s and ESL the set
of well-formed expressions of type s, for any type s. The syntadic rules of L are afollows:

Constants
SOL. If & O Clreegers then o 0 Efreger.

Succesor construction rule
S1. If O O Efryeger then s(ar) O Eireeger

Sum construction rule

S2,. If B, 30 Efrpeger then F..(B,8) [ Eiryeger Where F,(B,8) = (B + ).
Equality construction rule

S3.. If B, 80 Eryeger then F—(B,8) 0 EF where F_(B,3) = (B = 5).

As an illustration of a well-formed expresson of L consider the syntadic tree in Figure A.3 (which
corresponds to the trandation of the expresson of G in Figure A.2).
B.2. Semantics of language L

The semantics of L isalso defined in a model-theoretic fashion. A model M for L isan ordered pair <W,
F_> such that the domain W is a set of individuals (the natural numbers), and F_ is a function assigning a
denotation to eat constant of L. Let D, be the set of possble denotations for expressions of type x, such that
Dinteger = W, Dy = {true, false}. The interpretation function F_ assigns a member of D, to eat constant of type
a and is defined as follows: Fg(0) =0.

The semantic rules of L are as follows:

(S0) + (50) + (0)))
/ \
S(0) (S(0) + (0))
<0 w0

0 0

FIGURE A.3 Syntactic derivation of an expresson of L.
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Constantsinterpretation rule

MOL. I & [ Clyeger, then [[a]]™ = F ().

Succesor interpretation rule

M1, If @ O Eheger then [[s()])¥'= [[o]"+1.

Sum inter pretation rule

M2L. I B, 80 Eieger then [F(B,ON™ = [[B™+ [[]1".

Equality interpretation rule

M3L. If B, 3 Eineger then [[F(B,8)]]" =trueif [[B]]" =[[8]]", false otherwise.

The semantic interpretation of the expresson in Figure Al.3 isasfollows:

[S(0) + (50) + SO
[SON" + [0) +sOn"
[SON" + [SON" + [0
=1+1+1

=3

C. Déefinition d language P
In this ®dion the syntax of the language P is presented. The semantics of P can be defined along the
lines of Sedion B.2.
C.1. Syntax of language P

The types of the language P are asfollows:
(1) dot, dotPair, square, L and L are types.
(2) If aand b are awy types, then <a, b> isatype.
(3) Nothing elseisatype.
Let CSP be the set of constants of type s and ESP the set of well-formed expressons (drawings) of type s for

any type s. The only constant of P is “s” and it belongs to Cgot, C._P and C;uae. There ae no predicaes for
expressng the position, size or any other property of the symbals, as these properties can be read dredly
from the drawing. The constant “»” of type dot has a position on the grid, and pladng the dot in a particular
place epresses implicitly its position in the objed language. Constants and composite expressons of the
types L, L" and square have alditional properties like position and size which are expressed similarly;
asdgning an order pair or an integer value to any of these properties cannot be done in the objed language,
but referring to these values can be done in the statement of syntadic, semantic and translation rules.
The syntadic rules are defined as follows:

Constants
SOp.  Ifal CSPthen ol ESPfor any types.
dotPair construction rule

Sle. If B,60EL are & positions (xy-n) and (x-n,y), respedively, for some integers x,y>1, 0<n<x, Y,
then F((3,5) O E(Ijaapair isof sizen+1 at pogtion (x,y), where F(3,0) is the drawing of 3 and & in the
corresponding positions.

L construction rule
S2p. (@) If B=+ isat position (x,y), for x,y>0, thenBDEf anditisof sizel.

(b) If O Ef is of size n-1 at position (x,y), and 30 E('jaotpa,-r is of size n at pasition (xy), for some
integersx,y>1, 1<n<x,y, then F(3,0) O ELP, isof sizen at position (x,y).
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FIGURE A.4  Syntadic derivation of an expression of P.

sgquare construction rule
S3p. (@) If B=+ isat position (x,y), for x,y>0, then B O E;uae anditisof sizel.
(b) If BOEquqe is of sizen-1 at position (x-1y-1), and 3T E, is of size n at position (x,y), for some
integersx,y>1, 1<n<x,y, then F((,0) O E;uae, and it isof sizen at position (x,y).
L" construction rule
SHAp. (@) Likerule S2g.
(b) If 0O ELP* isof sizem1 at position (x-1,y-1) where the smallest L of the sequenceis of sizen, and

ol ELPis of sizem at position (x,y), for some integers x,y>1, n>0, x,y<m>n+1, then F(3,0) O
Ef* and it is of sizemat position (x,y) where the smallest L of the sequenceis of sizen.

