Debugging strategies and tactics in a
multi-representation software environment

Pablo Romero, Benedict du Boulay, Richard Cox
Rudi Lutz and Sallyann Bryant
Department of Informatics
Sussex University, U.K.

August 23, 2007

Abstract

This paper investigates the interplay between high level debugging
strategies and low level tactics in the context of a multi-representation
software development environment (SDE). It investigates three
questions. 1. How do programmers integrate debugging strategies and
tactics when working with SDEs? 2. What is the relationship between
verbal ability, level of graphical literacy and debugging (task)
performance. 3. How do modality and perspective influence debugging
strategy and deployment of tactics? The paper extends the work of Katz
& Anderson (1988) and others in terms of identifying high level
debugging strategies to include following execution. It also describes
how programmers of different backgrounds and degrees of experience
make differential use of the multiple sources of information typically
available in a software debugging environment. Individual difference
measures considered among the participants were their programming
experience and their knowledge of external representation formalisms.
The debugging environment allowed the participants, computer science
students, to view the execution of a program in steps and provided them
with concurrently displayed, adjacent, multiple and linked programming
representations. These representations comprised the program code, two
visualisations of the program and its output. The two visualisations of
the program were available, in either a largely textual format or a
largely graphical format so as to track interactions between experience
and low level mode-specific tactics, for example.

The results suggest that i) additionally to deploying debugging
strategies similar to those reported in the literature, participants also
employed a strategy specific to SDEs, following ezecution, ii) verbal
ability was not correlated with debugging performance, iii) knowledge of
external representation formalisms was as important as programming
experience to succeed in the debugging task, and iv) participants with
greater experience of both programming and external representation
formalisms, unlike the less experienced, were able to modify their
debugging strategies and tactics effectively when working under different
format conditions (i.e. when working with either largely graphical or

largely textual visualisations) in order to maintain their high debugging
accuracy level.

Keywords: multiple external representations, graphical reasoning,
program debugging.

1 Introduction

Much computer programming is performed via the use of software
development environments which provide a variety of external representations
and other sophisticated functionality. These representations and functionality
enable programmers to treat programs not just as code text, but also as a
range of abstract entities which can be visualised according to different criteria
or executed under a variety of conditions.

This means that the kinds of high level debugging strategy identified by (Katz
& Anderson, 1988) will now be interwoven with low level tactics associated
with choosing which representations and functionality to exploit as well as
being extended at the high level by possibilities opened up by the new
functionality.

These representations help the programmer to visualise the program through
different perspectives or information types. For example, some perspectives
highlight the transformations which data elements undergo as they are
processed, while others show the sequence of actions that will occur when the
program is executed. Visualisations can be presented in formats that range
from mostly textual to mostly graphical (Romero, Cox, du Boulay & Lutz,
2003). Very frequently a number of these visualisations contain links to one
another and are displayed concurrently and side by side.

In terms of debugging strategies and tactics, the step facility is one of the
most helpful pieces of functionality of such environments. This facility allows
programmers to execute and pause the program at different points. At these
points they can inspect the visualisations provided to obtain information
about various aspects of the execution state.

Such program visualisation and debugging facilities should, in principle, be
especially helpful for novice programmers because they have the potential to
enable them see the program not as a black box but as an abstract machine
containing a set of elements and moving between states. However, their
effective use requires strategic knowledge about how to generate and test
debugging hypotheses from the evidence in the program’s output and
visualisations, knowledge about how to decode and coordinate the available
representations as well as skill in operating the SDE itself. It is often assumed
that novices possess this knowledge and these skills. Thus, novice programmers
can face a double challenge. As well as trying to learn abstract concepts about
programming, they have to master the decoding, representation coordination
and step-and-trace skills required to use debugging environments.

This paper characterises the debugging strategies and tactics of Java
programmers in terms of step-and-trace choices and representation usage in

the multi-representation debugging environment, relating these aspects of their
behaviour to debugging accuracy, experience and knowledge of external
representation formalisms. Section 2 explores research in programming
strategy focusing on the way programmers manipulate the tools and
representations available. Section 3 describes the experimental design and
method. Section 4 presents the results of this experiment and Section 5
discusses these results. Finally, Section 6 presents some conclusions and
describes further work.

2 External representation usage in
programming

Good performance in programming tasks is as much dependent on the
strategies and tactics chosen to accomplish programming tasks as it is on the
programmers’ knowledge about the syntax and semantics of the programming
language (Gilmore, 1990). In program debugging, strategy is usually related to
the high level, systematic plan to identify program errors while tactics have to
do with lower-level actions performed to, for example, coordinate and
integrate multiple sources of information when using a SDE. According

to Katz & Anderson (1988), bug finding strategies can be broadly classified
into forward reasoning and backward reasoning. The first category comprises
those strategies in which programmers start searching for bugs from the
program code, while the second involves starting from the incorrect behaviour
of the program (typically its output) and reasoning backwards to the origin of
the problem in the code. Examples of forward reasoning include
comprehension, where bugs are found while the programmer is building a
mental representation of the program and hand simulation, where
programmers evaluate the code as if they were the computer. Backward
reasoning includes strategies such as simple mapping and causal reasoning. In
simple mapping the program’s output points directly to the incorrect line of
code, while in causal reasoning the search starts from the incorrect output
going backwards towards the code segment that caused the bug.

Related but lower-level tactics have to do with the coordination of the
available representations and the operation the SDE itself (mainly of its
step-and-trace facility). These tactical aspects are particularly important for
novice programmers. An inability to cope with these demands, frequently due
to cognitive overload (van Bruggen, Kirschner & Jochems, 2002), means that
multiple sources of information, instead of improving performance and
learning, can sometimes impede them (Bodemer, Ploetzner, Feuerlein &
Spada, 2004).

The step-and-trace facility of the SDE is particularly important as it can
transform a continuous animation of the program behaviour into a sequence of
discrete steps. Animations are ephemeral and sometimes too quick to be
accurately perceived, however judicious use of interactivity can help to avoid
these difficulties (Tversky & Morrison, 2002).

When working with SDEs, high level debugging strategies need to be
supported by the low level tactics used to coordinate the available
representations and to operate the SDE itself. Although there have been
studies that have looked at debugging strategies (Katz & Anderson, 1988;
Mulholland, 1997; Prabhakararao, Cook, Ruthruff, Creswick, Main & Durham,
2003; Chintakovid, Wiedenbeck, Burnett & Grigoreanu, 2006; Grigoreanu,
Beckwith, Fern, Yang, Komireddy, Narayanan, Cook & Burnett, 2006) and
tactics (Romero, Cox, du Boulay & Lutz, 2002; Romero, Lutz, Cox &

du Boulay, 2002; Bednarik & Tukiainen, 2004), it is not clear how
programmers integrate them.

2.1 Factors affecting strategy and tactics

When using a SDE to debug a program, there are a number of factors that can
influence the quality of the strategy and tactics deployed. Some of these are
programming experience, the form and nature of the visualisations employed
and individual differences associated with representational format.

Research on code generation has highlighted the reliance of experienced
programmers upon external aids and the strategic knowledge required to make
use of them. Davies (1993a), for example, has shown that experienced
programmers, unlike novices, are strongly affected by restrictions in their
normal working environment because they are forced to use their working
memory to hold information that otherwise would be stored and accessed
through the environment. Generally speaking, some forms of strategy can be
explained in terms of the properties of the knowledge that programmers
develop through experience, and this experience and associated strategies are
related to improved performance (Davies, 1993b).

The form of the available visualisations can be an important factor in
multi-representational environments. Here a common distinction is between
propositional and diagrammatic representations. Research in this area has
focused on the advantages and disadvantages of mixing modalities in
multi-representational environments. According to Ainsworth, Wood & Bibby
(1996), in general, the more different the degree of graphicality external
representations exhibit, the more difficult it is for students to coordinate them.
On the other hand, it might be that graphical representations, by constraining
the interpretation of textual ones because of their weak

expressiveness (Stenning & Oberlander, 1995), could promote improved
understanding. Additionally, it is not clear is how modality influences task
strategy.

