Visual attention and representation switching
during Java program debugging: A study using
the Restricted Focus Viewer.

Pablo Romero, Richard Cox, Benedict du Boulay, and Rudi Lutz

Human Centred Technology Group,
School of Cognitive & Computing Sciences
University of Sussex, Falmer, Brighton,

East Sussex, BN1 9QH, UK

Abstract. Java program debugging was investigated in programmers
who used a software debugging environment (SDE) that provided con-
currently displayed, adjacent, multiple and linked representations con-
sisting of the program code, a functional visualisation of the program,
and its output.

A modified version of the Restricted Focus Viewer (RFV)[3] - a visual
attention tracking system - was employed to measure the degree to which
each of the representations was used, and to record switches between rep-
resentations. Other measures included debugging performance (number
of bugs identified, the order in which they were identified, bug discovery
latencies, efc.).

The aim of this investigation was to address questions such as ‘To what
extent do programmers use each type of representation?’ and ‘Are partic-
ular patterns of representational use associated with superior debugging
performance?’.

A within-subject design, and comparison of performance under (matched)
RFV /no-RFV task conditions, allowed the use of the RFV as an attention-
tracking tool to be validated in the programming domain.

The results also provide tentative evidence that superior debugging us-
ing multiple-representation SDE’s tends to be associated with a) the
predominant use of the program code representation, and b) frequent
switches between the code representation and the visualisation of the
program execution.

1 Introduction

When trying to perform a programming activity in everyday settings, program-
mers normally work with a variety of external representations as well as the
program code. Some of these external representations are used in debugging
packages, prototyping and visualisation tools in software development environ-
ments, or are included as part of internal and external documentation. Therefore,
programming normally requires the co-ordination of multiple representations.

Probably the most typical case, at least for beginner programmers, of co-
ordination of external representations in programming is working with debug-
ging packages, a common example of a visualisation tool. Novice programmers
often spend a good amount of their learning time attempting to understand the
behaviour of programs when trying to discover errors in the code. To perform
this task, novices normally work with both the program code and the debug-
ger output, trying to co-ordinate and make sense of these representations. Yet
studies of program comprehension have not, to the best of our knowledge, ad-
dressed the issue of how multiple external representations are used for this kind
of programming task.

We believe that the investigation of the co-ordination of multiple external
representations in programming can be effectively supported by visual attention
tracking methods, and that a tool like the Restricted Focus Viewer (RFV)[3] can
be used for this purpose. The use of this experimental tool allows us to analyse
the process of representational use in program debugging by addressing questions
such as ‘How much time do users spend using each representation?’, ‘Under
what circumstances do programmers switch between representations’ and ‘Are
particular patterns of representational use associated with superior debugging
performance?’.

1.1 Co-ordination of multiple external representations in
programming

Two important aspects to consider regarding the co-ordination of multiple repre-
sentations in programming are modality and perspective [9]. The term ‘modality’
is used here to mean the representational forms used to present or display in-
formation, rather than in the psychological sense of sensory channel. A typical
modality distinction here is between propositional and diagrammatic represen-
tations. Thus, the first aspect refers to co-ordinating representations which are
basically propositional with those that are mainly diagrammatic. It is not clear
whether co-ordinating representations in the same modality type has advantages
over working with mixed multiple representations or whether including a high
degree of graphicality has potential benefits for performing the task.

Modality Although programmers normally have to coordinate representations
of different modalities, there has not been much research on these issues in
the area of programming. One of the few examples is the GIL system [15],
which attempts to provide reasoning-congruent visual representations in the form
of control-flow diagrams to aid the generation and comprehension of LISP, a
functional programminglanguage which employs mainly textual representations.
In [15], it is claimed that this system is successful in teaching novices to program
in this language; however, this work did not compare co-ordination of the same
and different modalities.

Work in the algorithm animation area ([5]) has found advantages for the use
of multiple representations of mixed modality. In [5], it was found that students

might benefit from the dual coding that results from presenting a graphical
visualisation of the program together with a textual explanation of it.