Aningtance of a syntadic derivation of P isillustrated in Figure A.4.

D. Trandationfrom language G into language L
The relation between basic types of G and L isshown in Figure A.5.
The tranglation function pg.. assigns an expression (basic or compasite) of L to ead expresson (basic or
composite) of G. Thisfunction is defined by the following translation rules:

Constantstrandation rule
TOg.. Ifal Cfthen Pc-L(0) =9(0) for s1{dot, L, square}.
dotPair translation rule
Tlor. If BOES=*xynand 30 Egy=*yny, for someintegersx,y>1, 0<n<xy, and pe. (B), Pa. () are B,
o', respedively, then pg. (F+~(B3,0)) = (B’ +9&').
L trandlation rule
T26.. (@) If BOEC=",y then pe.(B) =5(0).
(b) If O EE5 such that size(f3) =n-1 and position(p) = (x,y), and &0 Eg;apajr such that size(d) =n and
position(d) =(x,y), for some integers x,y>1, 1<n<xy, and pc.L(B), pcL(d) ae (',
respedively, then pe. (FL(B,8)) = (B’ + &').

33



squaretrangdation rule
T361. (8) If BOES e =*xy then pe (B) =S(0).

(b) If O Eguae such that size() =n-1 and position(B) = (x-1,y-1), and 6 E(E' such that size(d) =n and
position(d) =(x,y), for some integers x,y>1, 1l<ns<x,y, and pe.L(B), pe.L(0) ae B',&,
respedively, then pe.L(Fo(B3,9)) is the result of expressing the sum of 'and & as a succesor
number G(e-g-, if B’ = 5(0) and & =(5(0) + (s(0) + (0))) then pG—L(FD(Blé))GiS S(S(s(s(0)))) )-

(c) If B U Egguae such that size(3) =n-1 and position(B) = (x-1,y-1), and d J E[ such that size(d) =n and
position(d) =(x,y), for some integers x,y>1, 1<n<xy, and pc.L(B), PpcL(d) ae (',
respedively, then pe. (F.(B.,9)) = (B' +&').

L" trandlation rule
T4e.. (@) Likerule T2g..
(b) If O Eg such that size(f)=m-1, minL(B)=n and position() =(x-1,y-1), and 60 Ef such that
size(d) =m and position(d) =(x,y), for some integers x,y>1, n>0, x,ysm>n+1, and ps.L(B),
Pc.L(0) are’, 8, respedively, then pe. (F+(B,0))= (B’ + &).
Equality trandation rule
T56.. If BOES and SOES, for s, 5, 0{dat, L, L', square}, and pe.( (B), pe.(3) are ', &, respedively, then
PeL(F(B.9))= (B'=92).

As an instance of the gplication of these rules the translation of the example in Figure A.2 is hown
below.

Pe-L(L(°22) (*(*21) (*12))

= (Pe-L(*22) + Po-L(*(*21) (*12) )
= (Pe-L(*22) + (Pe-L(*21) + Pc-L(*12))
= (s(0) + (s(0) + 5(0))).
E. Trandationfromlanguage L into language G
Thetrandation rulesfrom L into G are & follows:
Constantstranslation rule

TO. . If O(DCIS‘, then a does not have atrandation.

Succesor and sum trandation rules
T1,.c. TRANSLATION TO EXPRESSIONS OF TYPE square
(1) pL-c(S(0)) =2xy, for any xy.
(2 Ifa O EiLmeger such that [[a]]™=n? and B,50 EiLmeger such that [[B]] = (n-1)? and [[3]]M=2n-1, then

pL-c(@) =0(pL-c(B)) (PL-c(d)), where size(p.c(B))=n-1, size(p..c(d))=n, postion(p..c(B))=
(x-1,y-1) and position(p.¢(3)) = (X.y).

