
XP and Pair Programming practices

Sallyann Bryant, Benedict du Boulay and Pablo Romero
IDEAS laboratory, University of Sussex, Falmer, UK

Contact: s.bryant@sussex.ac.uk

Abstract
Over the past ten years or so Extreme Programming has been slowly gaining acceptance as a
potentially beneficial technique both in the commercial and academic worlds. Here we review the
existing literature to attempt to gain insight into the practice of pair programming across both
educational and commercial context. We begin by considering the pair programming team and the
environment in which pairing takes place. We then review a number of studies aimed at measuring the
costs and benefits of programming in a pair, particularly in terms of the quality of the software
produced. Finally we discuss the potential cognitive benefits of pair programming and consider when
and where its use might be most appropriate.

1 Extreme Programming
Extreme programming is a methodology that has been slowly gaining acceptance and interest within the
programming community over the last ten years. It is seen as an antidote to the large, up-front design
methodologies commonly found within the software industry. Extreme Programming (or ‘XP’ as it is
commonly known) stemmed from the working practices of a team of programmers working for Chrysler on
a payroll system project known as ‘C3’. This team is said to have amplified the working practices that they
found useful and enjoyable, and dropped those that they did not. XP falls under the umbrella term of ‘agile
methodologies’. According to the Agile Alliance (www.agilealliance.org), an agile approach is one that
values:

 “Individuals and interactions over processes and tools,
 Working software over comprehensive documentation,
 Customer collaboration over contract negotiation,
 Responding to change over following a plan”.

As such, XP focuses on short development cycles with regular delivery of the new versions of software to
the customer. In the most recent edition of Beck’s ‘white book’ on XP (Beck and Andres 2004) there are
thirteen main or ‘primary’ practices and eleven ‘corollary’ practices. The main practices mainly relate to
either team working (sit together, whole team, energised work, pair programming), communication
(informative workspace, stories), project management (weekly cycle, quarterly cycle, slack), or
programming practices (10 minute build, continuous integration, test-first programming and incremental
design). Here we consider the practice of pair programming.

2 Pair Programming
Pair programming has been defined as ‘two people working at one machine, with one keyboard and one
mouse (Beck 2000). Within the extreme Programming framework, a pair is not usually fixed, that is, a
programmer does not tend to work with the same partner all the time. More usually, a pair will work
together for the duration of a single task. While some projects empower the programmers themselves with
responsibility for deciding when to change pair, others enforce rotating pairs on a regular basis.

2.1 The driver and navigator roles
The terms ‘driver’ and ‘navigator’ describe the role of each programmer. These roles are by no means
fixed, a programmer may change roles several times within a programming session. The driver is the
programmer who currently has control of the keyboard, while the navigator contributes to the task verbally
and by other means. The navigator role could be considered something of a mystery. Some suggest that the
navigator provides a constant design and code review, others consider him/her to be working at a higher
level of abstraction than the driver (Hazzan and Tomayko 2003). This could also be described as the driver
working tactically while the navigator works strategically (Williams and Kessler 2003).

2.2 The pair programming team
Pair programmer generally takes place within the larger context of a programming ‘team’. A number of
studies have considered the environment within which pair programming takes place. In particular, Sharp
and Robinson (2003) focus on XP in their ethnographic work, providing useful insights into what it means
to be a member of an XP team in a number of different commercial companies. Kessler and Williams
(2003) consider pair programming as providing a form of ‘legitimate peripheral participation’ (Lave and
Wenger 1991). Here, a novice programmer can learn the ‘craft’ of programming by working as part of a
programming pair, playing a useful but controlled part in the production of software while being immersed
in the project environment, in which (s)he can learn through observation. Similarly, Bryant, Romero et al.
(2006) discuss the advantages of the pair’s conversation making their work visible to others on the team.
They cite occasions where overhearing has resulted in advice and guidance from others outside the pair, or
indeed, where pairs have been reformed according to whom on the team is best equipped to work on the
task at hand.