Other studies in the area have been concerned with issues related to the
format of the output of debugging packages [16, 18]. Those studies have offered
conflicting results about the co-ordination of representations of different modali-
ties. In [18], it was found that subjects working with representations of the same
and different modalities had similar performance, while in [16], it was reported
that the ones working with different modalities showed a poorer performance
than those working with the same modality. In both cases, participants worked
with the program code and with the debugger’s output. The debugger nota-
tions used by both of these studies were mostly textual. The only predominantly
graphical debugging tool used by these studies was TPM [10]. While the per-
formance of the participants of the former study [18] was similar for the textual
debuggers and TPM, the subjects of the latter study [16] found working with
TPM more difficult. One important difference between these two studies is that
while the former used static representations, the latter employed a visualisation
package (dynamic representations). The additional cognitive load of learning and
using a multi-representational visualisation package may explain the difference
in findings.

Perspective The second aspect refers to co-ordinating representations that
highlight either the same or different programming information types. Computer
programs are information structures that comprise different types of informa-
tion [20], and programming notations usually highlight some of these aspects
at the cost of obscuring others [12]. Experienced programmers, when compre-
hending code, are able to develop a mental representation that comprises these
different perspectives or information types, as well as rich mappings between
them [19]. Some of these different information types are: function, data structure,
operations, data-flow and control-flow. It 1s an open issue whether co-ordinating
notations that highlight different information types will be more beneficial to
programmers than working with those that highlight the same ones.

Java debugging To date, there have been numerous investigations of debugging
behaviour across a range of programming languages [4, 11,22,25] and previous
research has also examined the effect of representational mode upon program
comprehension [13, 15,16, 18].

However, these studies were performed mainly in the context of procedural
or declarative computer languages. It is not clear whether the results will gener-
alise to the (currently popular) Object-Oriented paradigm. Research in program
comprehension for Object-Oriented languages suggests that these kinds of lan-
guage highlight functional information [6,26]. However, it is not clear whether
novice programmers working with medium size programs find comprehending
function in Object-Oriented languages an easy task [27], specially because as
program size increases, functional information tends to become diffuse.

Furthermore, debugging studies have not tended to employ debugging envi-
ronments that are typical of those used by professional programmers (7.e. multi-
representational software debugging environments (SDE’s)). Such environments
typically permit the user to switch rapidly between multiple, linked, concur-
rently displayed representations. These include program code listings, data-flow
and control-flow visualisations, output displays, etc. In [23], a comprehensive
survey of external representations employed in object-oriented programming en-
vironments is provided.

1.2 Aims

The aim of this work was to conduct a small-scale, exploratory study as a first
step towards the development of a descriptive model of representational be-
haviour in program debugging.

To date, the RFV has been validated in the context of reasoning about simple
mechanical systems via the inspection of static diagrams [3]. A secondary aim,
therefore, was to validate the RFV for use in an active debugging context (in
which users make frequent switches between multiple, heterogeneous, interactive
representations).

Additional aims were:

— to employ a multi-modal debugging environment; for multi-modality is a
characteristic typical of those used in professional practice;

— to investigate debugging in the context of the Java programming language -
a modern, Object-Oriented and widely used programming language;

2 Method, materials and procedure

2.1 The experimental debugging environment

The Java SDE enabled participants to see the program’s code, its output for a
sample execution and a visualisation of this execution in terms of the program’s
functionality. A screen shot of the system is shown in Figure 1. Participants
were able to see the several program modules in the code window, one at a
time, through the use of the side-tabs (‘coin’, ‘pile’, ‘till’). Also, the visualisation
window presented a functional visualisation of the program’s execution similar
to those found in code animation systems [14]. Functional representations were
selected in preference to other program perspectives because research in Object-
Oriented program comprehension has suggested that function is an important
information type for these languages (see Section 1.1).

The SDE was implemented on top of a modified version of the Restricted
Focus Viewer (RFV). The RFV has been reported in [3] as an alternative to
eye-tracking devices. This program presents image stimuli in a blurred form (but
note that none of the images in Figure 1 are so blurred). When the user moves
the mouse to an image, a section of it around the mouse pointer becomes focused.
In this way, the program restricts how much of a stimulus can be seen clearly.

