
‘Talking the talk’: Is intermediate-level conversation the key to the pair
programming success story?

S. Freudenberg (née Bryant), P. Romero, B. du Boulay
IDEAS Laboratory, University of Sussex

s.bryant@sussex.ac.uk

Abstract

Pair programming claims to provide benefits over

and above those offered by a programmer working
alone. In particular, a number of studies have
suggested that pair programming improves software
quality. The literature speculates that the ‘driver’ (the
programmer currently typing in the code) and
‘navigator’ work together in a complimentary manner,
and that the nature of these roles may be key in
realizing the reported benefits. Here we dispute two of
these existing claims: (i) That the navigator providing
a ‘continual review’ of the drivers work and
highlighting errors (i.e. acting as a reviewer); (ii) That
the navigator is focused on a higher level of
abstraction that the driver (i.e. acting as a foreman).
 Our findings suggest that the key to the
success of pair programming does not lie in the
differences in behaviour or focus between the driver
and navigator. Rather, we suggest an alternative
perspective (the “tag team”) and remark upon the
proliferation of talk at an intermediate level of detail in
pair programmers’ conversations. This leads us to
suggest that producing the type of talk necessary to
work effectively together may itself be fundamental in
realizing the reported improvements in software
quality.

1. Introduction

Computer programming is a cognitively taxing task.
Not only is it difficult because of a lack of direct
manipulation (Blackwell, 2002) and a ‘product that no-
one can see’ (Perry, Staudenmayer & Votta, 1994) but
due to many other factors. These include complexity,
the need for a multi-layered, multi-dimensional model
capable of supporting mental simulations and the sheer
amount of knowledge required, its suitable
organisation and mechanisms for its access.

One possible method of taming the complexity of
software development may be to work collaboratively.
In fact, one form of collaborative programming has
now been formalised as ‘pair programming’, one of the
core practices of the Extreme Programming (XP)
methodology. In pair programming, “all production
code is written with two people working at one
machine, with one keyboard and one mouse” (Beck,
2000).

A wide range of studies have considered the
benefits of pair programming in terms of its effect on
the quality of the resulting software. These studies
have taken place in both academic and commercial
environments. In the commercial arena two studies are
particularly note-worthy: Nosek (1998), who showed
that pair teams significantly outperformed individuals
on program quality and Jensen (2003), who showed an
error rate three orders of magnitude less for a project
with pair programming than other similar projects. In
an academic environment, the most cited study is
probably that described in Williams, Kessler,
Cunningham & Jeffries (2000) in which 13 university
students worked individually on a project and 28 chose
to work in pairs. The findings showed that code
produced by the pairs passed more automated tests
over four different programming exercises. It is,
however, possible that these findings might have been
due to learning effects or the fact that the participants
were free to choose whether or not to pair. For
example, more able students might have been more
willing to work in pairs.

Despite these reported benefits, the cognitive
aspects of pair programming are seldom investigated
and little understood. An ethnographic study by Sharp
and Robinson (2003) provides an insightful story of
XP in a commercial environment, but does not assess
pair programming from a cognitive perspective. In fact
there have been a number of calls for further
investigation of ‘the nature of the interactions that
underpin these results’ (Wiedenbeck, Ramalingam,

Sarasamma & Corritore, 1999) and when and why pair
programming is effective (Chong et al., 2005).

The literature suggests two possible methods by
which the programming pair may achieve these
benefits. We have called these the ‘navigator as
reviewer’ and the ‘navigator as foreman’. By
‘reviewer’ we mean that the navigator reviews the code
that the driver is typing in, pointing out any syntax and
spelling errors. By ‘foreman’ we mean that the
navigator thinks about the overall structure of the code-
base and whether the code is solving the business
problem for which it is intended.

Here we use data from four studies of commercial
pair programmers to seek evidence of these two
realizations of the navigator role. We begin by
outlining in more detail what is meant by the
‘reviewer’ and ‘foreman’ and by clarifying how these
have been related to ‘levels of abstraction’. In section 4
we provide the background to our studies and in
section 5 we detail the methodology we have used. We
then present the results of our analyses, focusing on the
‘reviewer’ in section 6.6 and the ‘foreman’ in section
6.7. In the discussion that follows we present an
alternative perspective, that the driver and navigator
form a kind of cognitive ‘tag team’. We also indicate
the proliferation of an intermediate level of talk and
theorise about how it might be beneficial. We conclude
by summarising our theories, discussing its limitations
and suggesting future studies in this area.