Typeof G Typeof L
dot integer
dotPair integer
L integer
L integer
square integer

FIGURE A.5 Relation between basic typesof G and L.
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(3) If O 0 Elyeger such that [[a]]™=n?, and B, 8 0 Eyeger SUCh that [B]]™ = (n-1) and [[&]]™ = 2n-1, then
PL-c(0) =+(pL-c(B)) (PL-c(d)), where size(p g(B))=n-1, size(pc(d))=n, poasition(p.c(B))=
(x-1,y-1) and position(p,.g(3)) = (X.y).

Notice that through this rule the trandation of an expression of L can be expressed as an number of

different expressions of G.

T2, .c. TRANSLATION TO EXPRESSIONS OF TYPE dotPair
(1) If @ D Ejpeger Such that [[a]]" = 2 then pua(a) = (*xyn) (*xny)-
T3_.c. TRANSLATION TO EXPRESSIONS OF TYPE L

(1) pL-a(s(0)) =xy-

(2) If a0Ehee such that [[o])"=2n-1 and BOEnee such that [[B]]"=2, then p_.o((a+B))=
L(pLa(@))(pc(B)  where  sze(pg(@))=n,  size(p..c(B))=n+1, position(p,¢(a)) =
pasition(p(B)) = (x.y).

T4,.c  TRANSLATION TO EXPRESSIONS OF TYPE L~

(1) Likerule T3 .

(2) I & 0 Efeger Such that [[a]]™ = 2pc+p? (i.e, the sum of consecutive odd numbers)®, and B O Eireger
such that [[B]]™=2(p+q)+1 (i.e., the next greaer consecutive odd number) for some p>2, q=0,
then  pr.c((a+B)) =+(pLc(a))(PL-c(B)), Wwhere size(p .c(a))=p+q, minL(p..(a)) =a+1,
size(pL-c(B)) =pt+at1, pasition(p,.c(a)) = (x-1,y-1) and position(p..(B)) = (x.y).

Equality trandation rule
TS IfB,00 Eilﬁteger then p..g((B=9)) = pr-c(a) =pL-c(B)-

F. Trandationfromlanguage G into language P
As ead objed in P can be drawn on a pieceof paper, the function pg.p assigns to each constant of G a
drafting procedure which corresponds to the geometry of the operators and constants of G.

Constantstranslation rule

TOg.p. Pc-r(*xy) iSadrawing containing adot in position (x,y).

dotPair trandation rule

Tlge. If O ES‘OF *xyn and 80 E§m= *xny, TOr Some integers x,y>1, 0<n<xy, then pg.p(F*((3,9)) is the
drawing containing the drawings pe.p(B) and pe.p(d).

L trandation rule

T2, (a) IfBO E?: *y then pg.p(B) is as defined in TOg.p.
(b) If O E(L3 such that size() =n-1 and position(3) =(x,y), and &0 Effqpajr such that size(6) =n and

position(d) =(x,y), for some integers x,y>1, 1<n<x, y, then pgp(FL(B,0)) is the drawing
containing the drawings pe.p(B) and pg.p(0).

squaretrandation rule
T3sr (a) IfpO Eguae: *,y then pe.p(B) isas defined in TOg.p.

(b) IfpO Eguae such that size(3) =n-1 and position(3) = (x-1,y-1), and d O E(E'such that size(d) =n and
position(d) =(x,y), for some integers x,y>1, 1<n<xy, then pg.p(Fo(B,0)) is the drawing
containing the drawings pe.p(B) and pg.p(0).

(o) If O Eguae such that size(3) =n-1 and position(3) = (x-1,y-1), and O E?such that size(d) =n and
position(d) =(x,y), for some integers x,y>1, 1<n<x, y, then pg.p(F.+(B3,0)) is the drawing
containing the drawings pe.p(B) and pg.-p(d).

& 2po+p? is the sum of p conseautive positi ve odd numbers where 2g+1 is the small est, for some p>0, q=0
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L" trandation rule
T4g.p. (a) Likerule T2¢.p.

(b) If O E(LB* such that size(3)=m-1, minL(B)=n and position() =(x-1,y-1), and 80 Ef such that
Ssize(d)=m and position(d)=(xy), for some integers x,y>1, n>0, x,ysm>n+l, then
Pe-p(F+(B,9)) isthe drawing containing the drawings pg.p(3) and pe.p(d).