Source Visualisation
1 public class Cein [A
2 Public double value;
3 public String label;
4 Till
5 pPublic Coin (String clabel) =
6 {
3 label = clabel; C| eik
8
s it (ladel.aguals("lp')) o]
10 wvalue = .01; -I
1L else if (label.squals("Zp")) Ip 3p Sp lop Wp S0p | pound -
1z value = .02; h -
13 else it (label.aquals("Sp"))
14 wvalue = .05;
15 else if (label.eguals("10p"))
16 value = .1;
17 else if (label.squals("20p")) |
18 value = .2;
19 else if (label.eguals("50p")) Till
20 wvalue = .5;
21 else if (label.eguals("l pouad")) 3
22 value = Pile
23 elsa |
24 System.out . printla("unknows coin: "+label);
25 wvalue = 0;
26 |
27 | p 2p 3p 10p 20p S0p 1 pound
28 I '
29
30
31
Till
18
Pile
: v
Output
reumEn java Till ry
52
i
2p
52
1 pound
ea -
unkaewn eoin: snd Ad
Continue

Fig. 1. The debugging environment used by participants (with RFV switched off)

It allows visual attention to be tracked as the user moves an unblurred ‘foveal’
area around the screen. Use of the RFV enabled moment-by-moment represen-
tation switching between concurrently displayed, adjacent representations to be
captured for later analysis. Here, we used a modified version of the original RFV
to track visual attention and representation switches during program debugging.

The original RFV was modified for use in this study in several ways. First,
stimulus images can be presented in a scroll or a tab pane. This allows us to
present big images or more than one image in a specified display area. Second,
the focused (‘foveal’) spot no longer follows the movement of the mouse. In our
modified version, participants may click a mouse button to set the focused spot
in the desired place. Every window image ‘remembers’ where its focused spot is,
so when the user returns to that window the region in focus is the one that was
set by the previous mouse click performed on that window image. This feature
makes switching between stimulus images easier, because participants do not
have to re-establish the place where they were looking at every time they switch
their attention from one window image to another. Also, this change allowed
us to distinguish between two kinds of mouse-usage - i.e. using the mouse to
navigate among images versus using it to position the focused region.

Participant| Java General
experience |programming
(in months)| experience
(in years)
1 6 7
2 24 12
3 3 5
4 1.5 6.5
5 36 6

Table 1. Programming experience of participants

In order to assess the effect of using the RFV itself upon debugging perfor-
mance, each participant also debugged an equivalently-matched program using
the SDE with the RFV disabled. Experimental program versions were counter-
balanced in RFV/non-RFV conditions across participants.

The data collected by the RFV consists of a log of mouse and keyboard
actions, as well as the times taken by participants to perform the debugging ses-
sions'. Additional data recorded included the number of program errors (bugs)
identified by subjects, their description and the order in which they were iden-
tified.

2.2 Participants and procedure

The experimental participants were four DPhil students and one professional
programmer. All of them knew Java and the four students were using it in
coursework projects. Table 1 gives details of the participants programming ex-
perience.

Participants performed three debugging sessions. The first one was a warm-up
session and it was performed under the restricted focus condition. The two main
sessions followed — one with and the other without the restricted focus condi-
tion (order was counterbalanced across participants). Participants were allowed
as much time as they needed in each of the sessions. They were instructed to find
as many errors as they could in the programs. The debugging sessions consisted
of two phases. In the first phase participants were presented with a specification
of the target program. This program specification consisted of two paragraphs
describing in plain English the problem that the program was intended to solve,
the way it should solve it (detailing the solution steps, specifying which data
structures to use and how to handle them), together with some samples of pro-
gram output (both desired and actual). When participants were clear about the
task that the program should solve and also how it should be solved, they moved
on to the second phase of the session.

! These data are also used as input to a screen movie capture mode for ‘re-plays’
post-session.

import java.io.*;
public class Till {
private MoneyPile[] piles;

public Till () {

piles = new MoneyPile[7];

piles[0] = new MoneyPile("1p",.01);
piles[1] = new MoneyPile("2p",.02);
piles[2] = new MoneyPile("5p",.05);
piles[3] = new MoneyPile("10p",.1);
piles[4] = new MoneyPile("20p",.2);
piles[5] = new MoneyPile("50p",.5);
piles[6] = new MoneyPile("1 pound",1.0);

public void add(Coin c) {
for (int i=0; i<piles.length; i++) {
if (c.label.equals(piles[i].coin_type))
piles[0].add(c);

public void count() {
double total = 0;
double pile_total;

for (int i=0; i<piles.length; i++) {
pile_total = piles[i].n_coins * piles[i].coin_value;
System.out.println(piles[i].n_coins+" "+ piles[i].coin_type+
" coins is "+ pile_total+ " pounds");
}
System.out.println("The total is: "+ total+" pounds");

public static void main(String args[]) throws IOException {
Till myTill = new Till();
boolean end_of_coing = false;
BufferedReader in = new BufferedReader
(new InputStreamReader(System.in));

while ('end_of_coins) {
String coin_type = in.readLine();
if (coin_type.equals("end"))
end_of_coins = true;

Coin coin = new Coin(coin_type);
myTill.add(coin);
}
System.out.println("Counting the till contents: ");
myTill.count();

Fig. 2. Code for the Till class.