2.3 The pair programming environment
Of course, pair programming does not happen in a vacuum. In fact, pair programming has been shown to
“take place in the context of a rich environment of artifacts and talk” (Bryant, Romero et al. 2006) where
tools created for individual use are often re-appropriated by programming pairs, for example the mouse and
keyboard are subtley used to help smooth driver-navigator role exchange. In addition, novel artefacts like
cuddly toys are reported as used for informal locking mechanisms when integrating new code onto the test
machine (Sharp and Robinson 2003; Bryant, Romero et al. 2006).

2.4 The potential benefits of pair programming
A number of studies have considered the effectiveness of pair programming. While some have looked at
team morale and attitude towards pair programming (Benedicenti and Paranjape, 2001; Rumpe and
Schroder, 2002; Pulugurtha, Neveu et al., 2002; Johnson, Mao et al., 2003), the majority of studies tend to
consider whether projects with pair programming show improved quality or speed (e.g. Canfora, Cimitile et
al., 2005). Here we consider studies which have attempted to identify the extent to which programming in
pairs affects the quality of the resultant software in commercial and academic environments.

2.4.1 The Pair Programming Student
A number of studies have found pair programming useful academically (e.g. Macias 2002; Noll and
Atkinson 2003; Tessem 2003). Probably the most cited study aimed at assessing this is the study described
in Williams, Kessler et al. (2000). In this between subjects study 13 university students chose to work on a
project individually while 28 other students worked in pairs. The findings showed that code produced in
pairs passed more automated tests over four different programming exercises as shown in Table 1.

Exercise Individual Pair
Program 1 73.4 % 86.4 %
Program 2 78.1 % 88.6 %
Program 3 70.4 % 87.1 %
Program 4 78.1 % 94.4 %

Table 1. Percentage of tests passed by individually or pair coded programs - Williams et al

Nevertheless, one might question the extent to which can it be ascertained whether the two groups were in
fact comparable. It is possible that the more successful students might be more likely to have insight into
the advantages of collaborative working, or were more aware of their strengths and weaknesses, and
therefore be more likely to volunteer for pair programming. Similarly it is possible that when working in
pairs the most able student is doing most of the work, therefore it may not be appropriate to compare a pair
score with an individual score, but might be more useful to compare the score of a pair working
collaboratively with the highest score of a randomly selected ‘pair’ of students working individually.
Finally, given that the pairs were students learning affects should also be taken into consideration.

2.4.2 The Pair Programming Practitioner
There are also a number of positive studies concerning commercial pair programming (see Benedicenti and
Paranjape 2001; Deias, Mugheddu et al. 2002; Rumpe and Schroder 2002; Ambu and Gianneschi 2003)

Lui and Chan (2003) performed experiments with experienced software developers. In their second
experiment participants took algorithm-style aptitude tests on their own and in pairs. In pairs 85% of the
responses were correct, compared to only 51% when working alone, however one might question the extent
to which this task is comparable to an increase in software quality in a commercial computing environment.
This result also underlines some of the issues raised above with regards to student pairs.

A further study by Nosek (1998) considered fifteen full-time, experienced software developers working on
challenging problems in their usual working environment. The report gives a clear and reliable definition of
how quality was measured (a score of 0-2 for readability and a score out of 2 for each of 3 output
requirements). Inter-grader reliability was 90%. The results showed that pair teams significantly
outperformed individuals on program quality. Whilst not stated explicitly in the documentation, one can
assume that the participants were not already experienced in pair programming, as Nosek (1998) states that
they ‘were somewhat sceptical of the value of collaboration...and thought that the process would not be
enjoyable’. This suggests that results were significant despite the required change in practice for those
working in pairs.

Finally, Jensen (2003) describes an experiment that took place in an organisation developing a complex
real-time systems in Fortran. A single project trial of pair programming produced code with a 127 percent
gain in productivity and an error rate three orders of magnitude less than those on similar projects. The
programmers rated the pair designed code as ‘better quality’, although there is no clear definition of what
this referred to. Despite the study not being a direct comparison with an alternative project, the
development environment and methodology were the same as the other projects, and the experience of the
team was considered ‘about average’ for the organisation.