While modality is concerned with form, perspective is concerned with content.
Perspective refers to the programming information types that a representation
highlights. Computer programs are information structures that comprise
different types of information (Pennington, 1987), and programming notations
usually highlight some of these aspects at the cost of obscuring others (the
match-mismatch hypothesis (Gilmore & Green, 1984)). Some of these different
information types are: function, data structure, operations, data-flow and
control-flow. Program visualisations usually highlight some of these

information types and knowing, for example, which visualisation to use for
which kind of error is part of the programmer’s strategic knowledge.

In the context of debugging with SDEs, individual differences associated with
representational format preference are potentially important. People differ in
terms of their preferences for particular forms of representation, their skill at
decoding them, and educational background among other factors. As
mentioned above, a typical distinction in representational format is usually
between propositional and diagrammatic representations and a number of
studies have focused on comparing verbal and diagrammatic ability. Individual
differences in external representation use have been studied extensively in
various domains (logic reasoning (Oberlander, Stenning & Cox, 1999),
mechanical systems (Kriz & Hegarty, 2004) and HCI (Campagnoni & Ehrlich,
1989), among others). Recently, the amount of background knowledge people
have of external representation formalisms, or ‘graphical literacy’, has been
proposed as an important type of individual difference (Cox, 1996), and one
that might have particular relevance for computer programming (Cox,
Romero, du Boulay & Lutz, 2004). Although there seem to be advantages in
having a high level of graphical literacy (Cox, 1999), it is not clear how this
relates to task performance.

Although there has been some research into the strategies employed to
understand and debug programs when working with computerised
environments, this research has focused mainly on debugging

performance (Mulholland, 1997; Patel, du Boulay & Taylor, 1997) or has relied
on indirect accounts of the behaviour exhibited, for example through
questionnaires and post-hoc interviews (Storey, Wong & Muller, 2000). There
is a need for studies that present a more direct account of how people go about
debugging using computerised environments. Some important questions to
address with such studies are:

1. How do programmers integrate debugging strategies and tactics when
working with SDEs?

2. What is the relationship between verbal ability, level of graphical literacy
and debugging (task) performance.

3. How do modality and perspective influence debugging strategy and
deployment of tactics (an important aspect of which is visual attention
allocation in the SDE)?

The following sections describe an empirical study that addresses these
questions.

3 Method

3.1 Aims

This study had three main aims, each aligned with one of the questions
detailed above.

Regarding question one, we aimed to investigate the relationship between the
debugging strategies employed and the programmers’ tactical use of the
representations and facilities made available in the SDE. This was a detailed,
qualitative analysis of the fine-grained events that took place in the recorded
debugging sessions. We expected the deployed tactics to support
programmer’s debugging strategies and these tactics and strategies to be
similar to those reported in the literature (Katz & Anderson, 1988;
Mulholland, 1997; Prabhakararao, Cook, Ruthruff, Creswick, Main & Durham,
2003; Romero, Lutz, Cox & du Boulay, 2002; Bednarik & Tukiainen, 2004).

Relating to question two, our aim was to identify the key relationships
between graphical literacy, verbal ability and debugging performance. This
was a quantitative analysis that looked for correlations between these
individual differences measures. Based on related previous

studies (Grawemeyer & Cox, 2003; Grawemeyer & Cox, 2004), we expected
graphical literacy and debugging accuracy to be positively correlated.

Finally, with reference to question three, we aimed to investigate the
relationship between experience, modality, perspective and debugging strategy
and tactics. This was a quantitative analysis on the data logged during the
debugging sessions. According to previous studies (Romero, Lutz, Cox &

du Boulay, 2002; Romero, Cox, du Boulay & Lutz, 2002) we expected the
choice of strategy and the tactics deployed to be associated with programming
experience, knowledge of external representations and modality.

3.2 Design

The study was divided into three aspects, each related to the questions
detailed at the end of Section 2. A description of the design of each of the
three aspects of the study follows.

In order to address question 1, a detailed qualitative analysis of the events in
the debugging sessions was performed. The events considered were
participants verbalisations, the focus of their visual attention and their
interaction with the SDE.

In order to address question 2 the study investigated the relationship between
debugging accuracy and several individual differences measures:
Object-Oriented and procedural programming experience, verbal ability and
knowledge of external representations. The analysis of this part of the study
computed the correlations between these performance and individual
differences measures.

Regarding question 3, the investigation into the relationship between
experience, modality, perspective and debugging strategy and tactics,
considered four independent variables (two between subjects and two within
subjects) and five dependent variables. The independent between subjects
variables were procedural programming experience (PE) and knowledge of
external representation formalisms (KER). The independent within subjects
variables were type of error (data structure or control-flow) and modality
(graphical or textual visualisations). The five dependent variables were
debugging accuracy, inspection time for the available representations,
switching frequency between these, inspection time at the different points of
the program execution (breakpoints) and switching frequency between these.
Inspection time for the available representations refers to the time participants
spent focusing on each window of the SDE. Switching frequency between the
available representations refers to the number of changes of focus between the
SDE windows. Inspection time at the different breakpoints refers to the time
participants spent focusing on each one of the breakpoints at which they chose
to view the execution of the program. Finally, switching frequency between
these breakpoints is the number of times participants changed from one
breakpoint to another.

3.3 The experimental debugging environment

The SDE enabled participants to view the pre-computed execution of a Java
program and presented, in addition to the code, its output and two
visualisations of its execution. Participants were able to view the execution of
the program by stepping between predefined breakpoints for a specific sample
input. The SDE did not provide students with tools to edit, compile or
re-execute the program with different input values or to reset breakpoints to
other places in the code. The motivation to limit the functionality of the tool
in this way was to ensure, as much as possible, that all participants saw the
same information and to reduce the complexity of operating the debugging
environment.

Participants were able to see the program code, its output for a sample
execution, and two visualisations of this execution. A screen shot of the
system is shown in Figure 1. Participants were able to see the program class
files in the code window, one at a time, through the use of the side-tabs. The
objects and call sequence windows presented visualisations of the program’s
execution similar to those found in Object-Oriented software development
environments (Romero, Cox, du Boulay & Lutz, 2003). The objects window
(top right) presented data structure aspects while the call sequence window
(bottom middle) showed control-flow information.

The SDE is a modified version of the Restricted Focus Viewer (RFV), a visual
attention tracking software environment (Blackwell, Jansen & Marriott, 2000).
The SDE presents image stimuli in a blurred form. When the user clicks on an
image, a section of it around the mouse pointer becomes focused. In this way,
the program restricts how much of a stimulus can be seen clearly and thus
indirectly allows visual attention to be tracked as the user moves an unblurred

" @ SDE == M 4) @F44% Mon 2:30 PM

EO0e SDE Version 1.0
Code Objects
piles [T A
My Drink Machine
type: coke
hum_elements: 4
fricge
pilesTT
n_piles: 3
type: fanta piles: piles
num _elements: 4 \H
type: 5p
piles num_elements: 11
T vaue: 0.05 F
type: sprite """
num_elements: 3 [E
tpe: 10p E
a num_elements: O E
vdue: 0.1
n_piles: 4
piles ple=
Tpe: 20p
| L~ rum_clements: 0
vdue: 0.2
R El]
. SIS . DT S [
num_elements: O
vaue: 0.5 L J
Call sequence Output
A Iy
E
E
D 1]
' 1]
i 3
n
% B
M I
v vt
> = step, <- = step backwards, <end> = run, <homes = reset Finish Please say the location, description and fix of the error aloud gg

Figure 1: The debugging environment used by participants

area around the screen. Use of the SDE enabled moment-by-moment
representation switching between different program breakpoints and between
concurrently displayed, adjacent representations to be captured for later
analysis. The system was also able to digitally record audio and to replay
sessions, showing what participants did as well as what they said. In this way,
the SDE can allow both quantitative and qualitative analyses of the recorded
data. The user-computer interaction data (window and breakpoint fixation
time and switching) can be analysed in a quantitative way (for example
writing programs to process the logged data) to compare switching and
fixation behaviour among the different experimental conditions. Observing
replays of experimental sessions, on the other hand, can be used to interpret
intentions and behaviours of participants. The main difference between this
environment and the one employed in our previous studies (Romero, Cox,

du Boulay & Lutz, 2002; Romero, Lutz, Cox & du Boulay, 2002) is its
capability to show the execution of the program in steps. A previous version of
the environment presented users with visualisations comprising several static
screen snapshots of the program execution. Employing an environment with
dynamic visualisations enabled us to study not only representation usage but
also how participants employed the step and trace facilities provided. More
details about the system and methodology employed can be found in Romero,

Cox, du Boulay, Lutz & Bryant (2007).