In the second phase they were presented with three windows containing the
program code, a sample interaction with the program and a visualisation which
illustrated this interaction graphically. They were instructed to identify as many
errors as possible in this program. When subjects reported that they thought
they had detected all of the errors they moved on to the next debugging session.

rsunx? java Till
5p

ip

2p

5p

1 pound

end

unknown coin: end

Counting the till contents:

5 1p coins is 0.05 pounds

0 2p coins is 0.0 pounds

0 5p coins is 0.0 pounds

0 10p coins is 0.0 pounds

0 20p coins is 0.0 pounds

0 50p coins is 0.0 pounds

0 1 pound coins is 0.0 pounds
The total is: 0.0 pounds

rsunx’

Fig.3. Output from a sample execution
session of the T4l program.

Till

Pile

Till

18
Pile

Till

18
Pile

Till

18
Pile

Till

18
File

Fig. 4. Functional visualisation of a sam-
ple execution session of the Till program.

The target programs consisted of three short Java programs. The ‘warm-
up’ session program detects whether a point is inside a rectangle, given the
co-ordinates of the point and the vertices of the rectangle. The first experimen-
tal program prints out the names of the children of a sample family. The second
experimental program (“Till”) counts the cash in a cash register till, giving subto-
tals for the different coin denominations. Some of the code, output for a sample

execution session and a functional visualisation to this execution for the Tull
program are shown in Figures 2, 3 and 4 respectively.

The programs of the two main debugging sessions were seeded with three
errors, and the ‘warm-up’ session’s program was seeded with two errors. The
errors of the main debugging sessions programs can be classified as ‘functional’,
‘control-flow’ and ‘data structure’. In this classification, functional errors are
those that occur in the line or lines in which the main computation of the
program is performed [21]. For example, in the Till program of Figure 2, the
functional error can be found in the method count, where the grand total of the
money being counted is not computed.

Control-flow errors have to do with the execution of the program not following
a correct path. For example, the control-flow error in the 7%l program is located
in the two last lines of the while loop of its main procedure. These two lines
should be included within an else structure, so that the execution of the program
either acknowledges an end-of-coins case or adds the new coin to the till, but
never follows both paths at the same time.

Data structure errors normally have undesired consequences for the program
data structures. For the Tull program of Figure 2, the data structure error is
located within the only instruction of the if structure of the add method. This
error consists of every coin added to the till being sent only to the first money
pile, regardless of its type. In this way, the money pile receiving all coins is one
which should only accumulate coins of a one-pence denomination.

3 Results

3.1 Debugging performance

The results of the experiment in terms of debugging performance are presented in
Table 2. It can be seen that although the restricted view condition slowed down
the debugging performance of some participants, the number of errors found did
not seem to be affected by this experimental condition (participants tended to
spot more errors working under the restricted view condition). This result to
some extent replicates that of [3], which compared eye-tracking with the RFV
and found that response times were generally slower for the RFV, but other
aspects of performance were less affected. The results reported here represent a
more controlled validation of the RFV than that of [3], since in that study RFV
data from a diagram inspection task were compared to eye-tracking data of
an earlier study conducted by another investigator. In the current investigation
a within-subject design ensured that participants served as their own controls
and parallel forms of the tasks were counterbalanced across subjects for the
RFV/non-RFV conditions.

Table 2 shows that in terms of number of errors spotted and for the two
main sessions, the most successful participant was number 2 (5 errors found),
then participants 3 and 4 (4 errors spotted each), then 5 with 3 errors located
and finally participant 1 with only one error found.