2. The navigator as ‘reviewer’ and
‘foreman’

In their book on pair programming, Williams and

Kessler (2003) refer simultaneously to both the
reviewer and foreman when they state that ‘The
navigator…observe(s) the work of the driver, looking
for tactical and strategic defects. Tactical defects are
syntax errors, typos, calling the wrong method, and so
on. Strategic defects occur when…what is
implemented just won’t accomplish what needs to be
accomplished’’.

The ‘reviewer’ role is also alluded to in Wakes
(2002) suggestions that one navigator behaviour is
“The partner provid(ing) an ongoing quality boost:
review(ing)” and in describing a commercial pair
programming ‘experiment’. Jensen (2003) also states
that “The navigator review(s), in real time, the
information entered by the driver”.

There are also further occurrences of the ‘foreman’
role in the literature. Dick & Zarnett (2002) suggest
that “The first is responsible for the typing of code (the
driver); the second is responsible for strategizing and

reviewing the problem currently being worked on (the
navigator)”. Beck (2000) also says that “While one
partner is busy typing, the other partner is thinking at a
more strategic level” later describing this further as
“One partner….is thinking about the best way to
implement this method right here. The other partner is
thinking more strategically”. Hazaan & Dubinsky
(2003) concur that “The one with the keyboard and the
mouse thinks about the best way to implement a
specific task; the other partner thinks more
strategically. As the two individuals in the pair think at
different levels of abstraction, the same task is thought
about at two different levels of abstraction at the same
time”.

3. Levels of abstraction

These suggestions actually span two different
concepts, both of which are present in the wider
‘psychology of programming’ literature. First, they
delineate between two domains, the programming
domain and the problem domain; Second, they suggest
that the programming domain may then be further
defined using the model of a series of ‘levels of
abstraction’.

The concepts of ‘domain’ and ‘level of abstraction’
appear rather interchangeably in the literature. For
example, Brooks (1983) suggests the existence of a set
of five ‘domains’ (problem, identifier, algorithmic,
programming language and execution) and Pennington
(1987) mixes abstraction and domain in her discussion
of a detailed domain (of specific programming
operations and variables), a program domain (of
routines and files) and a real-world domain. Bergantz
and Hassel (1991) also discuss programming as
requiring hierarchical models of abstract levels of
functionality.

Here we refer to the term ‘levels of abstraction’ to
consider both level of granularity within the
programming domain and a separation of program
domain from problem or ‘real world’ domain. We have
done this in order to create a single scale and because it
is clear that having first distinguished between problem
and programming domains it is only necessary to
further delineate level of granularity in the
programming domain in order to investigate the
concepts of ‘navigator as reviewer’ and ‘navigator as
foreman’. In our scale, the lowest level of abstraction is
program syntax and spelling, and the highest is the
problem domain.

According to the literature it could be predicted that
these foreman and reviewer roles imply working, and
therefore verbalising, at different levels of abstraction.
For example, when seeking evidence of the ‘reviewer’
we would expect the navigator to verbalise at a very

granular (or ‘low’) level of abstraction in discussions
about spelling and syntax, and not to simply wait for
their turn as driver to make corrections. For the
‘foreman’ role, we would expect the navigator to work
at higher levels of abstraction, discussing the business
problem the general layout of the code

4. Study background

In line with calls for studies of programmers
working in an industrial setting (**Cite Curtis**), the
analysis and results presented here are from four, one-
week studies of commercial programmers working on
on-going tasks in their usual environment. While a
variety of levels of experience were studied (see **Cite
self**) for insights about the differences in behavior
between novice and more experienced pairers) this
paper only considers programmers who had been
commercially pair programming for a minimum of six
months. The four studies were from three different
industrial sectors and all the studies took place at
medium to large scale companies. All of the projects
encouraged or expected programmers to work in pairs
whenever possible. Across the companies the pairs
generally seemed empowered and were considered
responsible for completing their tasks as they
considered appropriate. The profiles of the session are
shown in Table 1:

Table 1. Profile of the companies, projects and sessions studied

 Number of

projects
considered

Number of
pair
programming
sessions
considered

Agile/XP
approach?