Previous studies (Romero, Cox, du Boulay & Lutz, 2002; Romero, Lutz, Cox
& du Boulay, 2002) suggested that the restricted focus technology works best
for program comprehension and debugging purposes if the unblurred area is of
a size appropriate to cover entire representation units. In the case of the code,
for example, these units can be equated to methods. The objects window
represents an extreme case because the representation unit is the main object
and therefore the unblurred spot covers the whole window.

Studies that have validated the use of this technology have found that it does
not modify task performance significantly (Romero, Cox, du Boulay & Lutz,
2002; Jansen, Blackwell & Marriott, 2003). Studies that have compared visual
attention behaviour using this technology and employing eye-tracking
equipment have however found differences in these two conditions (Bednarik &
Tukiainen, 2004). The central issue concerns the validity of eye-tracking as
unequivocal measure of visual attention. One issue is that the two techniques
work at different degrees of granularity, with eye-tracking capturing many
more fleeting changes of gaze direction. Researchers have tended to interpret
measurement differences between the two techniques as reflecting the
superiority of eye tracking methods. However, recent evidence from the visual
attention, change blindness and attention design literatures (Wood, Cox &
Cheng, 2006) raises some questions in relation to this assumption.

3.4 Participants and procedure

The experimental participants were forty two computer science undergraduate
students from the School of Cognitive and Computing Sciences at Sussex
University, U.K. All had taken a three month introductory course in Java.
Some of them had previous programming experience, in most cases a few extra
months of academic programming experience.

Participants performed a verbal ability test, an external representation
(‘graphical literacy’) decision task (Cox, Romero, du Boulay & Lutz, 2004), a
program modification exercise, a program comprehension activity and six
debugging sessions. The experiment was divided into two sessions of about one
hour each which took place on different days. The verbal ability test was
based on items from a commercial book of GRE practice

examples (Brownstein, Weiner & Weiner-Green, 1990; Cox, Stenning &
Oberlander, 1995). The items have a multiple-choice response format and are
designed to measure the respondent’s ability to, for example, compare several
passages in terms of the similarity of their arguments, make valid inferences
from narratively presented information passages, assess the relative strengths
of arguments, judge whether alternative passages strengthen or weaken
particular arguments and the identify assumptions underlying arguments.

The external representation decision task was a visual recognition activity
requiring decisions as to whether a diagram was real or fake. A sequence of
well-formed (real) and chimeric (fake) diagrams was presented to participants
and they had to decide whether each one of these was real or fake (Cox,

Atestamentton

Figure 2: Examples of fake dia- Figure 3: Examples of real diagrams
grams

Romero, du Boulay & Lutz, 2004). Some of these diagrams are shown in
Figures 2 and 3.

The program modification and comprehension tasks were intended to
familiarise participants with the program they were going to debug and with
the program visualisations that were going to be presented to them in the
objects and call sequence windows. In the program modification task
participants had to perform a simple modification to the program while in the
program comprehension exercise participants had to answer a series of
true/false questions about this same program and its associated visualisations.

Following the familiarisation tasks participants proceeded to the debugging
part of the experiment.

3.4.1 The debugging session

In the six debugging sessions participants worked with buggy versions of the
same program. Each version was seeded with one error and was also modified
at a superficial level (variable and method names changed) to control for
spotting errors by relying on memory alone.

The first debugging session was a warm-up exercise. The five main debugging
sessions followed. One of these five sessions was used as a control and showed
empty windows for the objects and call sequence visualisations in order to
investigate whether the visualisations that would otherwise have been present
in these windows were helpful to participants. The order of presentation of the
four experimental sessions with ‘normal’ SDE as well as the single ‘empty
visualisations’ condition was randomised, as well as the choice of which buggy
program version to use in the warm up session.

Each debugging session consisted of two phases. In the first phase participants
were presented with samples of program output, both desired and actual.
When participants were clear about the difference between these two sample
outputs they moved on to the second phase of the session.

In the second phase participants worked with the SDE. They were allowed up
to ten minutes to debug each program. Following (Ericsson & Simon, 1984)’s
recommendations, participants were instructed to think aloud throughout the
session.

10

import java.io.x;
public class Fridge extends PilesContainer {
public Fridge(int number_of_drink_types) {
super (number_of_drink_types);

}

public void load() {
System.out.println("Loading the fridge");
System.out.println("Do you want to add drinks?");
String answer = EasyIn.getString();
while (answer.equals("y") && !'isFull()) {
System.out.println("Enter the type of drink");
String new_type = EasyIn.getString();
System.out.println("Now enter the number of " + new_type + "s");
int num_of_cans = EasyIn.getInt();
add (new_type, num_of_cans);
if (isFullQ))
System.out.println("Fridge cannot take any more drink types");
else {
System.out.println("Do you want to add more drinks?");
answer = EasyIn.getString();
}
}
System.out.println("Finished loading the fridge");
¥

public boolean typeExists(String drink_type) {
boolean type_exists = true;
if (piles.length < getIndex(drink_type))
type_exists = false;
return type_exists;

Figure 4: Segment of the program code for the Fridge class.

The target program simulated the behaviour of a drink dispensing machine
and was of medium size and complexity. This program loads the drink
machine with cans of different drink types and also dispenses drinks after
allowing the user to enter strings representing coins. The program is 201 lines
long and comprises six classes linked by inheritance and composition relations.
A typical execution of this program would create about 12 different objects,
some of which are array data structures.

Some of the code, output for a sample execution session and objects
visualisations for textual and graphical conditions for one of the buggy
versions are shown in Figures 4, 5, 6 and 7 respectively.

Each version of the program was seeded with one error. This error was either
data structure or control-flow related. The data structure errors were most

11

tsunx% java DrinkMachine
Loading the fridge

Do you want to add drinks?

y

Enter the type of drink

coke

Now enter the number of cokes
5

Exception in thread ‘main’
tsunx%

Figure 5: Output from a sample execution session of the DrinkMachine pro-
gram.

easily seen in the objects view window, while the control-flow ones were most
salient in the call sequence visualisation.

There were four predefined breakpoint lines in the code and different execution
paths of the program generated different numbers of debugging steps or
pauses. The average number of debugging steps for all the program versions
was 5.5 (they ranged from 4 to 7). These predefined breakpoints were chosen
because they were points in the execution where the arrays of the
DrinkMachine object (the main data structure of the program) were updated.

The audio recordings of the debugging sessions were transcribed and analysed
to score debugging accuracy. The score for each error was calculated on the
basis of whether students reported the location, description and proposed fix
of the error correctly. A score of one was assigned for each one of these aspects
if it was correctly reported and zero otherwise, thus giving each session a score
between zero and three for debugging accuracy.

4 Results

This section describes the experimental results and is divided into
sub-sections: i) debugging accuracy and its relation to individual difference
measures; ii) the results related to debugging tactics (debugging behaviour in
terms of representation usage and controlling the execution of the program)
and iii) a detailed analysis (combining qualitative and quantitative methods)
of debugging strategy deployment and its relationship to tactics.