Taken as a group, these studies almost unanimously support the hypothesis that pair programming leads to
better quality software. However, taken individually each study has its methodological limitations.
Therefore, while on one hand one might suggest that the variety of environment and methodology makes
the confirmatory nature of the results all the more compelling, on the other there is still call for a single,
rigorous confirmatory study.

2.4.3 Cognitive benefits
There are a number of potential cognitive benefits to pair programming, which may help to understand, at
least in part, how the reported gains in quality and speed may be obtained. The presence of a second
programmer may help to minimise confirmation bias (Hutchins 1995). This is a phenomenon whereby an
individual is more likely to filter information, focusing on that which confirms their current hypothesis, and
discarding potentially useful and important information that does not. In fact, Williams and Kessler (2003)
allude to this by claiming that pair programming lessens the likelihood of ‘tunnel vision’.

Another cognitive benefit may simply be that working in a pair encourages a programmer to talk. There is
evidence to suggest that this type of verbalisation alone may result in improved understanding. That is, it
has been shown that simply by talking effectively to oneself (“self-explanation”), one might achieve a
greater level of understanding and create a more correct mental model of the problem (Chi, de Leeuw et al.

1994). This is further explained by Ainsworth and Loizou (2003) who consider verbalisation a kind of
‘cognitive off-load’, freeing up working memory.

3 When to pair program?
While many studies have made progress in understanding what pair programming (and indeed XP as a
whole) involve, there is still some debate as to its global applicability. Pairing is tiring (see Tessem, 2003
and Sharp and Robinson, 2003), perhaps due to the additional cognitive load of articulating ones work
while one performs it. It has therefore been suggested (Ambu and Gianneschi, 2003) that pairing might be
impractical when deadlines are tight. Similarly Studies by Benedicenti and Paranjape (2001), Becker-
Pechau, Breitling et al. (2003) and Gittins, Hope et al. (2001) all suggest that pairing is not used
exclusively, but could more usefully be introduced in a non-mandatory fashion, perhaps focusing its use on
a project’s most critical tasks.

4 Remote pairing
There is some debate regarding the applicability and practicality of ‘remote pair programming’, some claim
many of the benefits of pair programming are degraded if the members of the pair are not co-located, in
fact in the latest version of XP, one of the primary practices is ‘Sit together’. Others claim that remote
pairing allows one to benefit from both the improved quality of pairing and the convenience of working
‘wherever’. There are some reports of remote pairing having worked commercially (see Harrison, 2003 and
Kircher, Jain et al., 2001) and some have even developed tools to support remote pairing (e.g. Stotts,
McC.Smith et al., 2004 and Hanks, 2004). Here we have only considered the most commonly accepted
form (according to the literature) – co-located pair programming.

Conclusion
Pair programming is one of the core practices of the XP methodology and a number of studies, although
limited, almost unanimously suggest that pairing improves software quality. However, a number of papers
report on the intense and exhausting nature of pair programming and recommend its use in a more
measured fashion, perhaps making pairing non-mandatory or focusing its use on a projects most complex
or critical tasks. Similarly, further studies are required if we are to fully understand pair programming, in
particular its applicability to complex projects or those in which programmers work remotely.

References
Ainsworth, S. and A. T. Loizou (2003). "The effects of self-explaining when learning with text or diagrams." Cognitive
Science 27: 669-681.

Ambu, W. and F. Gianneschi (2003). Extreme programming at work. Fourth International conference in Extreme
Programming and Agile Processes.

Beck, K. (2000). Extreme programming explained: Embrace change, Addison Wesley.

Beck, K. and C. Andres (2004). Extreme Programming Explained: Embrace Change - 2nd Edition. Upper Saddle River,
NJ, USA, Pearson Education.