Banking 1 3 Yes

Banking 4 12 Yes

Entertainment 2 10 Yes

Mobile
communications

2 11 Yes

5. Methodology

There is a history to the use of verbal protocol
analysis for gaining insight into computer
programming. In pair programming, this is even more
natural, as the pair are already talking about what they
are doing. In fact, a literature review on verbal
protocols in software engineering is available (Hughes
& Parkes, 2003), which also suggests that the analysis
of verbalisation may be a useful method for use in the

study of pair programmers so that ‘the cognitive
processes underlying productivity and quality gains
can be formally mapped rather than speculated about’.
While extra-pair communication (for example,
discussion with a third party) may be an interesting
area of study, it has been excluded from this analysis.

The methodology used for this work followed the

framework for verbal protocol analysis set down by
Chi (1997) in which protocols are produced,
transcriptions are segmented and coded according to a
coding schema, depicted in some manner and patterns
are sought and interpreted. The coding derived is
shown in Table 2. It was based on that used by
Pennington (1987) to analyse the level of detail of
programmers’ statements. In addition, and following
the work of Good & Brna (2004) regarding a coding
scheme for programming summaries, a BRIDGE code
was included for use for utterances bridging the real or
problem domain and the programming domain.
Finally, in order to consider the hypothesis that part of
the navigator role is to correct spelling and
programming grammar, a code for SYNTAX was
added. The coding scheme is intended to be
exhaustive, hence the inclusion of a ‘VAGUE’
category in order that every sentence has a
corresponding code.

Each one-hour recording was transcribed and

segmented into utterances (an utterance typically being
a sentence). The coding was exclusive, with each
utterance having only one code. There were an average
of 310 sentences per session and a total of 14,886
sentences were analysed. Four sessions (one randomly
chosen from each company) were blind double-coded
with an inter-rater reliability of 77%. These four
sessions account for 14% of the total number of pages.
An example section of coding is shown in Table 3.

Table 2. Scheme for coding utterances by level of abstraction

Cod
e

Explanation

Examples

SY Syntax – Spelling or grammar of the
program. Spelling is indicated in the
transcriptions by single letter capitals.
NOT semantics.

S P E L L I N G,
dot, F9, 7.

D Detailed – refers to the operations and
variables in the program. A method,
attribute or object which may or may
not be referred to by name.

This condition,
that return
value, the list,
the counter,
what this
returns or gives,
getCustomer.

PR Blocks of the program. Including tests
and abstract coding concepts. Also
strategy relating to the program and

That loop,
truncation, the
error handling,

its structure. General naming
standards discussions etc. This could
also include cases where the subject
of the sentence refers to ‘some of
them’ or ‘they all’ – i.e. a group of
conditions. Anything to do with
refactoring. Subsystems or libraries.
Directories or paths, even if named.

Oracle, this
issue. this part
of the program,
mock, Mosaic.

BR The statement bridges or jumps
between the real world or problem
domain and the programming domain.
This may be where a case or condition
exists in the code and the real world.

So we need to
add a test
condition here,
to see if the
bank account is
valid for this
kind of
transaction.

RW Real world or problem domain savings account.
V Vague, including metacognitive

statements and questions about
progress or understanding. References
to a place on the screen. References to
the development environment and/or
navigating it’s menu structure.

Oh, yeah, I see,
that bit at the
top.

Table 3. An example section of coding

Partic-
ipant

Role
(Driver/

Navigator)

Utterance Code

A N If you do a dot dot
dot
there…umm….and
go to…

SY

B D You drive…it’s
easier

V

A D It is. V
A D It’s just (sub-system

name)
PR

B N What’s (sub-system
name) in

PR

6. Results

6.4. The pair programming session
Each pair programming session observed was exactly
an hour in length. As the sessions were
opportunistically observed, the programmers could
equally be just starting, finishing, or indeed in the
middle of the task at hand.