12

MyDrinkMachine :
fridge :
n_piles : 1
piles :
piles[0] :
type : coke
n_elements : 7
piles[1] : null
piles[2] : null
till -
n_piles : 4
piles :
piles[0] :
type : 5p
n_elements : 2
value : 0.05
piles[1] :
type : 10p
n_elements : 1
value : 0.1
piles[2] :
type : 20p
n_elements : 2
value : 0.2
piles[3] :
type : 50p
n_elements : 1
value : 0.5

Figure 6: Textual objects
view of the DrinkMachine

program.

4.1 Debugging accuracy and individual differences

measures

piles[0]

My DrinkMachine

type: coke
n_elements:

fridge

n_piles: 1
piles:

till

n_piles: 4
piles:

piles[0]

type: 5p
n_elements:
value: 0.05

piles[1]

type: 10p
n_elements:
value: 0.1

e

piles[2]

type: 20p
n_elements:
value: 0.2

pilesi3]

\

type: 50p
n_elements:
value: 0.5

Figure 7: Graphical objects view
DrinkMachine program.

This section reports on the results of three analyses, the first relating
individual differences measures to debugging accuracy, the second comparing
the normal and empty visualisations conditions and the third relating accuracy
to the experimental factors considered. The second and third analyses were
performed separately as some of the experimental factors (representation
modality, for example) were not relevant in the empty visualisations condition.

4.1.1 Individual differences

of the

Table 1 presents a summary of the results that relate individual differences
measures to debugging accuracy. Debugging accuracy was positively correlated

13

00 Proc. Verbal ER Deb.
Progr. Progr. Abil- Knowl- Accu-
Exp. Exp. ity edge racy
00 Pro- Pearson Cor- 1 -.035 .224 -.131 -.112
gramming relation
Experience
Sig. (2-tailed) . .824 .154 407 481
Procedural Pearson Cor- - 1 -.049 .068 .358%*
Program- relation
ming
Experience
Sig. (2-tailed) - . .760 .670 .020
Verbal Pearson Cor- - - 1 .248 167
Ability relation
Sig. (2-tailed) - - . 113 .290
ER Knowl- Pearson Cor- - - - 1 .321%
edge relation
Sig. (2-tailed) - - - . .038
Debugging Pearson Cor- - - - - 1
Accuracy relation

Table 1: Correlations between pre-tests scores and debugging performance. (*)
indicates significance at the .05 level

with both experience in procedural programming languages (C, Pascal, Basic,
etc.) (0 = .36 p < .05) and with the external representation decision test score
(o = .32 p < .05). There were no significant correlations between these
pre-test scores and any of the other individual differences measures.

The results of this analysis suggest that improved debugging performance was
associated with programming experience in procedural languages and with
knowledge about external representation formalisms but not with
Object-Oriented programming experience and verbal ability. The lack of
association between debugging performance and Object-Oriented
programming experience might seem counter-intuitive at first. However if we
consider that participants were novice Java programmers, with some of them
having additional academic programming experience, mostly in procedural
programming languages, then it makes sense that this extra procedural
programming experience could have made the difference when solving a
debugging problem. The analyses reported in the following sections consider
these two factors, procedural programming experience (PPE) and knowledge
of external representation formalisms (KER) as independent, between subject
variables. The 42 participants were divided (post-hoc) by a median split on
the basis of their scores for these two factors into high and low groups. There
were 21 participants in each one of these groups and 10 or 11 in their
intersection (10 in low PPE - low KER, 11 in low PPE - high KER, 11 in high
PPE - low KER and 10 in high PPE - high KER).

14

100

90

80

70

60

50

40

30

20

Accuracy percentage

Visualisation No visualisation

Figure 8: Debugging performance for normal and empty visualisations condi-
tions.

4.1.2 Normal and empty visualisations conditions comparison

The results of the experiment comparing debugging performance for the
normal and empty visualisations conditions are illustrated in Figure 8. A
repeated measures ANOVA with two between subjects variables (PPE and
KER), one within subjects (visualisation) and one dependent variable
(accuracy performance) was run. There were main effects for the visualisation
condition (F(1,38) = 18.4, p < .01) only and no interaction effects. This result
suggests that the visualisations were indeed helpful to students, they obtained
better debugging scores with them regardless of their programming experience
and their knowledge of external representations. The rest of the analyses will
consider sessions in the normal condition only (those in which students had
available visualisations in the debugging environment).

4.1.3 Debugging performance and the experimental factors

The results of the experiment relating debugging performance to the
experimental factors considered are illustrated in Figure 9. A repeated
measures ANOVA with two between subjects variables (PPE and KER), two
within subjects (representation modality and error type) and one dependent
variable (accuracy performance) was run. There were no significant main
effects but a significant interaction effect for PPE and KER (F(1,38) = 5.25, p
< .05). Post hoc comparisons revealed a significant effect when comparing the
group of high PPE and high KER with the rest of the participants (t(40) =
-2.8, p < .01). This result suggest that superior debugging performance was
associated with a high level of both programming experience and external
representations knowledge. These two factors make separate contributions to

15

80

E =3
o o

Accuracy percentage
3

Low-Low Low-High High-Low High-High

Procedural Programming Experience - Knowledge of ERs

Figure 9: Debugging performance by PPE and KER.

debugging performance as they do not correlate to each other (see Table 1).

This part of the analysis revealed that visualisations were helpful and that
debugging accuracy was positively correlated to individual differences
measures such as programming experience and graphical literacy. It makes
sense that if visualisations can indeed be helpful, knowledge about
representation formalisms is key to take advantage of them.

4.2 Debugging tactics

This part of the analysis focuses on debugging behaviour in terms of
representation usage and the way participants controlled the view of the
program execution. The following subsections describe these two analyses.

4.2.1 Representation usage

The experimental variables considered in this analysis relate to the way visual
attention was allocated during the debugging process. In particular, this
analysis takes into account switches of visual attention between the different
SDE windows and time spend inspecting each one of these windows. Thus,
this part of the analysis relates switching frequency, accumulated fixation time
and average fixation time for the available representations to the experimental
factors (visualisation modality, type of error, PPE and KER). Three separate
ANOVAs were computed; one for switching frequency between the available
representations (the code, the objects, the call sequence and the output
windows), another for accumulated fixation time within the available
representations and the third for average fixation time within the available
representations.

16

Switches per minute

Switches per minute

0.8

0.6

0.4

0.2

0.0

Code-objects Code-call seq. Code-output Objects-call seq. Objects-output Call-seq.-output

Type of switch

Figure 10: Window switching frequency by type of switch

0.8

0.6

0.4

0.2

0.0+

SDE mode

B Graphical
B Textual

Low High
Knowledge of ERs

Figure 11: Window switching frequency by KER

0.8

0.6

0.4

SDE mode

0.2
B Graphical

W Textual

Switches per minute

0.0*
Rest High-High

Procedural programming experience - Knowledge of ERs

Figure 12: Window switching frequency by PPE and KER

2.0

0.5

Switches per minute

0.0
Data-objects Data-call seq. Control-objects Control-call seq.

Type of error - type of switch

Figure 13: Window switching frequency by type of error and switch

18

3 o

N

N

Total inspection time (in minutes)

Code Objects Call seq. Output
Window

Figure 14: Accumulated inspection time for each window

The results for window switching frequency are illustrated in Figures 10, 11, 12
and 13. There were main effects for type of switch (F(5,34) = 36.41, p < .01)
and interaction effects for type of error by type of switch (F(5,34) = 6.31, p <
.01), for modality and KER group (see Figure 11) (F(1,38) = 9.28, p < .01)
and for modality, PPE and KER groups (F(1,38) = 4.34, p < .05).