Participant| Warm-up RFV on RFV off
Errors|Time|Errors| Time|Errors| Time
found found found
0/2 [19.53] 1/3 | 5.9] 0/3 [10.22
2/2 |19.24 3/3 [36.28] 2/3 |6.28
2/2 |29.58] 3/3 [17.23] 1/3 |9.56
1/2 [22.46] 2/3 |33.42] 2/3 |21.26
5 2/2 |12.25 2/3 [17.34] 1/3 [13.12
Table 2. Number of errors found and time taken for the three debugging sessions for
each participant (the warm-up program was seeded with two errors and the other two
with three errors)

| W b =

Participant||Code Visualisati0n| Output| Switches
| per minute
1 82.5 6.3 11.2 1.55
2 92.2 5.9 1.9 1.54
3 95.5 2.5 2.0 1.44
4 87.5 7.6 4.9 2.19
5 80.8 7.1 12.1 1.93

Table 3. Percentage of time spent in each representation and average number of
switches per minute for each participant.

3.2 Debugging behaviour

The global experimental results in terms of debugging behaviour are shown in Ta-
ble 3. This table presents the percentage of time that participants spent looking
at each representation when working in the restricted view condition. Addition-
ally, this table also presents the average number of switches per minute between
the SDE representations.

The more successful participants (2,3 & 4) spent a longer amount of time
focusing on the code representation compared to the less successful ones (1 &
5). No clear pattern seems to exist relating the average number of switches per
minute to debugging performance in this representation of the data. However,
when the averages are represented as annotations to cyclic directed graph de-
pictions of switches between representations, a distinctive pattern emerges.

The different types of switches considered for this analysis are: a switch from
the code representation to the visualisation, from visualisation to code, code to
output representation, output to code, visualisation to the output and output to
visualisation. Table 4 presents the results in these terms. For each participant,
the number of switches per minute is reported. Figures 5, 6, 7, 8 and 9 present
these data in the form of cyclic directed graphs for each participant, with the
frequency of switches normalised. In each of the figures, the frequency of code-
visualisation, visualisation-output, and code-output switches are represented by

Participant||Code t0|Visualis. Code to|Output| Visualis. |Output to
Visualis.| to code | output |to code|to output| visualis.
1 1.54 1.54 2.31 0.77
2 1.98 1.98 0.99 1.1 0.11 0.11
3 2.07 2.07 0.23 0.46 0.46 0.23
4 2.84 3.08 1.19 1.07 0.24 0.48
5 2.05 2.05 1.82 1.37 0.23 0.23

Table 4. Number of switches per minute for each switch type.

annotated directional arrows. From these Tables and Figures it can be observed
that the most successful participants (2, 3 & 4) performed more frequent switches
between the code and the visualisation than the less successful ones (1 & 5).

13%

Fig.5. Number of switches per minute for
each kind of switch for participant 1.

8%

Fig.7. Number of switches per minute for
each kind of switch for participant 3.

4 Discussion

2%

Fig. 6. Number of switches per minute for
each kind of switch for participant 2.

32%

12%

13%
5%

3%

Fig. 8. Number of switches per minute for
each kind of switch for participant 4.

This investigation aimed to relate debugging performance to representation use
in a multi-representational, multi-modal debugging environment similar to those
found in commercial software development environments and software visuali-
sation packages [23]. These sorts of environment are characterised by having

several concurrently displayed representations of the program. There is a central
representation, the program code, and a series of secondary representations that
support it (program output and execution visualisations). Because software de-
bugging environments are an important tool for novice programmers, modeling
the process of representation use in this sort of environment can be of central
relevance for educational purposes.

26% 18%

26%

3%

Fig. 9. Number of switches per minute for each kind of switch for participant 5.

Several hypotheses provide a basis for an initial descriptive model. First,
better performing participants quickly identified the code representation as the
central one and devoted a high percentage of inspection time to it. Secondly, the
global frequency of switching per se does not seem to be related to good debug-
ging performance. Successful and unsuccessful performance share similar levels
of switching frequency among all the available representations. This differs from
experimental results obtained in studies of representational behaviour in the do-
main of analytical reasoning [8,7]. Those studies found that poor performers
switched more frequently than successful ones. However, there are several dif-
ferences between those studies and the one reported here. Although analytical
reasoning as a cognitive task might be remarkably similar to program compre-
hension, the analytical reasoning studies encouraged participants to build their
own representations. Therefore, switching representations represented ‘a strate-
gic decision by the subject to abandon the current external representation and
construct a new one’ [8]. In the present study, representations were complemen-
tary rather than alternative, therefore, switching did not represent discarding
one representation for another, but complementing the information of one with
another. Also, representations in the analytical reasoning study were presented
serially, while the ones of the study reported here were displayed concurrently.