We begin by considering the ‘shape’ of the
programming sessions observed. Figure 6.2 shows the
average occurrences for utterances at each level of
abstraction normalised as a percentage of the total
utterances in a sessions, with the maximum and
minimum occurrences indicated by ‘error bars’. As can
be noted, a large number of sentences fell in the

‘vague’ category. In fact, an average of 57% of the
utterances in a session were classed as ‘vague’. This is
not surprising, as only sentences with a defined level of
abstraction would fall outside this category.

There were two main cases where the vague category
occurred: First, when utterance did not seem to refer to
any level of abstraction, for example questions, such as
‘How should we do this?’, simple agreements or
disagreements (‘yes’, ‘I don’t think so’) or statements
about progress (e.g. ‘We’ve finished that already’).
Second, there were some statements where the level of
abstraction could not be ascertained simply by reading
the transcription. For example, ‘that’s going to work’,
which could refer to a line of code, a test, a subsystem,
syntax or indeed be a bridging statement between the
code and the program

The vague category involves high levels of utterances
that, while interesting as a phenomenon, are not
relevant to our hypothesis. As such, this category has
been removed from further analysis to avoid it having a
misleading effect on our results. This categorisation of
‘vague’ is, in part, due to the post-hoc analysis of the
programmer’s utterances. However, as the categories
used here are particularly stringently defined, it is
likely that few, if any, unclassified utterances were of
these types.

Figure 6.1 Normalised average utterances of each level of

abstraction as a percentage of total utterances in a session (error bars
showing highest and lowest values).

After removing the ‘vague’ category, the data
presented as normally distributed. A repeated measures
ANOVA analysis, with level of abstraction as a
between subjects variable showed a main effect for
level abstraction, indicating that the mean occurrences
of utterances at each level of abstraction differed
significantly from each other (f(1,42)=110.05, p < .01).
That is, there is a significant difference between the

average number of utterances at, for example, syntax
(SY) level and the number of those at real world (RW)
level. Sessions also tended to have fewer utterances at
the extreme levels of abstraction (real world and syntax
level) and more in the intermediate levels. Planned
comparisons in the form of a T-test indicated that there
was a significantly higher level of utterances at ‘PR’
level (t = 2.71, p < 0.01) than at other levels.

6.5. Level of abstraction and role

All utterances in every session were coded by role
according to level of abstraction. Note that these results
were not the same as those by participant, as within a
session a participant would often change role several
times. In order to ascertain whether there were
significant differences in the levels of abstraction of
the utterances of each role a repeated measures
ANOVA was performed with levels of abstraction as a
within-subject variable and role as between-subjects.
The data was normally distributed. This ANOVA
indicated a lack of interaction effects between level of
abstraction and role. In other words, the navigators
observed did not significantly talk more or less at any
level of abstraction than the drivers.

6.6. The navigator as ‘reviewer’

As mentioned in Section 2.4.3, there have been
suggestions that part of the navigator role might
include continually reviewing the work of the driver,
pointing out spelling and syntax errors (e.g. Jensen,
2003; Williams and Kessler, 2000). In order to
investigate this we must first consider how often these
types of utterances occur. The average number of
syntax and spelling (‘SY’) level utterances per session
was 14 (of an average total of 620). This amounts to
only two percent of the total utterances.

Over all sessions the driver accounted for 47% of SY
level utterances and the navigator accounted for 53%).
Note that we have not coded which of these SY
utterances are corrections and that they could possibly
contain a mixture of talking aloud and correcting. It is
also likely that the driver would review and correct
their own work without saying anything. However,
occurrences of SY level utterances were so rare that
this is unlikely to affect our findings.

It would seem from our findings, in particular the lack
of interaction effects between level of abstraction and
role reported in section 6.5, that contrary to what has
previously been reported (e.g. Jensen, 2003; Williams
& Kessler, 2000) the role of the navigator is not

defined by their correcting syntax and grammar
significantly more than the driver. In fact, utterances at
this level were scarce in the pair programming sessions
observed. On the infrequent occasions in which they
did occur, they were relatively evenly distributed
between driver and navigator roles, with the driver
accounting for 47% of ‘SY’ utterances and the
navigator 53% and no significant difference.