Planned comparisons revealed a significant effect when comparing the
frequency of switching involving the code window against those between the
other windows (t(41) = 12.54, p < .01) (see Figure 10). In the case of the
interaction effect between modality, PPE and KER, planned contrast
comparisons revealed a significant contrast when comparing the group of high
knowledge in both PPE and KER with the rest of the participants (F(1,40) =
16.98, p < .01) (see Figure 12). Finally in the case of the interaction effect
between type of error and type of switch, a planned test of within subject
contrasts for the type of error by type of switch effect revealed a significant
contrast when comparing switches including the objects window (switching
between the objects and either the code or output windows) to switches
including the call sequence window (switching between the call sequence and
either the code or the output windows) (F(1,38) = 30.65, p < .01) (see
Figure 13). These results suggest that switches involving the code window
were more frequent than those involving any of the other windows, that
differences in KER are associated with differences in the amount of switching
in different modality conditions, that these differences are magnified when
considering the group of high KER and high PPE, and that unsurprisingly,
the frequency of switches involving the objects and call sequence visualisations
varies according to the type of error at hand.

Regarding accumulated inspection time, there were main effects for window
(F(3,36) = 179.68, p < .01) (see Figure 14) and interaction effects for modality
and KER group (F(1,38) = 5.35, p < .05) and window, modality and KER

19

SDE mode

B Graphical
B Textual

Total inspection time (in minutes)

Low High
Knowledge of ERs

Figure 15: Accumulated inspection time by KER and SDE mode

Window-SDE mode

o

Code-graphical
Code-textual
Objects-graphical

IS

Objects-textual
Call-graphical

~n

Call-textual
Output-graphical

ENEEEEN

Total inspection time (in minutes)

Output-textual

°

Knowledge of ERs

Figure 16: Accumulated inspection time by KER, window and SDE mode

20

80

60

40

20

Average fixation time (in seconds)

Code Objects Call seq. Output
Window

Figure 17: Average fixation time for each window

group (F(3,36) = 5.06, p < .01) (see Figures 15, and 16 respectively). For the
interaction effect between window, modality and KER group, tests of within
subjects contrasts revealed significant effects when comparing the differences
between the KER groups in their the total fixation times for graphical and
textual conditions, for the code window and the other windows (the difference
in fixation times between the graphical and textual SDE modes of the KER
groups for the code window was significantly different to those of the other
windows) (F(1,38) = 8.65, p < .01). These results suggest that participants
looked at the code much more than any other window (for about 80% of the
time) and that while those participants in the high KER group inspected the
code for a longer time when working in the SDE graphical mode the opposite
was true for those in the low KER group (they looked at the code window for
a longer time when working in the SDE textual mode). This difference seems
to be responsible for the corresponding global difference in SDE mode for
these two groups (see Figure 15).

The results for average fixation time per visit to the window are illustrated in
Figure 17. There were main effects for window (F(3,36) = 22.43, p < .01) only
and no interaction effects. Participants made average fixations of about one
minute for the code window and of less than 10 seconds for the other windows.
This result suggests that participants’ average fixations were considerably
longer for the code window but there were no significant differences for any of
the other factors considered.

The results for representation usage therefore suggest that participants with
both high KER and PPE had a high window switching frequency when
working with textual visualisations and that there were dissimilar patterns for
the amount of time participants inspected the code window for low and high
KER groups under different SDE mode conditions. The low KER group
looked at the code window longer when working under the SDE textual

21

0.8

0.6

0.4

0.2

Switches per minute

0.0
End/reset-data End/reset-control Intermediate-data Intermediate-control

Switch type - error type

Figure 18: Breakpoint switching by types of switch (end/reset and intermediate
switches) and error (data-flow and control-flow errors)

condition while the high KER group looked at the code window longer when
working under the SDE graphical mode (see Figure 16). Regarding average
fixation times, participants performed longer fixations when looking at the
code window. There were, however, no other significant differences for this
aspect either for KER, PPE, modality, perspective or their interactions.

One way to explain the reason for participants with both high KER and PPE
switching more in the textual SDE condition would be to say that they made
shorter fixations in this condition, however average fixation times were similar
for different KER and PPE groups and for the different modality and
perspective conditions (according to the results for average fixation times).
Therefore if participants with both high KER and PPE were doing more
switching it was not because they made shorter fixations but may be because
of differences in total inspection times (differences in total time on task). The
dissimilar patterns observed for total inspection times for low and high KER
groups working under different SDE modes could be considered as evidence,
however this result did not involve PPE groups so we cannot be conclusive.

4.2.2 Breakpoint usage

This part of the analysis relates accumulated fixation time and switching
frequency for the program breakpoints to the experimental factors
(visualisation modality, type of error, PPE and KER). Two separate ANOVAs
were computed; one for switching frequency between the program breakpoints
and another for fixation time within the different program breakpoints.

The analysis for breakpoint switching frequency compared switches between
the beginning of the program execution and the last breakpoint (end/reset
switches) with switches between intermediate breakpoints (intermediate

22

Error type

B Data structure
B Control flow

Switches per minute

Low-Low Low-High High-Low High-High

Knowledge of procedural programming - knowledge of ERs

Figure 19: Breakpoint switching by PPE and KER

switches). This was to compare two typical debugging tactics: following the
program execution step by step or analysing it ‘post-mortem’ by jumping from
the the beginning of the program execution to the last breakpoint.

The results for breakpoint switching frequency are illustrated in Figures 18
and 19. There were main effects for switch (F(1,38) = 52.58, p < .01) and type
of error (F(1,38) = 6.23, p < .05) and interaction effects for the combination
of these two factors (F(1,38) = 6.99, p < .05) (see Figure 18), and type of
error, PPE and KER (F(1,38) = 4.35, p < .05) (see Figure 19). Planned
contrast comparisons failed to reveal significance for specific contrasts for the
latter interaction effect. These results suggest that intermediate switches were
more frequent than switches between the first and last breakpoints, that data
structure errors promoted more switching than control-flow errors, but also for
intermediate breakpoints, participants switched more for data structure than
for control flow errors. Additionally, breakpoint switching frequency varies
according to the type of error and differences in PPE and KER.

The analysis for breakpoint fixation time compared the relative time
participants spent in the first, last and intermediate breakpoints. The results
for breakpoint fixation are illustrated in Figures 20 and 21. There were main
effects for breakpoint (F(2,37) = 3.7, p < .05) (see Figure 20) and interaction
effects for breakpoint and error types (F(2,37) = 14.56, p < .01). Planned
contrast comparisons revealed a significant contrast in this interaction when
comparing intermediate and last breakpoints (F(1,38) = 29.54, p < .01) (see
Figure 21. These results suggest that participants spent the most time on the
last breakpoint and the least on the first in general but that this was also
dependent on error type (this was not the case for data structure errors).

The global results for breakpoint usage suggest that differences in the control
of the program execution viewing were related mainly to the type of error at
hand. For data structure errors, participants spend longer in intermediate
breakpoints, switching frequently between them. For control-flow errors

23

Fixation time percentage

Fixation time percentage

50

40

30

20

o

First Intermediate Last
Break point type

Figure 20: Fixation time by breakpoint type.

80

(0]
Intermediate-data Last-data Intermediate-control Last-control
Break point type - error type

Figure 21: Fixation time by breakpoint and error types.

participants spend longer in the last breakpoint (the end of the program
execution).

4.3 Debugging strategy

This section analyses the debugging strategies deployed by participants both in
qualitative and quantitative ways. These debugging strategies were identified
by interpreting detailed accounts of the behaviour of participants. These
detailed accounts were obtained by watching replays of the debugging sessions
and breaking them down into a sequence of discrete debugging events by
interpreting three types of experimental data simultaneously. The three types
of data considered were trace of focus of attention, control of the presentation
of the program’s execution and participants’ verbalisations. A new event was
defined by a change in the focus of attention, a command related to the
presentation of the program’s execution, participants’ verbalisations or a
mixture of these. Therefore events were bounded by pauses or changes of topic
in programmers’ verbalisations (utterances), inter-window switches of visual
attention focus or breakpoint switches. A detailed description of this
methodology can be found in Romero, Cox, du Boulay, Lutz & Bryant (2007).