Consider, for instance, the expresson L(e;2)(% (*21)(*1.))- Itstranslation to P is shown in Figure A.6.

Pop( L(*22) (*(*21) (*12))
=pg-p(*22) and pe.p( % (*21) (*12) )
4 3 2 1
= o ;and (Pe-p(*21) and pe.-p(*12)) )
3
4
4 3 2 1 4 3 2 1 4 3 2 1
— 1 d 1 1
- ° 2 and aan ® 2
3 3 3
4 4 4
4 3 2 1
4 3 2 1 ° 1
= ! and g
[ ) 2 3
3 4
4
4 3 2 1
_ 1
= a,
3
4

FIGURE A.6 Trandation into P of an expresson of G.

G. Trandationfromlanguage P into language G

To conclude the spedfication of the multimodal system of representation the definition of ppg is
presented. Expressons of P (drawings) are translated into expressons of G, as foll ows:

Constantstrandation rule

TOpg. Ifa Ega is the drawing of adot (*) in position (X,y) Pe.c(Q) iS*xy

dotPair translation rule

Tlpg. If fand 30 EE)Ot are dots at positions (x, y-n) and (x-n, y) respedively, for some integers x,y>1, 0<n

<Xy, F(B.8) 0 Equpar and pp(B) = B’ and pe(d) = & then peg(F(B', ) = F+(B.9). (i.e. *(B')(
®') such that size(F~(B’, &')) =n+1 and position(F- (', 8')) = (X,y))-
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L trandation rule
T2pc. (a) If BOE isat postion (xy), for x,y>0and it isof size 1, then pp.(B) iSexy
(b Ifp0O Ef is of sizen-1 at position (x,y), and o1 E(']Totpau-r is of sizen at position (x,y), for some

integers x,y>1, 1<n<y,y, (i.e, F(B,é)DEE is of sizen at postion (x,y)), prc(B) = B’ and
Prc(0) = & then pp.c(F(B,0) = F.(B’, o) O Ef (i.e., L(B')(®") such that size(F (B',0')) =n and
pasition(FL(B",0')) = (x.y))-

squaretrangation rule

T3pc. (a) If B=+ isat position (xy), for x,y>0, where p 0 Esquae and it is of size 1, then pp.(B) iS*xy

(b) If 0O E;uae such that size(3) =n-1 and position(p) = (x-1,y-1), and [ Efsuch that size(d) =n and
position(8) = (x,y), for some integers x,y>1, 1<n<x,y, and pp.c(B) = B’ and pp.c(0) = & then
prc(F(B,0) = Fo(@,0)0O Eguae (i,e, OP)®) such that size(Fo(f',0'))=n and
position(Fa(B’,8')) = (X.Y))-

(o If O Equuae such that size(3) =n-1 and position(p) = (x-1,y-1), and &0 Ef such that size(d)=n
and position(d) = (x,y), for some inte%ers X,y>1, 1<n<xy, and ppc(B) = B’ and pp.g(d) = &
then prc(F(B,8) = FuB,0) DEquae (i€, +(B)(@) such that size(F.(3',8'))=n and
position(F.(B',07)) = (xy)).

L" trandation rule
T4ps. (@) Likerule T2pg.

(b 1fp0O Ef* is of szem-1 at position (x-1,y-1) where the smallest L of the sequenceis of sizen,
and 0 E; isof sizem at position (x,y), for some integers x,y>1, n>0, x,ysm>n+1, pp.c(B) =
B’ and pp.c(8) = &', then pp.c(F(B,0)) = F.(p',0') 0 Eﬁ (i.e, +(B')(®") such that size(F.(p’,8')) =
m, minL(F.(B’,0')) =n and position(F.(3',0")) = (X,y)).

Note that for the trandation of a square, rules (b) and (c) are available. Each one of these options refleds one
of the notations through which a square can be interpreted (as a square number or as the sum of odd humbers),
and the use of one or the other will map a given expression of P into a different expresson in G. The choice
of notation, as discussed in Sedions 5 and 6, is a dedsion that has to be taken not within but reasoning about
the system. Note & well that rules for equality cannot be expressed in P and the fad that an array of dots can
expressan equality is also redised by reasoning from or about the representational system.
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