It is, of course, entirely possible that a small increase in
quality is gained as although the driver more swiftly
notices errors while typing, the navigator picks up
those which have gone unnoticed and might otherwise
have remained undetected. Nevertheless the notable
scarcity of utterances of this level suggests that the key
to understanding the role of driver and navigator lies
elsewhere.

6.7. The navigator as ‘foreman’

As discussed in section 2.4.3, clues from the literature
also suggest that the driver and navigator might more
thoroughly cover the problem space by working at
different levels of abstraction. The suggestion is that
the driver is working mainly at the lower levels, typing
in code and doing other tactical work while the
navigator is working more strategically at the higher
levels of abstraction, sitting back and considering how
the system fits together as a whole and relates to the
business domain. Rather like the foreman at a building
site might concern himself with how the whole
building is fitting together, rather than how each brick
is laid. Figure 6.2 depicts how this theory might look in
terms of the levels of abstraction we are considering.
Note that here we are considering only the ‘navigator
as foreman’. However, were we also considering the
role of ‘navigator as reviewer’, the level of utterances
at SY levels would be reversed for the driver and
navigator roles.

Figure 6.2 Chart showing theoretical levels for utterances by the
driver and navigator were they to work at different levels of

abstraction.

Rather than the expected chart in Figure 6.2, Figure 6.3
shows the actual average number of utterances of each
level per session for each role, making it clear that in
the sessions observed the driver and navigator tended
to generally talk at the same levels of abstraction.

Figure 6.3 Chart showing actual levels for utterances by the

driver and navigator.

Also in contradiction to what has previously been
suggested (e.g. Dick & Zarnett, 2002; Hazaan &
Dubinsky, 2003), the pair programmers in the sessions
observed did not show the navigator working at a
generally higher level of abstraction than the driver in
their discussions. In fact, rather than working at a
higher level of abstraction, the pattern of abstraction
levels of navigator’s utterances are very similar to
those of the driver and do not differ significantly.

7. Discussion

7.8. The ‘tag team’.

Our findings show that, rather than working at

different levels of abstraction, the driver and navigator
tend to talk in terms of the same levels of abstraction.
In addition, not only do driver and navigator change
role regularly, these role changes appear to be very
fluid. These findings imply that the navigator
continually maintains a firm grasp of what is
happening during the session at a number of levels of
abstraction

This leads us to suggest that rather than the driver
and navigator roles being defined by segmenting the
problem space according to level of abstraction, they
are more simply defined by the additional physical and
cognitive load of typing borne by the driver. In fact, we
suggest that the driver and navigator form a kind of
‘cognitive tag team’, working together, in synchrony,

at the problem at hand and then switching role to
alleviate the additional cognitive load of typing and
providing a running commentary, both of which fall on
the driver.

7.9. Intermediate level talk

One interesting finding from studying the levels of

abstraction of pair programmers’ talk was the
significant proliferation of talk at an intermediate level.
By an intermediate level, we mean conversation related
to ‘chunks of code’ or ‘areas of a program’. For,
example mentions of ‘the error handling’. In fact, a
repeated measures ANOVA analysis with level of
abstraction as a between-subjects variable showed
main effects for level of abstraction, and planned
comparisons in the form of a T-test indicated that there
was a significantly higher level of utterances at the
intermediate level than the other four levels defined
(t=2.71, p<0.01). We will now consider four theories
regarding the benefits of this level of talk and discuss
how conversations at this level may be encouraged
through the use of eXtreme Programming.

Priming the navigator It is possible that utterances

at this level of abstraction help to keep the navigator up
to speed with progress. This might occur in order that
the navigator is able to ‘take over’ from the driver on
an ad-hoc basis. However, this is unlikely to be the
sole reason for utterances at this level, as it has been
demonstrated elsewhere that the navigator contributes
new information to almost every task the pair performs
(**Cite XP2006**).