This part of the analysis took into account only a subset of the experimental
data. The debugging sessions for only one of the six target program versions
were taken into account !. The program version chosen was not significantly
different to the other versions in terms of the use of representations (code and
visualisations) that participants displayed and was the one that showed the
widest spread of debugging accuracy scores.

The following sections present qualitative and quantitative analyses of these
debugging events and associated strategies.

4.3.1 Qualitative analysis

A detailed qualitative analysis of the debugging events identified specific
debugging strategies by categorising each one of these events as the
deployment of a specific strategy. The debugging strategies identified are
shown in Table 2. Most of these debugging strategies correspond to those
described in (Katz & Anderson, 1988). The only different strategy is following
ezecution. There are not many references to similar strategies in the
debugging literature, perhaps because only a few debugging studies have taken
into account the programmer’s interaction with computerised debugging
environments and in particular with the visualisations provided by them.
Following execution shares similarities with forward reasoning strategies as the

1This detailed analysis was an extremely time consuming process which took about 240
coder hours. It was not possible to involve multiple coders but we tried to maximise the
quality of the coding process with a thorough training of the coder. First, the coder was
briefed about the coding scheme. Then, the authors as well as the coder coded one debugging
session. Codings were compared and discrepancies were resolved. This process was repeated
until there was a high level of agreement in the codings. After this the coder coded the rest
of the debugging sessions on his own.

25

Debugging Description

behaviour

Following execu- | Following the execution of the program for a specific ex-

tion ample to understand some aspect of it or to identify the
error. Utterances describe the behaviour of the program
in terms of the changes to its data structures or real world
objects

Causal reason- | Homing in on an area of code after having uttered a debug-

ing ging hypothesis. Participant is reading the code searching

for the place responsible for the observed faulty behaviour

Comprehension | High level browsing of the code to build up a more complete
picture of the program. Participant is reading the code for
program comprehension purposes

Hand simulation | Talking about the program in terms of a dynamic view of
it, but without stepping through it. Participant focuses on
the code window commenting on dynamic aspects of the
program without actually executing the program in steps

Table 2: Debugging strategies observed in the detailed qualitative analysis of
the debugging study

programmer starts the search by trying to understand what the program does,
however, unlike forward reasoning, the comprehension process integrates
visualisation and code information.

Following exzecution is related to mapping (Mulholland, 1997),
cross-referencing information between visualisation and code. In following
execution there are frequent visual attention switches between the code, the
available visualisations and the output of the program as well as breakpoint
switches.

In causal reasoning there are also visual attention and breakpoint switching,
although these are not as frequent as in following execution. Occassionally,
while trying to identify the piece of code responsible for the error,
programmers might switch breakpoints or have a look at the output or the
visualisations.

Finally, comprehension and hand simulation typically make no use of either
visualisations or breakpoints. In these two strategies programmers concentrate
on the code and do not try to execute the program in steps.

4.3.2 Quantitative analysis

This section analyses the debugging strategies identified in Section 4.3.1 in a
quantitative way. The frequencies of the debugging events and associated
strategies were computed and an ANOVA relating debugging strategy to the
experimental factors (SDE mode, type of error, PPE and KER) was

26

Events per minute

0 ’ ’ ; " ’ N
Following execution Causal reasoning Comprehension Hand simulation

Debugging strategy

Figure 22: Frequency of debugging strategy deployment

Events per minute

0
Textual-Low Textual-High Graphical-Low Graphical-High
SDE mode - Programming experience

Debugging strategy

B Following execution
B Causal reasoning
Bl Comprehension
B Hand simulation

Figure 23: Frequency of debugging strategy deployment by programming expe-

rience and SDE mode

Debugging strategy

B Following execution
B Causal reasoning
Bl Comprehension

Events per minute

B Hand simulation

0
Textual-Low Textual-High Graphical-Low Graphical-High
SDE mode - Knowledge of ERs

Figure 24: Frequency of debugging strategy deployment by knowledge of ERs
and SDE mode

performed.

There were main effects for strategy (F(1,19) = 68.51, p < .01) and interaction
effects for strategy, modality and programming experience (F(1,19) = 4.88, p
< .05) and for strategy, modality and knowledge of external representations
(F(1,19) = 3.37, p < .05) (see Figures 22, 23 and 24 respectively). Regarding
the main effect, tests of within subjects contrasts revealed that comprehension
and following execution did not differ significantly but that comprehension and
both causal reasoning and hand simulation did (F(1,21) = 46.65, p < .01).

Regarding the interaction effect for strategy, modality and programming
experience, tests of within subjects contrasts revealed that the only significant
difference when comparing textual and graphical SDE mode for the high
experience group was for following execution (F(1,21) = 20.03, p < .01).
Regarding the interaction effect for strategy, modality and knowledge of ERs,
planned contrast comparisons failed to reveal significance for specific contrasts.
These results suggest that the most frequently deployed strategies were
following execution and comprehension and that participants in the high and
low groups for PPE and KER employed debugging strategies differently when
working in different SDE modes. For the case of PPE, this difference seem to
be associated with the low frequency of following execution performed by the
high experience level group when working with graphical visualisations. For
the case of KER it is not possible to be more precise.

5 Discussion

The discussion on the findings of this study is structured around the questions
in section 2.

28

5.1 Relationship between debugging strategies and
tactics

The first question is about the way in which programmers integrate debugging
strategies and tactics. However before discussing this it is important to
compare the strategies and tactics identified with those of previous studies.

Both the strategies and tactics observed were similar to those reported in
studies looking at the use of visualisation tools in debugging (Katz &
Anderson, 1988; Mulholland, 1997; Bednarik & Tukiainen, 2004). One
important difference was that students employed, additionally to the strategies
reported by Katz & Anderson (causal reasoning, comprehension, and hand
stmulation) a strategy perhaps specific to SDEs, following execution. In this
strategy programmers try to comprehend the program or identify the error by
running the program in steps and following its execution for a specific input
example, integrating information from the program code, its visualisations and
output. It can be categorised as a forward reasoning strategy, however, unlike
other strategies in this category (such as comprehension or hand simulation),
the search for the error takes into account information from sources other than
the program code.

Tactics related to coordinating the available representations and operating the
SDE step-and-trace facilities were particularly important for the following
ezecution strategy. They were also employed, although to a lesser extent, in
causal reasoning.

When deploying a following execution strategy, participants viewed the
execution of the program in steps and made frequent visual attention switches
between the code, the available visualisations and the output of the program.
Frequently, once they had identified the program error in this way, they would
switch to a causal reasoning strategy, concentrating on the program code but
also making ocasional references to other representations.

The strategies more frequently deployed were comprehension and following
execution while hand simulation was only infrequently deployed. This suggests
that students made good use of the environment affordances and specifically of
the facilities for browsing through the code text and of those for viewing the
execution of the program in steps.

The other two debugging strategies observed, comprehension and hand
stmulation consisted almost entirely of reading the program code, switching
between the different class files but making practically no reference to the
other representations or to dynamic aspects of the program execution.

5.2 Relationship between graphical literacy and
debugging performance

The second question refers to the relationship between verbal ability, level of
graphical literacy and debugging performance.

29

The visualisations employed were helpful for students, debugging without
visualisations decreased performance. However, in order to take advantage of
the information in the visualisations both relevant programming experience
and a good knowledge of representation formalisms is needed.

It seems counter-intuitive that relevant programming experience in this
context means experience in procedural programming languages. However, if
we consider that the participants’ Object-Oriented programming experience
was fairly homogeneous (mainly the undergraduate courses they had taken),
what might have made the difference was the procedural programming
experience they had accumulated elsewhere.

Verbal ability was not correlated with debugging performance. This result is
in agreement with other studies that have found no significant correlation
between verbal ability and programming performance (Mayer, Dyck &
Vilberg, 1986; Tukiainen & Monkkonen, 2002). It may be that verbal ability
as measured by the pre-tests applied is different from the skill required to read
and interpret information in propositional form about computer programs.