Our third hypothesis is related to the frequency of switching but it considers
the different types of switches between the representations. A relatively high
frequency of switches between the code and visualisation representations seems
to be related to good debugging performance. This seems to be in agreement
with findings in the program comprehension area that suggest that experienced
programmers, when comprehending a program, are able to develop a mental
representation that consists of different program perspectives, as well as rich
mappings between them [19]. Tt also suggests that efficient debugging perfor-

mance using SDE’s is associated with the exploitation of representations that
differ maximally in terms of their modality and expressiveness [24], i.e. in other
words, good software bug diagnosticians tend to be heterogeneous reasoners [2].

The finding that performance, in terms of number of bugs detected, was supe-
rior in the RFV condition (compared to the non-RFV condition) was unexpected.
This finding might be explained by at least two different causes (or by a combina-
tion of them). The first is that such a result might be explained by two features of
the modified RFV which may have provided a degree of additional user-support.
The amount of visual search performed by users in the RFV condition may have
been reduced in two ways: a) by the RFV’s blurring of unused parts of the dis-
play - thus reducing visual clutter, and, b) by the RFV’s window-by-window
location memory for the user’s ‘last-attended-to-position’ that re-instated the
‘fovea’ on each switch back to a particular representation. The second explana-
tion assumes that restricting the visual focus of the screen made local action
more effortful. As suggested in [17], increasing the cost of performing the task
could have increased the level of planning, which in turn could have enhanced
the task performance.

5 Conclusions

This study investigated Java program debugging performance and behaviour
through the use of a software debugging environment that provided concurrently
displayed, adjacent, multiple and linked representations and that allowed visual
attention switches of participants to be tracked. The experimental results allowed
us to propose several hypotheses which can be considered as a first step in
building a preliminary descriptive model of the process of representation use for
program debugging. Also, the modified version of the RFV was validated for use
in the program representation domain?.

The preliminary hypotheses about representation use in program bug diagno-
sis need to be further tested with a larger sample population and an experimental
design that takes into account several important issues. For example, this inves-
tigation has only considered functional visualisations, while commercial software
development environments also offer visualisations of data structure and control-
flow [23]. Considering different kinds of visualisations would allow us to relate
debugging performance of bug type to type of representation.

Another issue concerns the co-ordination of uni-modal versus multi-modal
representations. Some evidence suggests that co-ordinating representations of
different modality seems to be more complicated than co-ordinating those of the
same perspective [1]. However, it is not clear how modality differences between
the representations affect representational behaviour. These questions will be
investigated in further work.

2 Like the original RFV, our modified version has also been placed in the public
domain for use by the diagrammatic research community. It can be downloaded
from http://www.cogs.susx.ac.uk/projects/crusade/

Acknowledgments

This work is supported by the EPSRC grant GR/N64199.

The authors would like to thank the referees for their helpful comments and

the participants for taking part in the study.

References

1.

10.

11.
12.

13.

14.

15.

S. Ainsworth, D. Wood, and P. Bibby. Co-ordinating multiple representations in
computer based learning environments. In P. Brna, A. Paiva, and J. Self, editors,
Proceedings of the 1996 Furopean Conference on Artificial Intelligence on Education,
pages 336-342, Lisbon, Portugal, 1996.

. J. Barwise. Heterogeneous reasoning. In G. Allwein and J. Barwise, editors, Working

papers on diagrams and logic. Visual Inference Laboratory, Indiana University, 1993.

. A. Blackwell, A. Jansen, and K. Marriott. Restricted focus viewer: a tool for tracking

visual attention. In M. Anderson, P. Cheng, and V. Haarslev, editors, Theory and
Application of Diagrams. Lecture Notes in Artificial Intelligence 1889, pages 162—
177. Springer-Verlag, 2000.

. D. Bergantz and J. Hassell. Information relationships in PROLOG programs: how

do programmers comprehend functionality? International Journal of Man-Machine
Studies, 35:313-328, 1991.