Providing a missing link Another possibility is

that the ‘PR’ level of talk provides a missing level of
abstraction not readily available. Typically the lowest
levels of abstraction are clearly displayed on the screen
and the highest level is written on a story card. Perhaps
intermediate level talk helps to fill an abstraction gap.
It is possible that this gap occurs because of the lack of
over-arching design diagrams in the XP methodology.

Assisting the driver Another suggestion is that

intermediate level talk may help the driver to manage
all the levels of abstraction at which he/she is working.
In particular, it is possible that ‘PR’ level utterances
provide a form of ‘cognitive glue’ to help relate
available information at other available levels of
abstraction to each other.

Increasing peripheral awareness It could be

suggested that intermediate level talk renders the work
of the pair more understandable. In doing so, it may

provide more opportunity for selective overhearing for
those outside the pair, therefore maximizing peripheral
awareness (**Cite**).

It is possible that the eXtreme Programming
methodology creates an environment that fosters this
by enforcing a maximum task size, discouraging the
use of diagrammatic representations and encouraging
verbal communication. It is also feasible that it may be
the additional monitoring or some other facet of pair
programming which assists in the production of higher
quality software, either as well as or instead of this
intermediate level of verbalisation.

8. Study limitations

The studies discussed in this paper have a number of
limitations. First, the sample of companies and projects
was opportunistic. Second, the data collected was
limited to audio recordings. Third, the subsequent
analysis therefore focuses on the pairs ‘talk’ without
considering the other ways in which they communicate
(for example, where their attention was on the screen,
how they manipulated the IDE or when they used
particular facial expressions or gestures).

Somewhat unusually, role was considered as a between
rather than within-subjects variable. This was due to
the manner in which the data was initially coded and
precluded observations about how a particular
individual behaved when in the driver or navigator
role.

There may also be other levels of abstraction outside of
those used in this analysis. Indeed there may even be
different perspectives along which levels of abstraction
could be plotted which might highlight role differences
more centrally or more convincingly.

Finally, while double-blind tests of the refined coding
schema yielded an inter-rater reliability of 77%, a
Kappa test resulted in a coefficient of K=.64. Generally
a coding scheme is considered robust with a Kappa
coefficient of K=0.7 or above. In this case,
disagreements in the coding were largely due to the
second coder lacking the contextual understanding and
specific programming language knowledge required. In
test sessions all disagreements were resolved through
further explanation on the part of the primary coder.
The overall coding should hopefully retain accuracy as
it was the primary coder, with the required contextual
and programming knowledge, who performed it.

9. Conclusion

Although literature on pair programming consistently
refers to the roles of driver and navigator, little is
known about the mechanisms by which they are
realised. In this chapter we have considered the levels
of abstraction at which drivers and navigators talk to
gain insights into the meaning of their roles. In
particular we have used verbal protocol analysis to
consider two main issues: Does the navigator act as a
kind of ‘reviewer’ by catching syntax and spelling
errors? Do the driver and navigator work at different
levels of abstraction as a way of taming the complexity
of each particular sub-task on which they work?

Our findings have been contrary to suggestions in the
literature: First, utterances regarding syntax and
spelling are rare, and when they do occur are not
predominantly made by either the navigator or driver.
Second, the driver and navigator do not work at
significantly different levels of abstraction but rather
remain in step through the problem working together.
Most discussions take place at ‘abstract chunk of code
level’.

We have suggested that the driver and navigator form a
cognitive tag team, where they work collaboratively on
each sub-task and the navigator is at the ready to
relieve the driver of the additional loads of typing and
commentating. We also posit that ‘PR’ level
utterances, referring to the code in an abstract way,
may assist in taming the complexity of working at
many levels of abstraction at once by providing the
‘glue’ that holds these levels together and which might
otherwise have been missing as it is not readily
available representationally to the pair.

10. References

(**NEED TO DO **)

List and number all bibliographical references in 9-
point Times, single-spaced, at the end of your paper.
When referenced in the text, enclose the citation
number in square brackets, for example [1]. Where
appropriate, include the name(s) of editors of
referenced books.

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title”,
Journal, Publisher, Location, Date, pp. 1-10.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title,
Publisher, Location, Date.