5.3 Relationship between experience, modality and
debugging behaviour

The last question refers to the way experience, modality and perspective
influence debugging strategy and tactics deployment. An important finding
here relates to the way in which experienced participants were able to modify
their strategy and tactics according to changes in the format of the
visualisations without altering their performance. Additionally, results also
confirm the importance of the type of error in the debugging task.

Regarding the first finding, experienced participants (those who had both a
high level of programming experience and a high level of knowledge of external
representation formalisms) displayed a debugging behaviour different from the
rest of the participants when dealing with different SDE modes. When
working in a textual mode (with visualisations displayed in a textual format),
experienced participants tended to switch their visual attention between the
windows of the environment more than when working in a graphical mode.
This difference implies that the reduced memorability of textual as opposed to
graphical representations of data structures and flow of control was
compensated for by more frequent visual cross-checks between the code and
those representations. This difference seems related to corresponding
differences in the debugging strategies employed in these two conditions. The
following paragraphs elaborate on this point and offer a possible explanation
for the reduced memorability of textual representations.

At least for participants with a high level of knowledge of external
representation formalisms, there is a corresponding difference in the amount of
following execution, a debugging strategy related to executing the program in
steps and following its execution for a specific input example, integrating
information from the program code, its visualisations and output. Participants
working in textual mode tended to employ this debugging strategy more than

30

in graphical mode. One possible explanation for these difference is that the
textual condition imposed an additional burden which required
cross-referencing the information in the different representations frequently,
therefore requiring participants to spend longer in debugging strategies which
rely on representation switching (such as following execution).

A comparison between Figures 6 and 7 illustrates the difference between
graphical and textual representations. Both figures encode the same
information. However by grouping certain elements in boxes, Figure 7 helps to
identify meaningful structures in the visualisation (in this case the objects of
the program execution). Participants working in the textual condition, on the
other hand, had to perform this grouping and then keep a mental reference to
these meaningful structures in working memory. These processing overheads
can be crucial when dealing with dynamic representations, as participants also
had to detect patterns of change through time in the visualisations. These
results seem to confirm the view that diagrams, unlike propositional
representations, exploit perceptual processes by grouping relevant information
together and therefore make the search and recognition of information

easier (Larkin & Simon, 1987).

Several studies have identified this grouping of relevant information into
meaningful structures (chunking) as a crucial part of problem solving (Chase
& Simon, 1973a; Chase & Simon, 1973b) and in particular of the programming
skill (McKeithen, Reitman, Rueter & Hirtle, 1981; Brooks, 1983). This study
seems to exemplify the way in which representation format can support
chunking for a population that is presumably developing this programming
skill. A graphical reference to the program’s relevant structures gives better
support as it enables a more direct identification of these structures.

The additional cognitive effort required to interpret the textual condition can
be considered as an example of extraneous cognitive load. According to van
Bruggen, Kirschner & Jochems (2002), extraneous cognitive load is the
cognitive effort produced by the characteristics of the learning environment.
This contrasts with germane cognitive load, which is the cognitive effort
associated with storage and retrival of schemata in long term memory.
According to Cognitive Load Theory (van Bruggen, Kirschner & Jochems,
2002), learning environments should attempt to decrease extraneous cognitive
load and increase germane cognitive load. It seems that the graphical
condition is closer than the textual condition to this aim.

Other studies have also highlighted differences in representation switching
patterns between participants with different levels of skill. Cox (1997)

and Cox & Brna (1995) reported that poor performers switched more
frequently than successful ones in analytical reasoning tasks. However, there
are several differences between those studies and the one reported here.
Although analytical reasoning as a cognitive task might be remarkably similar
to program comprehension, the analytical reasoning studies encouraged
participants to build their own representations. Therefore, switching
representations represented ‘a strategic decision by the subject to abandon the
current external representation and construct a new one’ (Cox & Brna, 1995).
In the present study, representations were complementary (and

31

pre-constructed) rather than alternative, therefore, switching did not
necessarily represent discarding one representation for another, but more likely
complementing the information of one with another. The reason for switching
in the present study had more to do with an inefficient use of the
visualisations or with ineffective representations, rather than with giving up on
specific representations.

The main results of this study suggest that, at least for the experimental
conditions considered, graphical representations enabled a more direct
understanding of the relevant structures in the problem space. However this
does not mean that diagrams are superior to textual representations for every
situation, or that they will provide a good level of support in all cases. One of
the main issues to consider is scalability. Programs, even for small academic
projects, very often involve dozens of objects. Presenting all of them on the
screen can create layout difficulties for the designer of such a tool and
probably cognitive overload problems for its users. More studies are needed to
find out whether there are potential problems in using diagrammatic
representations in this context and what their possible solutions might be.

6 Conclusions

This study has characterised the strategies and tactics deployed by novice
programmers working in multi-representational software debugging
environments. Additionally, it has investigated how factors such as experience,
knowledge of external representation formalisms and the form and content of
the representations employed in the software debugging environment influence
both the choice of strategy and debugging performance. Although there have
been studies that have looked at debugging strategies (Katz & Anderson,
1988; Mulholland, 1997; Prabhakararao, Cook, Ruthruff, Creswick, Main &
Durham, 2003) and tactics (Romero, Cox, du Boulay & Lutz, 2002; Romero,
Lutz, Cox & du Boulay, 2002; Bednarik & Tukiainen, 2004), the value of the
present study resides in the fact that it offers an account of how programmers
integrate them and about how different factors interact to influence the choice
of these strategies and tactics and the accuracy of the debugging effort.

This study suggests that, at least for novice programmers working in
multi-representational software debugging environments, knowledge of external
representation formalisms is as important as programming experience to
succeed in the debugging task. Visualisations of the program execution are
helpful but only when students have enough programming knowledge to make
sense of the information in them and enough knowledge about representation
formalisms to decode this information. Students with these characteristics are
able to modify their debugging strategies and tactics when working under
different format conditions in order to retain a high accuracy level.
Propositional representations are not as helpful as graphical ones in grouping
meaningful elements of the representations and as a result these group of
students had to perform frequent information cross-referencing between the
available representations when working in the textual mode.

32

The results of this study raise several questions and more experimentation is
needed, perhaps focusing only on representational format and for students
with a high level of both programming experience and knowledge of external
representation formalisms.

Acknowledgments

This work was supported by the EPSRC grant GR/N64199 and the Nuffield
Foundation grant URB/01703/G. The support for Richard Cox of the
Leverhulme Foundation (Leverhulme Trust Fellowship G/2/RFG/2001/0117)
and the British Academy is gratefully acknowledged. The authors wish to
thank Stephen Grant for refining the coding categories of the detailed analysis
of representation usage and for coding them. Finally the authors would like to
thank the referees for their helpful comments and thorough review of earlier
versions of the paper.

References

Ainsworth, S., Wood, D., & Bibby, P. (1996). Co-ordinating multiple
representations in computer based learning environments. In Brna, P.,
Paiva, A., & Self, J. (Eds.), Proceedings of the 1996 European Conference
on Artificial Intelligence on Education, (pp. 336-342)., Lisbon, Portugal.

Bednarik, R. & Tukiainen, M. (2004). Visual attention and representation
switching in Java program debugging: a study using eye-movement
tracking. In Dunican, E. & Green, T. (Eds.), Proceedings of the 16th
annual workshop of the Psychology of Programming Interest Group, (pp.
159-169).

Blackwell, A., Jansen, A., & Marriott, K. (2000). Restricted focus viewer: a
tool for tracking visual attention. In M. Anderson, P. Cheng, &
V. Haarslev (Eds.), Theory and Application of Diagrams. Lecture Notes in
Artificial Intelligence 1889 (pp. 162-177). Springer-Verlag.

Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active
integration of information during learning with dynamic interactive
visualizations. Learning and Instruction, 14, 325-341.

Brooks, R. (1983). Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, 18, 543-554.

Brownstein, S., Weiner, M., & Weiner-Green, S. (1990). How to prepare for
the GRE. New York: Barron’s Educational Series.