. M. D. Byrne, R. Catrambone, and J. T. Stasko. Evaluating animations as student

aids in learning computer algorithms. Computers & Education, 33:253-278, 1999.

. C. L. Corritore and S. Wiedenbeck. Mental representations of expert procedural and

object-oriented programmers in a software maintenance task. International Journal
of Human Computer Studies, 50:61-83, 1999.

. R. Cox. Analytical reasoning with multiple external representations. PhD thesis,

University of Edinburgh, Edinburgh, Scotland, U.K., 1996.

. R. Cox and P. Brna. Analytical reasoning with external representations: Supporting

the stages of selection, construction and use. Journal of Artificial Intelligence in
Education, 6(2/3):239-302, 1995.

. T.de Jon, S. Ainsworth, M. Dobson, A. van der Hulst, J. Levonen, and P. Reimann.

Acquiring knowledge in science and mathematics: The use of multiple repre-
sentations in technology-based learning environments. In M. W. van Someren,
P. Reimann, H. P. A. Boshuizen, and T. de Jon, editors, Learning with Multiple
Representations, pages 9—40. Elsevier Science, Oxford, U.K., 1998.

M. FEisenstadt, M. Brayshaw, and J. Paine. The Transparent Prolog Machine.
Intellect, Oxford, England, 1991.

D. J. Gilmore. Models of debugging. Acta psychologica, 78(1):151-172, 1991.

D. J. Gilmore and T. R. G. Green. Comprehension and recall of miniature pro-
grams. International Journal of Man-Machine Studies, 21(1):31-48, 1984.

J. Good. Programming Paradigms, Information Types and Graphical Represen-
tations: Empirical Investigations of Novice Program Comprehension. PhD thesis,
University of Edinburgh, Edinburgh, Scotland, U.K., 1999.

S. P. Lahtinen, E. Sutinen, and J. Tarhio. Automated animation of algorithms
with eliot. Journal of Visual Languages and Computing, 9:337-349, 1998.

D. C. Merrill, B. J. Reiser, R. Beekelaar, and A. Hamid. Making processes visi-
ble: scaffolding learning with reasoning-congruent representations. Lecture Notes in
Computer Science, 608:103-110, 1992.

16. P. Mulholland. Using a fine-grained comparative evaluation technique to under-
stand and design software visualization tools. In S. Wiedenbeck and J. Scholtz,
editors, Fmpirical Studies of Programmers, seventh workshop, pages 91-108, New
York, 1997. ACM press.

17. K. P. O’hara and S. J. Payne. Planning and the user interface: the effects of lockout
time and error recovery cost. International Journal of Human Computer Studies,
50:41-59, 1999.

18. M. J. Patel, B. du Boulay, and C. Taylor. Comparison of contrasting Prolog trace
output formats. International Journal of Human Computer Studies, 47:289-322,
1997.

19. N. Pennington. Comprehension strategies in programming. In G. M. Olson,
S. Sheppard, and E. Soloway, editors, Fmpirical Studies of Programmers, second
workshop, pages 100-113, Norwood, New Jersey, 1987. Ablex.

20. N. Pennington. Stimulus structures and mental representations in expert compre-
hension of computer programs. Cognitive Psychology, 19:295-341, 1987.

21. R. S. Rist. Schema creation in programming. Cognitive Science, 13:389-414, 1989.

22. P. Romero. Focal structures and information types in Prolog. International Journal
of Human Computer Studies, 54:211-236, 2001.

23. Romero, P., Cox, R., du Boulay, B. & Lutz, R. A survey of representations em-
ployed in object-oriented programming environments. (in press) Journal of Visual
Languages and Computing.

24. K. Stenning and J. Oberlander. A cognitive theory of graphical and linguistic
reasoning: logic and implementation. Cognitive Science, 19(1):97-140, 1995.

25. 1. Vessey. Toward a theory of computer program bugs: an empirical test. Interna-
tional Journal of Man-Machine Studies, 30(1):23-46, 1989.

26. S. Wiedenbeck and V. Ramalingam. Novice comprehension of small programs writ-
ten in the procedural and object-oriented styles. International Journal of Human
Computer Studies, 51:71-87, 1999.

27. S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. L. Corritore. A compar-
ison of the comprehension of object-oriented and procedural programs by novice
programmers. Interacting with Computers, 11:255-282, 1999.