Becker-Pechau, P., H. Breitling, et al. (2003). Teaching team work: An extreme week for first year programmers.
Proceedings of the 4th International conference in Extreme Programming and Agile Processes.

Benedicenti, L. and R. Paranjape (2001). Using extreme programming for knowledge transfer. Proceedings of the 2nd
International Conference on eXtreme Programming and Agile Processes in Software Engineering.

Bryant, S., P. Romero, et al. (2006). Pair programming and the re-appropriation of individual tools for collaborative
software development. 7th International Conference on the Design of Cooperative Systems, Carry-le-Rouet, France.

Chi, M., N. de Leeuw, et al. (1994). "Eliciting self-explanations improves understanding." Cognitive Science 18: 439-
477.

Canfora, G., Cimitile, A. and Visagio, C (2005). "Empirical study on the productivity of the pair programming",
Proceedings of the 6th International Conference on Extreme Programming and Agile Processes in Software
Engineering, Sheffield, UK. Baumeister, Machesi, Holcombe (eds). Springer-Verlag, Berlin, 2005: 92-99.

Deias, R., G. Mugheddu, et al. (2002). Introducing XP in a start-up. Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering.

Gittins, R., S. Hope, et al. (2001). Qualitative studies of XP in a medium sized business. Second International
conference on eXtreme Programming and Flexible Processes in Software Engineering, Villasimius, Sardinia, Italy.

Hanks, B. F. (2004). Distributed pair programming: An empirical study. XP/Agile Universe 2004, Salt Lake City,
USA.

Harrison, N. (2003). A study of extreme programming in a large company.

Hazzan, O. and J. Tomayko (2003). The reflective practitioner perspective in eXtreme Programming. XP Agile
Universe 2003, New Orleans, Louisiana, USA.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA, The MIT Press.

Jensen, R. (2003). "A pair programming experience." The journal of defensive software engineering 16(3): 22-24.

Johnson, S., J. Mao, et al. (2003). Extreme makeover: Bending the rules to reduce risk rewriting complex systems.
Fourth international conference in Extreme Programming and Agile Processes in Software Engineering.

Kircher, M., P. Jain, et al. (2001). "Distributed extreme programming." Second international conference on eXtreme
Programming and Agile Processes in Software Engineering.

Lave, J. and E. Wenger (1991). Situated learning: Legitimate peripheral participation. New York, NY, USA,
Cambridge university press.

Lui, K. and K. Chan (2003). When does a pair outperform two individuals? Fourth international conference in Extreme
Programming and Agile Processes in Software Engineering.

Macias, F. (2002). Empirical experiments with XP. Third international conference on eXtreme Programming and Agile
Processes in Software Engineering.

Noll, J. and D. Atkinson (2003). Comparing extreme programming to traditional development for student projects.
Fourth International conference on extreme programming and agile processes in software engineering.

Nosek, J. T. (1998). "The case for collaborative programming." Communications of the ACM 41(3): 105-108.

Pulugurtha, S., J. Neveu, et al. (2002). Extreme programming in a customer services organisation. Third international
conference on Extreme Programming and Agile Processes in Software Engineering.

Rumpe, B. and A. Schroder (2002). Quantitative survey of extreme programming projects. Third international
conference on Extreme Programming and Agile Processes in Software Engineering.

Sharp, H. and H. Robinson (2003). An ethnography of XP practices. Fifteenth annual psychology of programming
interest group workshop.

Stotts, D., J. McC.Smith, et al. (2004). Support for distributed pair programming in the transparent video facetop.
XP/Agile Universe 2004, Calgary, Canada, Spring-Verlag.

Tessem, B. (2003). Experiences in learning XP practices: A qualitative study. Fourth International conference on
extreme programming and agile processes in software engineering.

Williams, L. and R. Kessler (2003). Pair programming illuminated. Boston, Addison-Wesley.

Williams, L., R. Kessler, et al. (2000). "Strengthening the case for pair programming." IEEE software 17(4): 19-25.