Campagnoni, F. R. & Ehrlich, K. (1989). Information retrieval using a
hypertext-based help system. ACM Transactions on Information Systems,
7, 271-291.

33

Chase, W. & Simon, H. (1973a). Perception in chess. Cognitive Psychology, 4,
55-81.

Chase, W. G. & Simon, H. A. (1973b). The mind’s eye in chess. In W. G.
Chase (Ed.), Visual Information Processing. New York: Academic.

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V. (2006). Pair
collaboration in end-user debugging. In Grundy, J. & Howse, J. (Eds.),
2006 IEEE Symposium on Visual Languages and Human-Centric
Computing, (pp. 3—-10)., Brighton, UK. IEEE press.

Cox, R. (1996). Analytical reasoning with multiple external representations.
PhD thesis, University of Edinburgh, Edinburgh, Scotland, U.K.

Cox, R. (1997). Representation interpretation versus representation
construction: a controlled study using switchERII. In du Boulay, B. &
Mizoguchi, R. (Eds.), Artificial intelligence in education: knowledge and
media in learning systems (Proceedings of the 8th. World Conference of
the Artificial Intelligence in Education Society, (pp. 434—444).,
Amsterdam. I0S.

Cox, R. (1999). Representation construction, externalised cognition and
individual differences. Learning and Instruction, 9, 343-363.

Cox, R. & Brna, P. (1995). Supporting the use of external representations in
problem solving: The need for flexible learning environments. Journal of
Artificial Intelligence in Education, 6(2/3), 239-302.

Cox, R., Romero, P., du Boulay, B., & Lutz, R. (2004). A cognitive processing
perspective on student programmers’ ‘graphicacy’. In Blackwell, A.,
Marriott, K., & Shimojima, A. (Eds.), Diagrammatic Representation and
Inference. Lecture Notes in Computer Science (LNCS) 2980., (pp.
344-346)., Berlin. Springer-Verlag.

Cox, R., Stenning, K., & Oberlander, J. (1995). The effect of graphical and
sentential logic teaching on spontaneous external representation. Cognitive
Studies: Bulletin of the Japanese Cognitive Science Society, 2(4), 56-75.

Davies, S. P. (1993a). Expertise and display-based strategies in computer
programming. In Human Computer Interaction ’93.

Davies, S. P. (1993b). Models and theories of programming strategy.
International Journal of Man-Machine Studies, 39, 237-267.

Ericsson, K. A. & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as
Data. Cambridge, Massachusetts: The MIT Press.

Gilmore, D. J. (1990). Expert programming knowledge: a strategic approach.
In J. Hoc, T. R. G. Green, R. Samurcay, & D. J. Gilmore (Eds.),
Psychology of Programming (pp. 223-234). London, U.K.: Academic
Press.

Gilmore, D. J. & Green, T. R. G. (1984). Comprehension and recall of
miniature programs. International Journal of Man-Machine Studies,
21(1), 31-48.

34

Grawemeyer, B. & Cox, R. (2003). The effects of knowledge of external
representations and display selection upon database query performance.
In Second International Workshop on Interactive Graphical
Commaunication (IGC2003).

Grawemeyer, B. & Cox, R. (2004). The effect of
knowledge-of-external-representations upon performance and
representational choice in a database query task. In Blackwell, A.,
Marriott, K., & Shimojima, A. (Eds.), Diagrammatic Representation and
Inference, Third International Conference, Diagrams 2004, (pp. 351-354).

Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C., Narayanan,
V., Cook, C., & Burnett, M. (2006). Gender differences in end-user
debugging, revisited: What the miners found. In Grundy, J. & Howse, J.
(Eds.), 2006 IEEE Symposium on Visual Languages and Human-Centric
Computing, (pp. 19-26)., Brighton, UK. IEEE press.

Jansen, A. R., Blackwell, A. F., & Marriott, K. (2003). A tool for tracking
visual attention: The restricted focus viewer. Behavior Research Methods,
Instruments, & Computers, 35(4), 57—69.

Katz, I. & Anderson, J. R. (1988). Debugging: an analysis of bug location
strategies. Human-Computer Interaction, 3, 359-399.

Kriz, S. & Hegarty, M. (2004). Constructing and revising mental models of a
mechanical system: The role of domain knowledge in understanding
external visualizations. In Forbus, K., Gentner, D., & Regier, T. (Eds.),
Proceedings of the 26th Annual Conference of the Cognitive Science
Society, (pp. 439-449)., Mahwah, NJ. Lawrence Erlbaum Associates.

Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science, 11, 65-100.

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Learning to program and
learning to think: what’s the connection? Commun. ACM, 29(7),
605-610.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981).
Knowledge organization and skill differences in computer programmers.
Canadian Journal of Psychology, 13, 307-325.

Mulholland, P. (1997). Using a fine-grained comparative evaluation technique
to understand and design software visualization tools. In Wiedenbeck, S.
& Scholtz, J. (Eds.), Empirical Studies of Programmers, seventh
workshop, (pp. 91-108)., New York. ACM press.

Oberlander, J., Stenning, K., & Cox, R. (1999). Hyperproof: Abstraction,
visual preference and modality. In L. S. Moss, J. Ginzburg, & M. de Rijke
(Eds.), Logic, Language, and Computation, Vol. II (pp. 222-236). CSLI
Publications.

Patel, M. J., du Boulay, B., & Taylor, C. (1997). Comparison of contrasting
Prolog trace output formats. International Journal of Human Computer
Studies, 47, 289-322.

35

Pennington, N. (1987). Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychology, 19,
295-341.

Prabhakararao, S., Cook, C. R., Ruthruff, J. R., Creswick, E., Main, M., &
Durham, M. (2003). Strategies and behaviors of end-user programmers
with interactive fault localization. In HCC, (pp. 15-22). IEEE Computer
Society.

Romero, P., Cox, R., du Boulay, B., & Lutz, R. (2002). Visual attention and
representation switching during java program debugging: A study using
the restricted focus viewer. In Hegarty, M., Meyer, B., & Narayanan,
N. H. (Eds.), Diagrammatic Representation and Inference. Second

International Conference, Diagrams 2002. Lecture Notes in Artificial
Intelligence 2317, (pp. 221-235).

Romero, P., Cox, R., du Boulay, B., & Lutz, R. (2003). A survey of
representations employed in object-oriented programming environments.
Journal of Visual Languages and Computing, 14(5), 387-419.

Romero, P., Cox, R., du Boulay, B., Lutz, R., & Bryant, S. (2007). Methodol-
ogyforthecaptureandanalysisofhybriddata:acasestudyofprogramdebugging.
Behavior Research Methods.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2002). Co-ordination of
multiple external representations during java program debugging. In
S. Wiedenbeck & M. Petre (Eds.), 2002 IEEE Symposia on Human
Centric Computing Languages and Environments (pp. 207-214).
Airlington, Virginia, USA: IEEE press.

Stenning, K. & Oberlander, J. (1995). A cognitive theory of graphical and
linguistic reasoning: logic and implementation. Cognitive Science, 19(1),
97-140.

Storey, A. D., Wong, K., & Muller, H. A. (2000). How do program
understanding tools affect how programmers understand programs?
Science of computer programming, 36, 183—-207.

Tukiainen, M. & Monkkonen, E. (2002). Programming aptitude testing as a
prediction of learning to program. In Kuljis, J., Baldwin, L., & Scoble, R.
(Eds.), Psychology of Programming Interest Group 14th Workshop, (pp.
45-57).

Tversky, B. & Morrison, J. B. (2002). Animation: can it facilitate?
International Journal of Human Computer Studies, 57, 247-262.

van Bruggen, J. M., Kirschner, P. A., & Jochems, W. (2002). External
representation of argumentation in CSCL and the management of
cognitive load. Learning and instruction, 12, 121-138.

Wood, S., Cox, R., & Cheng, P. (2006). Designing for attention: Eight issues
to consider. Computers in Human Behavior, 22(1).

36

